// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
mapping(bytes32 role => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual returns (bool) {
return _roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessControlBadConfirmation();
}
_revokeRole(role, callerConfirmation);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
if (!hasRole(role, account)) {
_roles[role].hasRole[account] = true;
emit RoleGranted(role, account, _msgSender());
return true;
} else {
return false;
}
}
/**
* @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
if (hasRole(role, account)) {
_roles[role].hasRole[account] = false;
emit RoleRevoked(role, account, _msgSender());
return true;
} else {
return false;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/extensions/AccessControlDefaultAdminRules.sol)
pragma solidity ^0.8.20;
import {IAccessControlDefaultAdminRules} from "./IAccessControlDefaultAdminRules.sol";
import {AccessControl, IAccessControl} from "../AccessControl.sol";
import {SafeCast} from "../../utils/math/SafeCast.sol";
import {Math} from "../../utils/math/Math.sol";
import {IERC5313} from "../../interfaces/IERC5313.sol";
/**
* @dev Extension of {AccessControl} that allows specifying special rules to manage
* the `DEFAULT_ADMIN_ROLE` holder, which is a sensitive role with special permissions
* over other roles that may potentially have privileged rights in the system.
*
* If a specific role doesn't have an admin role assigned, the holder of the
* `DEFAULT_ADMIN_ROLE` will have the ability to grant it and revoke it.
*
* This contract implements the following risk mitigations on top of {AccessControl}:
*
* * Only one account holds the `DEFAULT_ADMIN_ROLE` since deployment until it's potentially renounced.
* * Enforces a 2-step process to transfer the `DEFAULT_ADMIN_ROLE` to another account.
* * Enforces a configurable delay between the two steps, with the ability to cancel before the transfer is accepted.
* * The delay can be changed by scheduling, see {changeDefaultAdminDelay}.
* * It is not possible to use another role to manage the `DEFAULT_ADMIN_ROLE`.
*
* Example usage:
*
* ```solidity
* contract MyToken is AccessControlDefaultAdminRules {
* constructor() AccessControlDefaultAdminRules(
* 3 days,
* msg.sender // Explicit initial `DEFAULT_ADMIN_ROLE` holder
* ) {}
* }
* ```
*/
abstract contract AccessControlDefaultAdminRules is IAccessControlDefaultAdminRules, IERC5313, AccessControl {
// pending admin pair read/written together frequently
address private _pendingDefaultAdmin;
uint48 private _pendingDefaultAdminSchedule; // 0 == unset
uint48 private _currentDelay;
address private _currentDefaultAdmin;
// pending delay pair read/written together frequently
uint48 private _pendingDelay;
uint48 private _pendingDelaySchedule; // 0 == unset
/**
* @dev Sets the initial values for {defaultAdminDelay} and {defaultAdmin} address.
*/
constructor(uint48 initialDelay, address initialDefaultAdmin) {
if (initialDefaultAdmin == address(0)) {
revert AccessControlInvalidDefaultAdmin(address(0));
}
_currentDelay = initialDelay;
_grantRole(DEFAULT_ADMIN_ROLE, initialDefaultAdmin);
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControlDefaultAdminRules).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC5313-owner}.
*/
function owner() public view virtual returns (address) {
return defaultAdmin();
}
///
/// Override AccessControl role management
///
/**
* @dev See {AccessControl-grantRole}. Reverts for `DEFAULT_ADMIN_ROLE`.
*/
function grantRole(bytes32 role, address account) public virtual override(AccessControl, IAccessControl) {
if (role == DEFAULT_ADMIN_ROLE) {
revert AccessControlEnforcedDefaultAdminRules();
}
super.grantRole(role, account);
}
/**
* @dev See {AccessControl-revokeRole}. Reverts for `DEFAULT_ADMIN_ROLE`.
*/
function revokeRole(bytes32 role, address account) public virtual override(AccessControl, IAccessControl) {
if (role == DEFAULT_ADMIN_ROLE) {
revert AccessControlEnforcedDefaultAdminRules();
}
super.revokeRole(role, account);
}
/**
* @dev See {AccessControl-renounceRole}.
*
* For the `DEFAULT_ADMIN_ROLE`, it only allows renouncing in two steps by first calling
* {beginDefaultAdminTransfer} to the `address(0)`, so it's required that the {pendingDefaultAdmin} schedule
* has also passed when calling this function.
*
* After its execution, it will not be possible to call `onlyRole(DEFAULT_ADMIN_ROLE)` functions.
*
* NOTE: Renouncing `DEFAULT_ADMIN_ROLE` will leave the contract without a {defaultAdmin},
* thereby disabling any functionality that is only available for it, and the possibility of reassigning a
* non-administrated role.
*/
function renounceRole(bytes32 role, address account) public virtual override(AccessControl, IAccessControl) {
if (role == DEFAULT_ADMIN_ROLE && account == defaultAdmin()) {
(address newDefaultAdmin, uint48 schedule) = pendingDefaultAdmin();
if (newDefaultAdmin != address(0) || !_isScheduleSet(schedule) || !_hasSchedulePassed(schedule)) {
revert AccessControlEnforcedDefaultAdminDelay(schedule);
}
delete _pendingDefaultAdminSchedule;
}
super.renounceRole(role, account);
}
/**
* @dev See {AccessControl-_grantRole}.
*
* For `DEFAULT_ADMIN_ROLE`, it only allows granting if there isn't already a {defaultAdmin} or if the
* role has been previously renounced.
*
* NOTE: Exposing this function through another mechanism may make the `DEFAULT_ADMIN_ROLE`
* assignable again. Make sure to guarantee this is the expected behavior in your implementation.
*/
function _grantRole(bytes32 role, address account) internal virtual override returns (bool) {
if (role == DEFAULT_ADMIN_ROLE) {
if (defaultAdmin() != address(0)) {
revert AccessControlEnforcedDefaultAdminRules();
}
_currentDefaultAdmin = account;
}
return super._grantRole(role, account);
}
/**
* @dev See {AccessControl-_revokeRole}.
*/
function _revokeRole(bytes32 role, address account) internal virtual override returns (bool) {
if (role == DEFAULT_ADMIN_ROLE && account == defaultAdmin()) {
delete _currentDefaultAdmin;
}
return super._revokeRole(role, account);
}
/**
* @dev See {AccessControl-_setRoleAdmin}. Reverts for `DEFAULT_ADMIN_ROLE`.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual override {
if (role == DEFAULT_ADMIN_ROLE) {
revert AccessControlEnforcedDefaultAdminRules();
}
super._setRoleAdmin(role, adminRole);
}
///
/// AccessControlDefaultAdminRules accessors
///
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function defaultAdmin() public view virtual returns (address) {
return _currentDefaultAdmin;
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function pendingDefaultAdmin() public view virtual returns (address newAdmin, uint48 schedule) {
return (_pendingDefaultAdmin, _pendingDefaultAdminSchedule);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function defaultAdminDelay() public view virtual returns (uint48) {
uint48 schedule = _pendingDelaySchedule;
return (_isScheduleSet(schedule) && _hasSchedulePassed(schedule)) ? _pendingDelay : _currentDelay;
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function pendingDefaultAdminDelay() public view virtual returns (uint48 newDelay, uint48 schedule) {
schedule = _pendingDelaySchedule;
return (_isScheduleSet(schedule) && !_hasSchedulePassed(schedule)) ? (_pendingDelay, schedule) : (0, 0);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function defaultAdminDelayIncreaseWait() public view virtual returns (uint48) {
return 5 days;
}
///
/// AccessControlDefaultAdminRules public and internal setters for defaultAdmin/pendingDefaultAdmin
///
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function beginDefaultAdminTransfer(address newAdmin) public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
_beginDefaultAdminTransfer(newAdmin);
}
/**
* @dev See {beginDefaultAdminTransfer}.
*
* Internal function without access restriction.
*/
function _beginDefaultAdminTransfer(address newAdmin) internal virtual {
uint48 newSchedule = SafeCast.toUint48(block.timestamp) + defaultAdminDelay();
_setPendingDefaultAdmin(newAdmin, newSchedule);
emit DefaultAdminTransferScheduled(newAdmin, newSchedule);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function cancelDefaultAdminTransfer() public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
_cancelDefaultAdminTransfer();
}
/**
* @dev See {cancelDefaultAdminTransfer}.
*
* Internal function without access restriction.
*/
function _cancelDefaultAdminTransfer() internal virtual {
_setPendingDefaultAdmin(address(0), 0);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function acceptDefaultAdminTransfer() public virtual {
(address newDefaultAdmin, ) = pendingDefaultAdmin();
if (_msgSender() != newDefaultAdmin) {
// Enforce newDefaultAdmin explicit acceptance.
revert AccessControlInvalidDefaultAdmin(_msgSender());
}
_acceptDefaultAdminTransfer();
}
/**
* @dev See {acceptDefaultAdminTransfer}.
*
* Internal function without access restriction.
*/
function _acceptDefaultAdminTransfer() internal virtual {
(address newAdmin, uint48 schedule) = pendingDefaultAdmin();
if (!_isScheduleSet(schedule) || !_hasSchedulePassed(schedule)) {
revert AccessControlEnforcedDefaultAdminDelay(schedule);
}
_revokeRole(DEFAULT_ADMIN_ROLE, defaultAdmin());
_grantRole(DEFAULT_ADMIN_ROLE, newAdmin);
delete _pendingDefaultAdmin;
delete _pendingDefaultAdminSchedule;
}
///
/// AccessControlDefaultAdminRules public and internal setters for defaultAdminDelay/pendingDefaultAdminDelay
///
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function changeDefaultAdminDelay(uint48 newDelay) public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
_changeDefaultAdminDelay(newDelay);
}
/**
* @dev See {changeDefaultAdminDelay}.
*
* Internal function without access restriction.
*/
function _changeDefaultAdminDelay(uint48 newDelay) internal virtual {
uint48 newSchedule = SafeCast.toUint48(block.timestamp) + _delayChangeWait(newDelay);
_setPendingDelay(newDelay, newSchedule);
emit DefaultAdminDelayChangeScheduled(newDelay, newSchedule);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function rollbackDefaultAdminDelay() public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
_rollbackDefaultAdminDelay();
}
/**
* @dev See {rollbackDefaultAdminDelay}.
*
* Internal function without access restriction.
*/
function _rollbackDefaultAdminDelay() internal virtual {
_setPendingDelay(0, 0);
}
/**
* @dev Returns the amount of seconds to wait after the `newDelay` will
* become the new {defaultAdminDelay}.
*
* The value returned guarantees that if the delay is reduced, it will go into effect
* after a wait that honors the previously set delay.
*
* See {defaultAdminDelayIncreaseWait}.
*/
function _delayChangeWait(uint48 newDelay) internal view virtual returns (uint48) {
uint48 currentDelay = defaultAdminDelay();
// When increasing the delay, we schedule the delay change to occur after a period of "new delay" has passed, up
// to a maximum given by defaultAdminDelayIncreaseWait, by default 5 days. For example, if increasing from 1 day
// to 3 days, the new delay will come into effect after 3 days. If increasing from 1 day to 10 days, the new
// delay will come into effect after 5 days. The 5 day wait period is intended to be able to fix an error like
// using milliseconds instead of seconds.
//
// When decreasing the delay, we wait the difference between "current delay" and "new delay". This guarantees
// that an admin transfer cannot be made faster than "current delay" at the time the delay change is scheduled.
// For example, if decreasing from 10 days to 3 days, the new delay will come into effect after 7 days.
return
newDelay > currentDelay
? uint48(Math.min(newDelay, defaultAdminDelayIncreaseWait())) // no need to safecast, both inputs are uint48
: currentDelay - newDelay;
}
///
/// Private setters
///
/**
* @dev Setter of the tuple for pending admin and its schedule.
*
* May emit a DefaultAdminTransferCanceled event.
*/
function _setPendingDefaultAdmin(address newAdmin, uint48 newSchedule) private {
(, uint48 oldSchedule) = pendingDefaultAdmin();
_pendingDefaultAdmin = newAdmin;
_pendingDefaultAdminSchedule = newSchedule;
// An `oldSchedule` from `pendingDefaultAdmin()` is only set if it hasn't been accepted.
if (_isScheduleSet(oldSchedule)) {
// Emit for implicit cancellations when another default admin was scheduled.
emit DefaultAdminTransferCanceled();
}
}
/**
* @dev Setter of the tuple for pending delay and its schedule.
*
* May emit a DefaultAdminDelayChangeCanceled event.
*/
function _setPendingDelay(uint48 newDelay, uint48 newSchedule) private {
uint48 oldSchedule = _pendingDelaySchedule;
if (_isScheduleSet(oldSchedule)) {
if (_hasSchedulePassed(oldSchedule)) {
// Materialize a virtual delay
_currentDelay = _pendingDelay;
} else {
// Emit for implicit cancellations when another delay was scheduled.
emit DefaultAdminDelayChangeCanceled();
}
}
_pendingDelay = newDelay;
_pendingDelaySchedule = newSchedule;
}
///
/// Private helpers
///
/**
* @dev Defines if an `schedule` is considered set. For consistency purposes.
*/
function _isScheduleSet(uint48 schedule) private pure returns (bool) {
return schedule != 0;
}
/**
* @dev Defines if an `schedule` is considered passed. For consistency purposes.
*/
function _hasSchedulePassed(uint48 schedule) private view returns (bool) {
return schedule < block.timestamp;
}
}
// SPDX-License-Identifier: Unlicense
/*
* @title Solidity Bytes Arrays Utils
* @author Gonçalo Sá <goncalo.sa@consensys.net>
*
* @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity.
* The library lets you concatenate, slice and type cast bytes arrays both in memory and storage.
*/
pragma solidity >=0.8.0 <0.9.0;
library BytesLib {
function concat(
bytes memory _preBytes,
bytes memory _postBytes
)
internal
pure
returns (bytes memory)
{
bytes memory tempBytes;
assembly {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// Store the length of the first bytes array at the beginning of
// the memory for tempBytes.
let length := mload(_preBytes)
mstore(tempBytes, length)
// Maintain a memory counter for the current write location in the
// temp bytes array by adding the 32 bytes for the array length to
// the starting location.
let mc := add(tempBytes, 0x20)
// Stop copying when the memory counter reaches the length of the
// first bytes array.
let end := add(mc, length)
for {
// Initialize a copy counter to the start of the _preBytes data,
// 32 bytes into its memory.
let cc := add(_preBytes, 0x20)
} lt(mc, end) {
// Increase both counters by 32 bytes each iteration.
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// Write the _preBytes data into the tempBytes memory 32 bytes
// at a time.
mstore(mc, mload(cc))
}
// Add the length of _postBytes to the current length of tempBytes
// and store it as the new length in the first 32 bytes of the
// tempBytes memory.
length := mload(_postBytes)
mstore(tempBytes, add(length, mload(tempBytes)))
// Move the memory counter back from a multiple of 0x20 to the
// actual end of the _preBytes data.
mc := end
// Stop copying when the memory counter reaches the new combined
// length of the arrays.
end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
// Update the free-memory pointer by padding our last write location
// to 32 bytes: add 31 bytes to the end of tempBytes to move to the
// next 32 byte block, then round down to the nearest multiple of
// 32. If the sum of the length of the two arrays is zero then add
// one before rounding down to leave a blank 32 bytes (the length block with 0).
mstore(0x40, and(
add(add(end, iszero(add(length, mload(_preBytes)))), 31),
not(31) // Round down to the nearest 32 bytes.
))
}
return tempBytes;
}
function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
assembly {
// Read the first 32 bytes of _preBytes storage, which is the length
// of the array. (We don't need to use the offset into the slot
// because arrays use the entire slot.)
let fslot := sload(_preBytes.slot)
// Arrays of 31 bytes or less have an even value in their slot,
// while longer arrays have an odd value. The actual length is
// the slot divided by two for odd values, and the lowest order
// byte divided by two for even values.
// If the slot is even, bitwise and the slot with 255 and divide by
// two to get the length. If the slot is odd, bitwise and the slot
// with -1 and divide by two.
let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
let mlength := mload(_postBytes)
let newlength := add(slength, mlength)
// slength can contain both the length and contents of the array
// if length < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
switch add(lt(slength, 32), lt(newlength, 32))
case 2 {
// Since the new array still fits in the slot, we just need to
// update the contents of the slot.
// uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
sstore(
_preBytes.slot,
// all the modifications to the slot are inside this
// next block
add(
// we can just add to the slot contents because the
// bytes we want to change are the LSBs
fslot,
add(
mul(
div(
// load the bytes from memory
mload(add(_postBytes, 0x20)),
// zero all bytes to the right
exp(0x100, sub(32, mlength))
),
// and now shift left the number of bytes to
// leave space for the length in the slot
exp(0x100, sub(32, newlength))
),
// increase length by the double of the memory
// bytes length
mul(mlength, 2)
)
)
)
}
case 1 {
// The stored value fits in the slot, but the combined value
// will exceed it.
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
// save new length
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
// The contents of the _postBytes array start 32 bytes into
// the structure. Our first read should obtain the `submod`
// bytes that can fit into the unused space in the last word
// of the stored array. To get this, we read 32 bytes starting
// from `submod`, so the data we read overlaps with the array
// contents by `submod` bytes. Masking the lowest-order
// `submod` bytes allows us to add that value directly to the
// stored value.
let submod := sub(32, slength)
let mc := add(_postBytes, submod)
let end := add(_postBytes, mlength)
let mask := sub(exp(0x100, submod), 1)
sstore(
sc,
add(
and(
fslot,
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00
),
and(mload(mc), mask)
)
)
for {
mc := add(mc, 0x20)
sc := add(sc, 1)
} lt(mc, end) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
sstore(sc, mload(mc))
}
mask := exp(0x100, sub(mc, end))
sstore(sc, mul(div(mload(mc), mask), mask))
}
default {
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
// Start copying to the last used word of the stored array.
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
// save new length
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
// Copy over the first `submod` bytes of the new data as in
// case 1 above.
let slengthmod := mod(slength, 32)
let mlengthmod := mod(mlength, 32)
let submod := sub(32, slengthmod)
let mc := add(_postBytes, submod)
let end := add(_postBytes, mlength)
let mask := sub(exp(0x100, submod), 1)
sstore(sc, add(sload(sc), and(mload(mc), mask)))
for {
sc := add(sc, 1)
mc := add(mc, 0x20)
} lt(mc, end) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
sstore(sc, mload(mc))
}
mask := exp(0x100, sub(mc, end))
sstore(sc, mul(div(mload(mc), mask), mask))
}
}
}
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
)
internal
pure
returns (bytes memory)
{
require(_length + 31 >= _length, "slice_overflow");
require(_bytes.length >= _start + _length, "slice_outOfBounds");
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
require(_bytes.length >= _start + 20, "toAddress_outOfBounds");
address tempAddress;
assembly {
tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
}
return tempAddress;
}
function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
require(_bytes.length >= _start + 1 , "toUint8_outOfBounds");
uint8 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x1), _start))
}
return tempUint;
}
function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
require(_bytes.length >= _start + 2, "toUint16_outOfBounds");
uint16 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x2), _start))
}
return tempUint;
}
function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
require(_bytes.length >= _start + 4, "toUint32_outOfBounds");
uint32 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x4), _start))
}
return tempUint;
}
function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
require(_bytes.length >= _start + 8, "toUint64_outOfBounds");
uint64 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x8), _start))
}
return tempUint;
}
function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
require(_bytes.length >= _start + 12, "toUint96_outOfBounds");
uint96 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0xc), _start))
}
return tempUint;
}
function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
require(_bytes.length >= _start + 16, "toUint128_outOfBounds");
uint128 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x10), _start))
}
return tempUint;
}
function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
require(_bytes.length >= _start + 32, "toUint256_outOfBounds");
uint256 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x20), _start))
}
return tempUint;
}
function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
require(_bytes.length >= _start + 32, "toBytes32_outOfBounds");
bytes32 tempBytes32;
assembly {
tempBytes32 := mload(add(add(_bytes, 0x20), _start))
}
return tempBytes32;
}
function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
bool success = true;
assembly {
let length := mload(_preBytes)
// if lengths don't match the arrays are not equal
switch eq(length, mload(_postBytes))
case 1 {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
let mc := add(_preBytes, 0x20)
let end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
// the next line is the loop condition:
// while(uint256(mc < end) + cb == 2)
} eq(add(lt(mc, end), cb), 2) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// if any of these checks fails then arrays are not equal
if iszero(eq(mload(mc), mload(cc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
function equal_nonAligned(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
bool success = true;
assembly {
let length := mload(_preBytes)
// if lengths don't match the arrays are not equal
switch eq(length, mload(_postBytes))
case 1 {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
let endMinusWord := add(_preBytes, length)
let mc := add(_preBytes, 0x20)
let cc := add(_postBytes, 0x20)
for {
// the next line is the loop condition:
// while(uint256(mc < endWord) + cb == 2)
} eq(add(lt(mc, endMinusWord), cb), 2) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// if any of these checks fails then arrays are not equal
if iszero(eq(mload(mc), mload(cc))) {
// unsuccess:
success := 0
cb := 0
}
}
// Only if still successful
// For <1 word tail bytes
if gt(success, 0) {
// Get the remainder of length/32
// length % 32 = AND(length, 32 - 1)
let numTailBytes := and(length, 0x1f)
let mcRem := mload(mc)
let ccRem := mload(cc)
for {
let i := 0
// the next line is the loop condition:
// while(uint256(i < numTailBytes) + cb == 2)
} eq(add(lt(i, numTailBytes), cb), 2) {
i := add(i, 1)
} {
if iszero(eq(byte(i, mcRem), byte(i, ccRem))) {
// unsuccess:
success := 0
cb := 0
}
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
function equalStorage(
bytes storage _preBytes,
bytes memory _postBytes
)
internal
view
returns (bool)
{
bool success = true;
assembly {
// we know _preBytes_offset is 0
let fslot := sload(_preBytes.slot)
// Decode the length of the stored array like in concatStorage().
let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
let mlength := mload(_postBytes)
// if lengths don't match the arrays are not equal
switch eq(slength, mlength)
case 1 {
// slength can contain both the length and contents of the array
// if length < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
if iszero(iszero(slength)) {
switch lt(slength, 32)
case 1 {
// blank the last byte which is the length
fslot := mul(div(fslot, 0x100), 0x100)
if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
// unsuccess:
success := 0
}
}
default {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := keccak256(0x0, 0x20)
let mc := add(_postBytes, 0x20)
let end := add(mc, mlength)
// the next line is the loop condition:
// while(uint256(mc < end) + cb == 2)
for {} eq(add(lt(mc, end), cb), 2) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
if iszero(eq(sload(sc), mload(mc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)
pragma solidity ^0.8.20;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev The `account` is missing a role.
*/
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
/**
* @dev The caller of a function is not the expected one.
*
* NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
*/
error AccessControlBadConfirmation();
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*/
function renounceRole(bytes32 role, address callerConfirmation) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/extensions/IAccessControlDefaultAdminRules.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "../IAccessControl.sol";
/**
* @dev External interface of AccessControlDefaultAdminRules declared to support ERC165 detection.
*/
interface IAccessControlDefaultAdminRules is IAccessControl {
/**
* @dev The new default admin is not a valid default admin.
*/
error AccessControlInvalidDefaultAdmin(address defaultAdmin);
/**
* @dev At least one of the following rules was violated:
*
* - The `DEFAULT_ADMIN_ROLE` must only be managed by itself.
* - The `DEFAULT_ADMIN_ROLE` must only be held by one account at the time.
* - Any `DEFAULT_ADMIN_ROLE` transfer must be in two delayed steps.
*/
error AccessControlEnforcedDefaultAdminRules();
/**
* @dev The delay for transferring the default admin delay is enforced and
* the operation must wait until `schedule`.
*
* NOTE: `schedule` can be 0 indicating there's no transfer scheduled.
*/
error AccessControlEnforcedDefaultAdminDelay(uint48 schedule);
/**
* @dev Emitted when a {defaultAdmin} transfer is started, setting `newAdmin` as the next
* address to become the {defaultAdmin} by calling {acceptDefaultAdminTransfer} only after `acceptSchedule`
* passes.
*/
event DefaultAdminTransferScheduled(address indexed newAdmin, uint48 acceptSchedule);
/**
* @dev Emitted when a {pendingDefaultAdmin} is reset if it was never accepted, regardless of its schedule.
*/
event DefaultAdminTransferCanceled();
/**
* @dev Emitted when a {defaultAdminDelay} change is started, setting `newDelay` as the next
* delay to be applied between default admin transfer after `effectSchedule` has passed.
*/
event DefaultAdminDelayChangeScheduled(uint48 newDelay, uint48 effectSchedule);
/**
* @dev Emitted when a {pendingDefaultAdminDelay} is reset if its schedule didn't pass.
*/
event DefaultAdminDelayChangeCanceled();
/**
* @dev Returns the address of the current `DEFAULT_ADMIN_ROLE` holder.
*/
function defaultAdmin() external view returns (address);
/**
* @dev Returns a tuple of a `newAdmin` and an accept schedule.
*
* After the `schedule` passes, the `newAdmin` will be able to accept the {defaultAdmin} role
* by calling {acceptDefaultAdminTransfer}, completing the role transfer.
*
* A zero value only in `acceptSchedule` indicates no pending admin transfer.
*
* NOTE: A zero address `newAdmin` means that {defaultAdmin} is being renounced.
*/
function pendingDefaultAdmin() external view returns (address newAdmin, uint48 acceptSchedule);
/**
* @dev Returns the delay required to schedule the acceptance of a {defaultAdmin} transfer started.
*
* This delay will be added to the current timestamp when calling {beginDefaultAdminTransfer} to set
* the acceptance schedule.
*
* NOTE: If a delay change has been scheduled, it will take effect as soon as the schedule passes, making this
* function returns the new delay. See {changeDefaultAdminDelay}.
*/
function defaultAdminDelay() external view returns (uint48);
/**
* @dev Returns a tuple of `newDelay` and an effect schedule.
*
* After the `schedule` passes, the `newDelay` will get into effect immediately for every
* new {defaultAdmin} transfer started with {beginDefaultAdminTransfer}.
*
* A zero value only in `effectSchedule` indicates no pending delay change.
*
* NOTE: A zero value only for `newDelay` means that the next {defaultAdminDelay}
* will be zero after the effect schedule.
*/
function pendingDefaultAdminDelay() external view returns (uint48 newDelay, uint48 effectSchedule);
/**
* @dev Starts a {defaultAdmin} transfer by setting a {pendingDefaultAdmin} scheduled for acceptance
* after the current timestamp plus a {defaultAdminDelay}.
*
* Requirements:
*
* - Only can be called by the current {defaultAdmin}.
*
* Emits a DefaultAdminRoleChangeStarted event.
*/
function beginDefaultAdminTransfer(address newAdmin) external;
/**
* @dev Cancels a {defaultAdmin} transfer previously started with {beginDefaultAdminTransfer}.
*
* A {pendingDefaultAdmin} not yet accepted can also be cancelled with this function.
*
* Requirements:
*
* - Only can be called by the current {defaultAdmin}.
*
* May emit a DefaultAdminTransferCanceled event.
*/
function cancelDefaultAdminTransfer() external;
/**
* @dev Completes a {defaultAdmin} transfer previously started with {beginDefaultAdminTransfer}.
*
* After calling the function:
*
* - `DEFAULT_ADMIN_ROLE` should be granted to the caller.
* - `DEFAULT_ADMIN_ROLE` should be revoked from the previous holder.
* - {pendingDefaultAdmin} should be reset to zero values.
*
* Requirements:
*
* - Only can be called by the {pendingDefaultAdmin}'s `newAdmin`.
* - The {pendingDefaultAdmin}'s `acceptSchedule` should've passed.
*/
function acceptDefaultAdminTransfer() external;
/**
* @dev Initiates a {defaultAdminDelay} update by setting a {pendingDefaultAdminDelay} scheduled for getting
* into effect after the current timestamp plus a {defaultAdminDelay}.
*
* This function guarantees that any call to {beginDefaultAdminTransfer} done between the timestamp this
* method is called and the {pendingDefaultAdminDelay} effect schedule will use the current {defaultAdminDelay}
* set before calling.
*
* The {pendingDefaultAdminDelay}'s effect schedule is defined in a way that waiting until the schedule and then
* calling {beginDefaultAdminTransfer} with the new delay will take at least the same as another {defaultAdmin}
* complete transfer (including acceptance).
*
* The schedule is designed for two scenarios:
*
* - When the delay is changed for a larger one the schedule is `block.timestamp + newDelay` capped by
* {defaultAdminDelayIncreaseWait}.
* - When the delay is changed for a shorter one, the schedule is `block.timestamp + (current delay - new delay)`.
*
* A {pendingDefaultAdminDelay} that never got into effect will be canceled in favor of a new scheduled change.
*
* Requirements:
*
* - Only can be called by the current {defaultAdmin}.
*
* Emits a DefaultAdminDelayChangeScheduled event and may emit a DefaultAdminDelayChangeCanceled event.
*/
function changeDefaultAdminDelay(uint48 newDelay) external;
/**
* @dev Cancels a scheduled {defaultAdminDelay} change.
*
* Requirements:
*
* - Only can be called by the current {defaultAdmin}.
*
* May emit a DefaultAdminDelayChangeCanceled event.
*/
function rollbackDefaultAdminDelay() external;
/**
* @dev Maximum time in seconds for an increase to {defaultAdminDelay} (that is scheduled using {changeDefaultAdminDelay})
* to take effect. Default to 5 days.
*
* When the {defaultAdminDelay} is scheduled to be increased, it goes into effect after the new delay has passed with
* the purpose of giving enough time for reverting any accidental change (i.e. using milliseconds instead of seconds)
* that may lock the contract. However, to avoid excessive schedules, the wait is capped by this function and it can
* be overrode for a custom {defaultAdminDelay} increase scheduling.
*
* IMPORTANT: Make sure to add a reasonable amount of time while overriding this value, otherwise,
* there's a risk of setting a high new delay that goes into effect almost immediately without the
* possibility of human intervention in the case of an input error (eg. set milliseconds instead of seconds).
*/
function defaultAdminDelayIncreaseWait() external view returns (uint48);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import "../libraries/Messages.sol";
interface IBridgeAdapter {
event SendMessage(bytes32 operationId, Messages.MessageToSend message);
event ReceiveMessage(bytes32 indexed messageId);
error ChainAlreadyAdded(uint16 chainId);
error ChainUnavailable(uint16 chainId);
error InvalidBridgeRouter(address router);
error InvalidMessageSender(bytes32 sourceAddress);
error InvalidFinalityLevel(uint64 finalityLevel);
error InvalidTokenAddress(bytes32 token);
error InvalidReceivedAmount(uint256 expected, uint256 actual);
error UnsupportedFinalityLevel(uint64 finalityLevel);
error UnsupportedExtraArgs();
error EmptyExtraArgs();
function MANAGER_ROLE() external view returns (bytes32);
function getSendFee(Messages.MessageToSend memory message) external view returns (uint256 fee);
function sendMessage(Messages.MessageToSend memory message) external payable;
/**
* @notice Determine if chain is available to send messages to
* @param chainId destination chain (as defined by Folks)
* @return isAvailable whether is available
*/
function isChainAvailable(uint16 chainId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import "./IBridgeAdapter.sol";
import "../libraries/Messages.sol";
interface IBridgeRouter {
function MANAGER_ROLE() external view returns (bytes32);
function MESSAGE_SENDER_ROLE() external view returns (bytes32);
function getAdapter(uint16 adapterId) external view returns (IBridgeAdapter);
function getSendFee(Messages.MessageToSend memory message) external view returns (uint256);
function sendMessage(Messages.MessageToSend memory message) external payable;
function receiveMessage(Messages.MessageReceived memory message) external payable;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5313.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface for the Light Contract Ownership Standard.
*
* A standardized minimal interface required to identify an account that controls a contract
*/
interface IERC5313 {
/**
* @dev Gets the address of the owner.
*/
function owner() external view returns (address);
}
// contracts/Messages.sol
// SPDX-License-Identifier: Apache 2
pragma solidity ^0.8.0;
interface IWormhole {
struct GuardianSet {
address[] keys;
uint32 expirationTime;
}
struct Signature {
bytes32 r;
bytes32 s;
uint8 v;
uint8 guardianIndex;
}
struct VM {
uint8 version;
uint32 timestamp;
uint32 nonce;
uint16 emitterChainId;
bytes32 emitterAddress;
uint64 sequence;
uint8 consistencyLevel;
bytes payload;
uint32 guardianSetIndex;
Signature[] signatures;
bytes32 hash;
}
struct ContractUpgrade {
bytes32 module;
uint8 action;
uint16 chain;
address newContract;
}
struct GuardianSetUpgrade {
bytes32 module;
uint8 action;
uint16 chain;
GuardianSet newGuardianSet;
uint32 newGuardianSetIndex;
}
struct SetMessageFee {
bytes32 module;
uint8 action;
uint16 chain;
uint256 messageFee;
}
struct TransferFees {
bytes32 module;
uint8 action;
uint16 chain;
uint256 amount;
bytes32 recipient;
}
struct RecoverChainId {
bytes32 module;
uint8 action;
uint256 evmChainId;
uint16 newChainId;
}
event LogMessagePublished(
address indexed sender, uint64 sequence, uint32 nonce, bytes payload, uint8 consistencyLevel
);
event ContractUpgraded(address indexed oldContract, address indexed newContract);
event GuardianSetAdded(uint32 indexed index);
function publishMessage(uint32 nonce, bytes memory payload, uint8 consistencyLevel)
external
payable
returns (uint64 sequence);
function initialize() external;
function parseAndVerifyVM(bytes calldata encodedVM)
external
view
returns (VM memory vm, bool valid, string memory reason);
function verifyVM(VM memory vm) external view returns (bool valid, string memory reason);
function verifySignatures(bytes32 hash, Signature[] memory signatures, GuardianSet memory guardianSet)
external
pure
returns (bool valid, string memory reason);
function parseVM(bytes memory encodedVM) external pure returns (VM memory vm);
function quorum(uint256 numGuardians) external pure returns (uint256 numSignaturesRequiredForQuorum);
function getGuardianSet(uint32 index) external view returns (GuardianSet memory);
function getCurrentGuardianSetIndex() external view returns (uint32);
function getGuardianSetExpiry() external view returns (uint32);
function governanceActionIsConsumed(bytes32 hash) external view returns (bool);
function isInitialized(address impl) external view returns (bool);
function chainId() external view returns (uint16);
function isFork() external view returns (bool);
function governanceChainId() external view returns (uint16);
function governanceContract() external view returns (bytes32);
function messageFee() external view returns (uint256);
function evmChainId() external view returns (uint256);
function nextSequence(address emitter) external view returns (uint64);
function parseContractUpgrade(bytes memory encodedUpgrade) external pure returns (ContractUpgrade memory cu);
function parseGuardianSetUpgrade(bytes memory encodedUpgrade)
external
pure
returns (GuardianSetUpgrade memory gsu);
function parseSetMessageFee(bytes memory encodedSetMessageFee) external pure returns (SetMessageFee memory smf);
function parseTransferFees(bytes memory encodedTransferFees) external pure returns (TransferFees memory tf);
function parseRecoverChainId(bytes memory encodedRecoverChainId)
external
pure
returns (RecoverChainId memory rci);
function submitContractUpgrade(bytes memory _vm) external;
function submitSetMessageFee(bytes memory _vm) external;
function submitNewGuardianSet(bytes memory _vm) external;
function submitTransferFees(bytes memory _vm) external;
function submitRecoverChainId(bytes memory _vm) external;
}
// SPDX-License-Identifier: Apache 2
pragma solidity ^0.8.0;
/**
* @notice Interface for a contract which can receive Wormhole messages.
*/
interface IWormholeReceiver {
/**
* @notice When a `send` is performed with this contract as the target, this function will be
* invoked by the WormholeRelayer contract
*
* NOTE: This function should be restricted such that only the Wormhole Relayer contract can call it.
*
* We also recommend that this function checks that `sourceChain` and `sourceAddress` are indeed who
* you expect to have requested the calling of `send` on the source chain
*
* The invocation of this function corresponding to the `send` request will have msg.value equal
* to the receiverValue specified in the send request.
*
* If the invocation of this function reverts or exceeds the gas limit
* specified by the send requester, this delivery will result in a `ReceiverFailure`.
*
* @param payload - an arbitrary message which was included in the delivery by the
* requester. This message's signature will already have been verified (as long as msg.sender is the Wormhole Relayer contract)
* @param additionalMessages - Additional messages which were requested to be included in this delivery.
* Note: There are no contract-level guarantees that the messages in this array are what was requested
* so **you should verify any sensitive information given here!**
*
* For example, if a 'VaaKey' was specified on the source chain, then MAKE SURE the corresponding message here
* has valid signatures (by calling `parseAndVerifyVM(message)` on the Wormhole core contract)
*
* This field can be used to perform and relay TokenBridge or CCTP transfers, and there are example
* usages of this at
* https://github.com/wormhole-foundation/hello-token
* https://github.com/wormhole-foundation/hello-cctp
*
* @param sourceAddress - the (wormhole format) address on the sending chain which requested
* this delivery.
* @param sourceChain - the wormhole chain ID where this delivery was requested.
* @param deliveryHash - the VAA hash of the deliveryVAA.
*
*/
function receiveWormholeMessages(
bytes memory payload,
bytes[] memory additionalMessages,
bytes32 sourceAddress,
uint16 sourceChain,
bytes32 deliveryHash
) external payable;
}
// SPDX-License-Identifier: Apache 2
pragma solidity ^0.8.0;
/**
* @title WormholeRelayer
* @author
* @notice This project allows developers to build cross-chain applications powered by Wormhole without needing to
* write and run their own relaying infrastructure
*
* We implement the IWormholeRelayer interface that allows users to request a delivery provider to relay a payload (and/or additional messages)
* to a chain and address of their choice.
*/
/**
* @notice VaaKey identifies a wormhole message
*
* @custom:member chainId Wormhole chain ID of the chain where this VAA was emitted from
* @custom:member emitterAddress Address of the emitter of the VAA, in Wormhole bytes32 format
* @custom:member sequence Sequence number of the VAA
*/
struct VaaKey {
uint16 chainId;
bytes32 emitterAddress;
uint64 sequence;
}
// 0-127 are reserved for standardized KeyTypes, 128-255 are for custom use
uint8 constant VAA_KEY_TYPE = 1;
struct MessageKey {
uint8 keyType; // 0-127 are reserved for standardized KeyTypes, 128-255 are for custom use
bytes encodedKey;
}
interface IWormholeRelayerBase {
event SendEvent(
uint64 indexed sequence,
uint256 deliveryQuote,
uint256 paymentForExtraReceiverValue
);
function getRegisteredWormholeRelayerContract(
uint16 chainId
) external view returns (bytes32);
/**
* @notice Returns true if a delivery has been attempted for the given deliveryHash
* Note: invalid deliveries where the tx reverts are not considered attempted
*/
function deliveryAttempted(
bytes32 deliveryHash
) external view returns (bool attempted);
/**
* @notice block number at which a delivery was successfully executed
*/
function deliverySuccessBlock(
bytes32 deliveryHash
) external view returns (uint256 blockNumber);
/**
* @notice block number of the latest attempt to execute a delivery that failed
*/
function deliveryFailureBlock(
bytes32 deliveryHash
) external view returns (uint256 blockNumber);
}
/**
* @title IWormholeRelayerSend
* @notice The interface to request deliveries
*/
interface IWormholeRelayerSend is IWormholeRelayerBase {
/**
* @notice Publishes an instruction for the default delivery provider
* to relay a payload to the address `targetAddress` on chain `targetChain`
* with gas limit `gasLimit` and `msg.value` equal to `receiverValue`
*
* `targetAddress` must implement the IWormholeReceiver interface
*
* This function must be called with `msg.value` equal to `quoteEVMDeliveryPrice(targetChain, receiverValue, gasLimit)`
*
* Any refunds (from leftover gas) will be paid to the delivery provider. In order to receive the refunds, use the `sendPayloadToEvm` function
* with `refundChain` and `refundAddress` as parameters
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver)
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param gasLimit gas limit with which to call `targetAddress`.
* @return sequence sequence number of published VAA containing delivery instructions
*/
function sendPayloadToEvm(
uint16 targetChain,
address targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 gasLimit
) external payable returns (uint64 sequence);
/**
* @notice Publishes an instruction for the default delivery provider
* to relay a payload to the address `targetAddress` on chain `targetChain`
* with gas limit `gasLimit` and `msg.value` equal to `receiverValue`
*
* Any refunds (from leftover gas) will be sent to `refundAddress` on chain `refundChain`
* `targetAddress` must implement the IWormholeReceiver interface
*
* This function must be called with `msg.value` equal to `quoteEVMDeliveryPrice(targetChain, receiverValue, gasLimit)`
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver)
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param gasLimit gas limit with which to call `targetAddress`. Any units of gas unused will be refunded according to the
* `targetChainRefundPerGasUnused` rate quoted by the delivery provider
* @param refundChain The chain to deliver any refund to, in Wormhole Chain ID format
* @param refundAddress The address on `refundChain` to deliver any refund to
* @return sequence sequence number of published VAA containing delivery instructions
*/
function sendPayloadToEvm(
uint16 targetChain,
address targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 gasLimit,
uint16 refundChain,
address refundAddress
) external payable returns (uint64 sequence);
/**
* @notice Publishes an instruction for the default delivery provider
* to relay a payload and VAAs specified by `vaaKeys` to the address `targetAddress` on chain `targetChain`
* with gas limit `gasLimit` and `msg.value` equal to `receiverValue`
*
* `targetAddress` must implement the IWormholeReceiver interface
*
* This function must be called with `msg.value` equal to `quoteEVMDeliveryPrice(targetChain, receiverValue, gasLimit)`
*
* Any refunds (from leftover gas) will be paid to the delivery provider. In order to receive the refunds, use the `sendVaasToEvm` function
* with `refundChain` and `refundAddress` as parameters
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver)
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param gasLimit gas limit with which to call `targetAddress`.
* @param vaaKeys Additional VAAs to pass in as parameter in call to `targetAddress`
* @return sequence sequence number of published VAA containing delivery instructions
*/
function sendVaasToEvm(
uint16 targetChain,
address targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 gasLimit,
VaaKey[] memory vaaKeys
) external payable returns (uint64 sequence);
/**
* @notice Publishes an instruction for the default delivery provider
* to relay a payload and VAAs specified by `vaaKeys` to the address `targetAddress` on chain `targetChain`
* with gas limit `gasLimit` and `msg.value` equal to `receiverValue`
*
* Any refunds (from leftover gas) will be sent to `refundAddress` on chain `refundChain`
* `targetAddress` must implement the IWormholeReceiver interface
*
* This function must be called with `msg.value` equal to `quoteEVMDeliveryPrice(targetChain, receiverValue, gasLimit)`
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver)
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param gasLimit gas limit with which to call `targetAddress`. Any units of gas unused will be refunded according to the
* `targetChainRefundPerGasUnused` rate quoted by the delivery provider
* @param vaaKeys Additional VAAs to pass in as parameter in call to `targetAddress`
* @param refundChain The chain to deliver any refund to, in Wormhole Chain ID format
* @param refundAddress The address on `refundChain` to deliver any refund to
* @return sequence sequence number of published VAA containing delivery instructions
*/
function sendVaasToEvm(
uint16 targetChain,
address targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 gasLimit,
VaaKey[] memory vaaKeys,
uint16 refundChain,
address refundAddress
) external payable returns (uint64 sequence);
/**
* @notice Publishes an instruction for the delivery provider at `deliveryProviderAddress`
* to relay a payload and VAAs specified by `vaaKeys` to the address `targetAddress` on chain `targetChain`
* with gas limit `gasLimit` and `msg.value` equal to
* receiverValue + (arbitrary amount that is paid for by paymentForExtraReceiverValue of this chain's wei) in targetChain wei.
*
* Any refunds (from leftover gas) will be sent to `refundAddress` on chain `refundChain`
* `targetAddress` must implement the IWormholeReceiver interface
*
* This function must be called with `msg.value` equal to
* quoteEVMDeliveryPrice(targetChain, receiverValue, gasLimit, deliveryProviderAddress) + paymentForExtraReceiverValue
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver)
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param paymentForExtraReceiverValue amount (in current chain currency units) to spend on extra receiverValue
* (in addition to the `receiverValue` specified)
* @param gasLimit gas limit with which to call `targetAddress`. Any units of gas unused will be refunded according to the
* `targetChainRefundPerGasUnused` rate quoted by the delivery provider
* @param refundChain The chain to deliver any refund to, in Wormhole Chain ID format
* @param refundAddress The address on `refundChain` to deliver any refund to
* @param deliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @param vaaKeys Additional VAAs to pass in as parameter in call to `targetAddress`
* @param consistencyLevel Consistency level with which to publish the delivery instructions - see
* https://book.wormhole.com/wormhole/3_coreLayerContracts.html?highlight=consistency#consistency-levels
* @return sequence sequence number of published VAA containing delivery instructions
*/
function sendToEvm(
uint16 targetChain,
address targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 paymentForExtraReceiverValue,
uint256 gasLimit,
uint16 refundChain,
address refundAddress,
address deliveryProviderAddress,
VaaKey[] memory vaaKeys,
uint8 consistencyLevel
) external payable returns (uint64 sequence);
/**
* @notice Publishes an instruction for the delivery provider at `deliveryProviderAddress`
* to relay a payload and external messages specified by `messageKeys` to the address `targetAddress` on chain `targetChain`
* with gas limit `gasLimit` and `msg.value` equal to
* receiverValue + (arbitrary amount that is paid for by paymentForExtraReceiverValue of this chain's wei) in targetChain wei.
*
* Any refunds (from leftover gas) will be sent to `refundAddress` on chain `refundChain`
* `targetAddress` must implement the IWormholeReceiver interface
*
* This function must be called with `msg.value` equal to
* quoteEVMDeliveryPrice(targetChain, receiverValue, gasLimit, deliveryProviderAddress) + paymentForExtraReceiverValue
*
* Note: MessageKeys can specify wormhole messages (VaaKeys) or other types of messages (ex. USDC CCTP attestations). Ensure the selected
* DeliveryProvider supports all the MessageKey.keyType values specified or it will not be delivered!
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver)
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param paymentForExtraReceiverValue amount (in current chain currency units) to spend on extra receiverValue
* (in addition to the `receiverValue` specified)
* @param gasLimit gas limit with which to call `targetAddress`. Any units of gas unused will be refunded according to the
* `targetChainRefundPerGasUnused` rate quoted by the delivery provider
* @param refundChain The chain to deliver any refund to, in Wormhole Chain ID format
* @param refundAddress The address on `refundChain` to deliver any refund to
* @param deliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @param messageKeys Additional messagess to pass in as parameter in call to `targetAddress`
* @param consistencyLevel Consistency level with which to publish the delivery instructions - see
* https://book.wormhole.com/wormhole/3_coreLayerContracts.html?highlight=consistency#consistency-levels
* @return sequence sequence number of published VAA containing delivery instructions
*/
function sendToEvm(
uint16 targetChain,
address targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 paymentForExtraReceiverValue,
uint256 gasLimit,
uint16 refundChain,
address refundAddress,
address deliveryProviderAddress,
MessageKey[] memory messageKeys,
uint8 consistencyLevel
) external payable returns (uint64 sequence);
/**
* @notice Publishes an instruction for the delivery provider at `deliveryProviderAddress`
* to relay a payload and VAAs specified by `vaaKeys` to the address `targetAddress` on chain `targetChain`
* with `msg.value` equal to
* receiverValue + (arbitrary amount that is paid for by paymentForExtraReceiverValue of this chain's wei) in targetChain wei.
*
* Any refunds (from leftover gas) will be sent to `refundAddress` on chain `refundChain`
* `targetAddress` must implement the IWormholeReceiver interface
*
* This function must be called with `msg.value` equal to
* quoteDeliveryPrice(targetChain, receiverValue, encodedExecutionParameters, deliveryProviderAddress) + paymentForExtraReceiverValue
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver), in Wormhole bytes32 format
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param paymentForExtraReceiverValue amount (in current chain currency units) to spend on extra receiverValue
* (in addition to the `receiverValue` specified)
* @param encodedExecutionParameters encoded information on how to execute delivery that may impact pricing
* e.g. for version EVM_V1, this is a struct that encodes the `gasLimit` with which to call `targetAddress`
* @param refundChain The chain to deliver any refund to, in Wormhole Chain ID format
* @param refundAddress The address on `refundChain` to deliver any refund to, in Wormhole bytes32 format
* @param deliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @param vaaKeys Additional VAAs to pass in as parameter in call to `targetAddress`
* @param consistencyLevel Consistency level with which to publish the delivery instructions - see
* https://book.wormhole.com/wormhole/3_coreLayerContracts.html?highlight=consistency#consistency-levels
* @return sequence sequence number of published VAA containing delivery instructions
*/
function send(
uint16 targetChain,
bytes32 targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 paymentForExtraReceiverValue,
bytes memory encodedExecutionParameters,
uint16 refundChain,
bytes32 refundAddress,
address deliveryProviderAddress,
VaaKey[] memory vaaKeys,
uint8 consistencyLevel
) external payable returns (uint64 sequence);
/**
* @notice Publishes an instruction for the delivery provider at `deliveryProviderAddress`
* to relay a payload and VAAs specified by `vaaKeys` to the address `targetAddress` on chain `targetChain`
* with `msg.value` equal to
* receiverValue + (arbitrary amount that is paid for by paymentForExtraReceiverValue of this chain's wei) in targetChain wei.
*
* Any refunds (from leftover gas) will be sent to `refundAddress` on chain `refundChain`
* `targetAddress` must implement the IWormholeReceiver interface
*
* This function must be called with `msg.value` equal to
* quoteDeliveryPrice(targetChain, receiverValue, encodedExecutionParameters, deliveryProviderAddress) + paymentForExtraReceiverValue
*
* Note: MessageKeys can specify wormhole messages (VaaKeys) or other types of messages (ex. USDC CCTP attestations). Ensure the selected
* DeliveryProvider supports all the MessageKey.keyType values specified or it will not be delivered!
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver), in Wormhole bytes32 format
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param paymentForExtraReceiverValue amount (in current chain currency units) to spend on extra receiverValue
* (in addition to the `receiverValue` specified)
* @param encodedExecutionParameters encoded information on how to execute delivery that may impact pricing
* e.g. for version EVM_V1, this is a struct that encodes the `gasLimit` with which to call `targetAddress`
* @param refundChain The chain to deliver any refund to, in Wormhole Chain ID format
* @param refundAddress The address on `refundChain` to deliver any refund to, in Wormhole bytes32 format
* @param deliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @param messageKeys Additional messagess to pass in as parameter in call to `targetAddress`
* @param consistencyLevel Consistency level with which to publish the delivery instructions - see
* https://book.wormhole.com/wormhole/3_coreLayerContracts.html?highlight=consistency#consistency-levels
* @return sequence sequence number of published VAA containing delivery instructions
*/
function send(
uint16 targetChain,
bytes32 targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 paymentForExtraReceiverValue,
bytes memory encodedExecutionParameters,
uint16 refundChain,
bytes32 refundAddress,
address deliveryProviderAddress,
MessageKey[] memory messageKeys,
uint8 consistencyLevel
) external payable returns (uint64 sequence);
/**
* @notice Requests a previously published delivery instruction to be redelivered
* (e.g. with a different delivery provider)
*
* This function must be called with `msg.value` equal to
* quoteEVMDeliveryPrice(targetChain, newReceiverValue, newGasLimit, newDeliveryProviderAddress)
*
* @notice *** This will only be able to succeed if the following is true **
* - newGasLimit >= gas limit of the old instruction
* - newReceiverValue >= receiver value of the old instruction
* - newDeliveryProvider's `targetChainRefundPerGasUnused` >= old relay provider's `targetChainRefundPerGasUnused`
*
* @param deliveryVaaKey VaaKey identifying the wormhole message containing the
* previously published delivery instructions
* @param targetChain The target chain that the original delivery targeted. Must match targetChain from original delivery instructions
* @param newReceiverValue new msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param newGasLimit gas limit with which to call `targetAddress`. Any units of gas unused will be refunded according to the
* `targetChainRefundPerGasUnused` rate quoted by the delivery provider, to the refund chain and address specified in the original request
* @param newDeliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @return sequence sequence number of published VAA containing redelivery instructions
*
* @notice *** This will only be able to succeed if the following is true **
* - newGasLimit >= gas limit of the old instruction
* - newReceiverValue >= receiver value of the old instruction
*/
function resendToEvm(
VaaKey memory deliveryVaaKey,
uint16 targetChain,
uint256 newReceiverValue,
uint256 newGasLimit,
address newDeliveryProviderAddress
) external payable returns (uint64 sequence);
/**
* @notice Requests a previously published delivery instruction to be redelivered
*
*
* This function must be called with `msg.value` equal to
* quoteDeliveryPrice(targetChain, newReceiverValue, newEncodedExecutionParameters, newDeliveryProviderAddress)
*
* @param deliveryVaaKey VaaKey identifying the wormhole message containing the
* previously published delivery instructions
* @param targetChain The target chain that the original delivery targeted. Must match targetChain from original delivery instructions
* @param newReceiverValue new msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param newEncodedExecutionParameters new encoded information on how to execute delivery that may impact pricing
* e.g. for version EVM_V1, this is a struct that encodes the `gasLimit` with which to call `targetAddress`
* @param newDeliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @return sequence sequence number of published VAA containing redelivery instructions
*
* @notice *** This will only be able to succeed if the following is true **
* - (For EVM_V1) newGasLimit >= gas limit of the old instruction
* - newReceiverValue >= receiver value of the old instruction
* - (For EVM_V1) newDeliveryProvider's `targetChainRefundPerGasUnused` >= old relay provider's `targetChainRefundPerGasUnused`
*/
function resend(
VaaKey memory deliveryVaaKey,
uint16 targetChain,
uint256 newReceiverValue,
bytes memory newEncodedExecutionParameters,
address newDeliveryProviderAddress
) external payable returns (uint64 sequence);
/**
* @notice Returns the price to request a relay to chain `targetChain`, using the default delivery provider
*
* @param targetChain in Wormhole Chain ID format
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param gasLimit gas limit with which to call `targetAddress`.
* @return nativePriceQuote Price, in units of current chain currency, that the delivery provider charges to perform the relay
* @return targetChainRefundPerGasUnused amount of target chain currency that will be refunded per unit of gas unused,
* if a refundAddress is specified.
* Note: This value can be overridden by the delivery provider on the target chain. The returned value here should be considered to be a
* promise by the delivery provider of the amount of refund per gas unused that will be returned to the refundAddress at the target chain.
* If a delivery provider decides to override, this will be visible as part of the emitted Delivery event on the target chain.
*/
function quoteEVMDeliveryPrice(
uint16 targetChain,
uint256 receiverValue,
uint256 gasLimit
)
external
view
returns (
uint256 nativePriceQuote,
uint256 targetChainRefundPerGasUnused
);
/**
* @notice Returns the price to request a relay to chain `targetChain`, using delivery provider `deliveryProviderAddress`
*
* @param targetChain in Wormhole Chain ID format
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param gasLimit gas limit with which to call `targetAddress`.
* @param deliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @return nativePriceQuote Price, in units of current chain currency, that the delivery provider charges to perform the relay
* @return targetChainRefundPerGasUnused amount of target chain currency that will be refunded per unit of gas unused,
* if a refundAddress is specified
* Note: This value can be overridden by the delivery provider on the target chain. The returned value here should be considered to be a
* promise by the delivery provider of the amount of refund per gas unused that will be returned to the refundAddress at the target chain.
* If a delivery provider decides to override, this will be visible as part of the emitted Delivery event on the target chain.
*/
function quoteEVMDeliveryPrice(
uint16 targetChain,
uint256 receiverValue,
uint256 gasLimit,
address deliveryProviderAddress
)
external
view
returns (
uint256 nativePriceQuote,
uint256 targetChainRefundPerGasUnused
);
/**
* @notice Returns the price to request a relay to chain `targetChain`, using delivery provider `deliveryProviderAddress`
*
* @param targetChain in Wormhole Chain ID format
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param encodedExecutionParameters encoded information on how to execute delivery that may impact pricing
* e.g. for version EVM_V1, this is a struct that encodes the `gasLimit` with which to call `targetAddress`
* @param deliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @return nativePriceQuote Price, in units of current chain currency, that the delivery provider charges to perform the relay
* @return encodedExecutionInfo encoded information on how the delivery will be executed
* e.g. for version EVM_V1, this is a struct that encodes the `gasLimit` and `targetChainRefundPerGasUnused`
* (which is the amount of target chain currency that will be refunded per unit of gas unused,
* if a refundAddress is specified)
*/
function quoteDeliveryPrice(
uint16 targetChain,
uint256 receiverValue,
bytes memory encodedExecutionParameters,
address deliveryProviderAddress
)
external
view
returns (uint256 nativePriceQuote, bytes memory encodedExecutionInfo);
/**
* @notice Returns the (extra) amount of target chain currency that `targetAddress`
* will be called with, if the `paymentForExtraReceiverValue` field is set to `currentChainAmount`
*
* @param targetChain in Wormhole Chain ID format
* @param currentChainAmount The value that `paymentForExtraReceiverValue` will be set to
* @param deliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @return targetChainAmount The amount such that if `targetAddress` will be called with `msg.value` equal to
* receiverValue + targetChainAmount
*/
function quoteNativeForChain(
uint16 targetChain,
uint256 currentChainAmount,
address deliveryProviderAddress
) external view returns (uint256 targetChainAmount);
/**
* @notice Returns the address of the current default delivery provider
* @return deliveryProvider The address of (the default delivery provider)'s contract on this source
* chain. This must be a contract that implements IDeliveryProvider.
*/
function getDefaultDeliveryProvider()
external
view
returns (address deliveryProvider);
}
/**
* @title IWormholeRelayerDelivery
* @notice The interface to execute deliveries. Only relevant for Delivery Providers
*/
interface IWormholeRelayerDelivery is IWormholeRelayerBase {
enum DeliveryStatus {
SUCCESS,
RECEIVER_FAILURE
}
enum RefundStatus {
REFUND_SENT,
REFUND_FAIL,
CROSS_CHAIN_REFUND_SENT,
CROSS_CHAIN_REFUND_FAIL_PROVIDER_NOT_SUPPORTED,
CROSS_CHAIN_REFUND_FAIL_NOT_ENOUGH,
NO_REFUND_REQUESTED
}
/**
* @custom:member recipientContract - The target contract address
* @custom:member sourceChain - The chain which this delivery was requested from (in wormhole
* ChainID format)
* @custom:member sequence - The wormhole sequence number of the delivery VAA on the source chain
* corresponding to this delivery request
* @custom:member deliveryVaaHash - The hash of the delivery VAA corresponding to this delivery
* request
* @custom:member gasUsed - The amount of gas that was used to call your target contract
* @custom:member status:
* - RECEIVER_FAILURE, if the target contract reverts
* - SUCCESS, if the target contract doesn't revert
* @custom:member additionalStatusInfo:
* - If status is SUCCESS, then this is empty.
* - If status is RECEIVER_FAILURE, this is `RETURNDATA_TRUNCATION_THRESHOLD` bytes of the
* return data (i.e. potentially truncated revert reason information).
* @custom:member refundStatus - Result of the refund. REFUND_SUCCESS or REFUND_FAIL are for
* refunds where targetChain=refundChain; the others are for targetChain!=refundChain,
* where a cross chain refund is necessary, or if the default code path is used where no refund is requested (NO_REFUND_REQUESTED)
* @custom:member overridesInfo:
* - If not an override: empty bytes array
* - Otherwise: An encoded `DeliveryOverride`
*/
event Delivery(
address indexed recipientContract,
uint16 indexed sourceChain,
uint64 indexed sequence,
bytes32 deliveryVaaHash,
DeliveryStatus status,
uint256 gasUsed,
RefundStatus refundStatus,
bytes additionalStatusInfo,
bytes overridesInfo
);
/**
* @notice The delivery provider calls `deliver` to relay messages as described by one delivery instruction
*
* The delivery provider must pass in the specified (by VaaKeys[]) signed wormhole messages (VAAs) from the source chain
* as well as the signed wormhole message with the delivery instructions (the delivery VAA)
*
* The messages will be relayed to the target address (with the specified gas limit and receiver value) iff the following checks are met:
* - the delivery VAA has a valid signature
* - the delivery VAA's emitter is one of these WormholeRelayer contracts
* - the delivery provider passed in at least enough of this chain's currency as msg.value (enough meaning the maximum possible refund)
* - the instruction's target chain is this chain
* - the relayed signed VAAs match the descriptions in container.messages (the VAA hashes match, or the emitter address, sequence number pair matches, depending on the description given)
*
* @param encodedVMs - An array of signed wormhole messages (all from the same source chain
* transaction)
* @param encodedDeliveryVAA - Signed wormhole message from the source chain's WormholeRelayer
* contract with payload being the encoded delivery instruction container
* @param relayerRefundAddress - The address to which any refunds to the delivery provider
* should be sent
* @param deliveryOverrides - Optional overrides field which must be either an empty bytes array or
* an encoded DeliveryOverride struct
*/
function deliver(
bytes[] memory encodedVMs,
bytes memory encodedDeliveryVAA,
address payable relayerRefundAddress,
bytes memory deliveryOverrides
) external payable;
}
interface IWormholeRelayer is IWormholeRelayerDelivery, IWormholeRelayerSend {}
/*
* Errors thrown by IWormholeRelayer contract
*/
// Bound chosen by the following formula: `memoryWord * 4 + selectorSize`.
// This means that an error identifier plus four fixed size arguments should be available to developers.
// In the case of a `require` revert with error message, this should provide 2 memory word's worth of data.
uint256 constant RETURNDATA_TRUNCATION_THRESHOLD = 132;
//When msg.value was not equal to `delivery provider's quoted delivery price` + `paymentForExtraReceiverValue`
error InvalidMsgValue(uint256 msgValue, uint256 totalFee);
error RequestedGasLimitTooLow();
error DeliveryProviderDoesNotSupportTargetChain(
address relayer,
uint16 chainId
);
error DeliveryProviderCannotReceivePayment();
error DeliveryProviderDoesNotSupportMessageKeyType(uint8 keyType);
//When calling `delivery()` a second time even though a delivery is already in progress
error ReentrantDelivery(address msgSender, address lockedBy);
error InvalidPayloadId(uint8 parsed, uint8 expected);
error InvalidPayloadLength(uint256 received, uint256 expected);
error InvalidVaaKeyType(uint8 parsed);
error TooManyMessageKeys(uint256 numMessageKeys);
error InvalidDeliveryVaa(string reason);
//When the delivery VAA (signed wormhole message with delivery instructions) was not emitted by the
// registered WormholeRelayer contract
error InvalidEmitter(bytes32 emitter, bytes32 registered, uint16 chainId);
error MessageKeysLengthDoesNotMatchMessagesLength(uint256 keys, uint256 vaas);
error VaaKeysDoNotMatchVaas(uint8 index);
//When someone tries to call an external function of the WormholeRelayer that is only intended to be
// called by the WormholeRelayer itself (to allow retroactive reverts for atomicity)
error RequesterNotWormholeRelayer();
//When trying to relay a `DeliveryInstruction` to any other chain but the one it was specified for
error TargetChainIsNotThisChain(uint16 targetChain);
//When a `DeliveryOverride` contains a gas limit that's less than the original
error InvalidOverrideGasLimit();
//When a `DeliveryOverride` contains a receiver value that's less than the original
error InvalidOverrideReceiverValue();
//When a `DeliveryOverride` contains a 'refund per unit of gas unused' that's less than the original
error InvalidOverrideRefundPerGasUnused();
//When the delivery provider doesn't pass in sufficient funds (i.e. msg.value does not cover the
// maximum possible refund to the user)
error InsufficientRelayerFunds(uint256 msgValue, uint256 minimum);
//When a bytes32 field can't be converted into a 20 byte EVM address, because the 12 padding bytes
// are non-zero (duplicated from Utils.sol)
error NotAnEvmAddress(bytes32);
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.23;
import "@solidity-bytes-utils/contracts/BytesLib.sol";
library Messages {
using BytesLib for bytes;
error InvalidExtraArgsTag();
struct MessageParams {
uint16 adapterId; // where to route message through
uint16 returnAdapterId; // if applicable, where to route message through for return message
uint256 receiverValue; // amount of value to attach for receive message
uint256 gasLimit; // gas limit for receive message
uint256 returnGasLimit; // if applicable, gas limit for return message
}
struct MessageToSend {
Messages.MessageParams params; // message parameters
bytes32 sender; // source address which sent the message
uint16 destinationChainId; // chain to send message to
bytes32 handler; // address to handle the message received
bytes payload; // message payload
uint64 finalityLevel; // zero for immediate, non-zero for finalised
bytes extraArgs;
}
// bytes4(keccak256("Folks ExtraArgsV1));
bytes4 public constant EXTRA_ARGS_V1_TAG = 0x1b366e79;
struct ExtraArgsV1 {
bytes32 token;
bytes32 recipient;
uint256 amount;
}
function extraArgsToBytes(ExtraArgsV1 memory extraArgs) internal pure returns (bytes memory bts) {
return abi.encodeWithSelector(EXTRA_ARGS_V1_TAG, extraArgs);
}
function bytesToExtraArgs(bytes calldata bts) internal pure returns (Messages.ExtraArgsV1 memory extraArgs) {
if (bts.length > 0) {
if (bytes4(bts) != EXTRA_ARGS_V1_TAG) revert InvalidExtraArgsTag();
extraArgs = abi.decode(bts[4:], (Messages.ExtraArgsV1));
}
}
struct MessageReceived {
bytes32 messageId; // uniquie identifier for message when combined with adapter id
uint16 sourceChainId; // chain where message is sent from
bytes32 sourceAddress; // address where message is sent from (e.g. spoke)
bytes32 handler; // address of smart contract (which inherits from BridgeMessenger) to handle message received
bytes payload; // message payload
uint16 returnAdapterId; // if applicable, where to route message through for return message
uint256 returnGasLimit; // if applicable, gas limit for return message
}
function convertEVMAddressToGenericAddress(address addr) internal pure returns (bytes32) {
return bytes32(uint256(uint160(addr)));
}
function convertGenericAddressToEVMAddress(bytes32 addr) internal pure returns (address) {
return address(uint160(uint256(addr)));
}
enum Action {
// SPOKE -> HUB
CreateAccount,
InviteAddress,
AcceptInviteAddress,
UnregisterAddress,
AddDelegate,
RemoveDelegate,
CreateLoan,
DeleteLoan,
CreateLoanAndDeposit,
Deposit,
DepositFToken,
Withdraw,
WithdrawFToken,
Borrow,
Repay,
RepayWithCollateral,
Liquidate,
SwitchBorrowType,
// HUB -> SPOKE
SendToken
}
struct MessagePayload {
Action action;
bytes32 accountId;
bytes32 userAddress;
bytes data;
}
function encodeMessagePayload(MessagePayload memory payload) internal pure returns (bytes memory) {
return abi.encodePacked(uint16(payload.action), payload.accountId, payload.userAddress, payload.data);
}
function decodeActionPayload(bytes memory serialized) internal pure returns (MessagePayload memory payload) {
uint256 index = 0;
payload.action = Action(serialized.toUint16(index));
index += 2;
payload.accountId = serialized.toBytes32(index);
index += 32;
payload.userAddress = serialized.toBytes32(index);
index += 32;
payload.data = serialized.slice(index, serialized.length - index);
}
struct MessageMetadata {
uint16 returnAdapterId;
uint256 returnGasLimit;
bytes32 sender;
bytes32 handler;
}
function encodePayloadWithMetadata(Messages.MessageToSend memory message) internal pure returns (bytes memory) {
return
abi.encodePacked(
message.params.returnAdapterId,
message.params.returnGasLimit,
message.sender,
message.handler,
message.payload
);
}
function decodePayloadWithMetadata(
bytes memory serialized
) internal pure returns (MessageMetadata memory metadata, bytes memory payload) {
uint256 index = 0;
metadata.returnAdapterId = serialized.toUint16(index);
index += 2;
metadata.returnGasLimit = serialized.toUint256(index);
index += 32;
metadata.sender = serialized.toBytes32(index);
index += 32;
metadata.handler = serialized.toBytes32(index);
index += 32;
payload = serialized.slice(index, serialized.length - index);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.23;
library Wormhole {
uint8 internal constant CONSISTENCY_LEVEL_FINALIZED = 15;
uint8 internal constant CONSISTENCY_LEVEL_INSTANT = 200;
function getConsistencyLevel(uint64 finalityLevel) internal pure returns (uint8) {
return finalityLevel == 0 ? CONSISTENCY_LEVEL_INSTANT : CONSISTENCY_LEVEL_FINALIZED;
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.23;
import "@openzeppelin/contracts/access/extensions/AccessControlDefaultAdminRules.sol";
import "@wormhole-solidity-sdk/interfaces/IWormhole.sol";
import "@wormhole-solidity-sdk/interfaces/IWormholeReceiver.sol";
import "@wormhole-solidity-sdk/interfaces/IWormholeRelayer.sol";
import "./interfaces/IBridgeAdapter.sol";
import "./interfaces/IBridgeRouter.sol";
import "./libraries/Messages.sol";
import "./libraries/Wormhole.sol";
contract WormholeDataAdapter is IBridgeAdapter, IWormholeReceiver, AccessControlDefaultAdminRules {
bytes32 public constant override MANAGER_ROLE = keccak256("MANAGER");
event ReceiveMessage(bytes32 indexed messageId, bytes32 adapterAddress);
error InvalidWormholeRelayer(address sender);
struct WormholeAdapterParams {
bool isAvailable;
uint16 wormholeChainId;
bytes32 adapterAddress;
}
mapping(uint16 folksChainId => WormholeAdapterParams) internal folksChainIdToWormholeAdapter;
mapping(uint16 wormholeChainId => uint16 folksChainId) internal wormholeChainIdToFolksChainId;
IWormhole public immutable wormhole;
IWormholeRelayer public immutable wormholeRelayer;
IBridgeRouter public immutable bridgeRouter;
address public refundAddress;
modifier onlyBridgeRouter() {
if (msg.sender != address(bridgeRouter)) revert InvalidBridgeRouter(msg.sender);
_;
}
modifier onlyWormholeRelayer() {
if (msg.sender != address(wormholeRelayer)) revert InvalidWormholeRelayer(msg.sender);
_;
}
/**
* @notice Constructor
* @param admin The default admin for AcccountManager
* @param _wormhole The Wormhole Core to get message fees
* @param _wormholeRelayer The Wormhole Relayer to relay messages using
* @param _bridgeRouter The Bridge Router to route messages through
* @param _refundAddress The address to deliver any refund to
*/
constructor(
address admin,
IWormhole _wormhole,
IWormholeRelayer _wormholeRelayer,
IBridgeRouter _bridgeRouter,
address _refundAddress
) AccessControlDefaultAdminRules(1 days, admin) {
wormhole = _wormhole;
wormholeRelayer = _wormholeRelayer;
bridgeRouter = _bridgeRouter;
refundAddress = _refundAddress;
_grantRole(MANAGER_ROLE, admin);
}
function getSendFee(Messages.MessageToSend memory message) external view override returns (uint256 fee) {
// get chain adapter if available
(uint16 wormholeChainId, ) = getChainAdapter(message.destinationChainId);
// get cost of message delivery
uint256 deliveryCost;
(deliveryCost, ) = wormholeRelayer.quoteEVMDeliveryPrice(
wormholeChainId,
message.params.receiverValue,
message.params.gasLimit
);
// add cost of publishing message
fee = deliveryCost + wormhole.messageFee();
}
function sendMessage(Messages.MessageToSend memory message) external payable override onlyBridgeRouter {
// get chain adapter if available
(uint16 wormholeChainId, bytes32 adapterAddress) = getChainAdapter(message.destinationChainId);
// ensure extra args is empty
if (message.extraArgs.length > 0) revert UnsupportedExtraArgs();
// prepare payload by adding metadata
bytes memory payloadWithMetadata = Messages.encodePayloadWithMetadata(message);
// send using wormhole relayer
uint8 consistencyLevel = Wormhole.getConsistencyLevel(message.finalityLevel);
uint64 sequence = wormholeRelayer.sendToEvm{ value: msg.value }(
wormholeChainId,
Messages.convertGenericAddressToEVMAddress(adapterAddress),
payloadWithMetadata,
message.params.receiverValue,
0,
message.params.gasLimit,
wormholeChainId,
refundAddress,
wormholeRelayer.getDefaultDeliveryProvider(),
new VaaKey[](0),
consistencyLevel
);
emit SendMessage(bytes32(uint256(sequence)), message);
}
function receiveWormholeMessages(
bytes memory payload,
bytes[] memory, // additionalVaas
bytes32 sourceAddress, // address that called 'sendPayloadToEvm'
uint16 sourceChain,
bytes32 deliveryHash // unique identifier of delivery
) external payable override onlyWormholeRelayer {
// check source chain and source address
uint16 folksChainId = wormholeChainIdToFolksChainId[sourceChain];
(uint16 wormholeChainId, bytes32 adapterAddress) = getChainAdapter(folksChainId);
if (sourceChain != wormholeChainId) revert ChainUnavailable(folksChainId);
if (adapterAddress != sourceAddress) revert InvalidMessageSender(sourceAddress);
// decode into metadata and message payload
(Messages.MessageMetadata memory metadata, bytes memory messagePayload) = Messages.decodePayloadWithMetadata(
payload
);
// construct and forward message to bridge router
Messages.MessageReceived memory messageReceived = Messages.MessageReceived({
messageId: deliveryHash,
sourceChainId: folksChainId,
sourceAddress: metadata.sender,
handler: metadata.handler,
payload: messagePayload,
returnAdapterId: metadata.returnAdapterId,
returnGasLimit: metadata.returnGasLimit
});
bridgeRouter.receiveMessage{ value: msg.value }(messageReceived);
emit ReceiveMessage(messageReceived.messageId, adapterAddress);
}
function setRefundAddress(address _refundAddress) external onlyRole(MANAGER_ROLE) {
refundAddress = _refundAddress;
}
function addChain(
uint16 folksChainId,
uint16 wormholeChainId,
bytes32 adapterAddress
) external onlyRole(MANAGER_ROLE) {
// check if chain is already added
bool isAvailable = isChainAvailable(folksChainId);
if (isAvailable) revert ChainAlreadyAdded(folksChainId);
// add chain
folksChainIdToWormholeAdapter[folksChainId] = WormholeAdapterParams({
isAvailable: true,
wormholeChainId: wormholeChainId,
adapterAddress: adapterAddress
});
wormholeChainIdToFolksChainId[wormholeChainId] = folksChainId;
}
function removeChain(uint16 folksChainId) external onlyRole(MANAGER_ROLE) {
// get chain adapter if available
(uint16 wormholeChainId, ) = getChainAdapter(folksChainId);
// remove chain
delete folksChainIdToWormholeAdapter[folksChainId];
delete wormholeChainIdToFolksChainId[wormholeChainId];
}
function isChainAvailable(uint16 chainId) public view override returns (bool) {
return folksChainIdToWormholeAdapter[chainId].isAvailable;
}
function getChainAdapter(uint16 chainId) public view returns (uint16 wormholeChainId, bytes32 adapterAddress) {
WormholeAdapterParams memory chainAdapter = folksChainIdToWormholeAdapter[chainId];
if (!chainAdapter.isAvailable) revert ChainUnavailable(chainId);
wormholeChainId = chainAdapter.wormholeChainId;
adapterAddress = chainAdapter.adapterAddress;
}
}
{
"compilationTarget": {
"contracts/bridge/WormholeDataAdapter.sol": "WormholeDataAdapter"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"admin","type":"address"},{"internalType":"contract IWormhole","name":"_wormhole","type":"address"},{"internalType":"contract IWormholeRelayer","name":"_wormholeRelayer","type":"address"},{"internalType":"contract IBridgeRouter","name":"_bridgeRouter","type":"address"},{"internalType":"address","name":"_refundAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"uint48","name":"schedule","type":"uint48"}],"name":"AccessControlEnforcedDefaultAdminDelay","type":"error"},{"inputs":[],"name":"AccessControlEnforcedDefaultAdminRules","type":"error"},{"inputs":[{"internalType":"address","name":"defaultAdmin","type":"address"}],"name":"AccessControlInvalidDefaultAdmin","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"uint16","name":"chainId","type":"uint16"}],"name":"ChainAlreadyAdded","type":"error"},{"inputs":[{"internalType":"uint16","name":"chainId","type":"uint16"}],"name":"ChainUnavailable","type":"error"},{"inputs":[],"name":"EmptyExtraArgs","type":"error"},{"inputs":[{"internalType":"address","name":"router","type":"address"}],"name":"InvalidBridgeRouter","type":"error"},{"inputs":[{"internalType":"uint64","name":"finalityLevel","type":"uint64"}],"name":"InvalidFinalityLevel","type":"error"},{"inputs":[{"internalType":"bytes32","name":"sourceAddress","type":"bytes32"}],"name":"InvalidMessageSender","type":"error"},{"inputs":[{"internalType":"uint256","name":"expected","type":"uint256"},{"internalType":"uint256","name":"actual","type":"uint256"}],"name":"InvalidReceivedAmount","type":"error"},{"inputs":[{"internalType":"bytes32","name":"token","type":"bytes32"}],"name":"InvalidTokenAddress","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"InvalidWormholeRelayer","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintDowncast","type":"error"},{"inputs":[],"name":"UnsupportedExtraArgs","type":"error"},{"inputs":[{"internalType":"uint64","name":"finalityLevel","type":"uint64"}],"name":"UnsupportedFinalityLevel","type":"error"},{"anonymous":false,"inputs":[],"name":"DefaultAdminDelayChangeCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint48","name":"newDelay","type":"uint48"},{"indexed":false,"internalType":"uint48","name":"effectSchedule","type":"uint48"}],"name":"DefaultAdminDelayChangeScheduled","type":"event"},{"anonymous":false,"inputs":[],"name":"DefaultAdminTransferCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newAdmin","type":"address"},{"indexed":false,"internalType":"uint48","name":"acceptSchedule","type":"uint48"}],"name":"DefaultAdminTransferScheduled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"messageId","type":"bytes32"},{"indexed":false,"internalType":"bytes32","name":"adapterAddress","type":"bytes32"}],"name":"ReceiveMessage","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"messageId","type":"bytes32"}],"name":"ReceiveMessage","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"operationId","type":"bytes32"},{"components":[{"components":[{"internalType":"uint16","name":"adapterId","type":"uint16"},{"internalType":"uint16","name":"returnAdapterId","type":"uint16"},{"internalType":"uint256","name":"receiverValue","type":"uint256"},{"internalType":"uint256","name":"gasLimit","type":"uint256"},{"internalType":"uint256","name":"returnGasLimit","type":"uint256"}],"internalType":"struct Messages.MessageParams","name":"params","type":"tuple"},{"internalType":"bytes32","name":"sender","type":"bytes32"},{"internalType":"uint16","name":"destinationChainId","type":"uint16"},{"internalType":"bytes32","name":"handler","type":"bytes32"},{"internalType":"bytes","name":"payload","type":"bytes"},{"internalType":"uint64","name":"finalityLevel","type":"uint64"},{"internalType":"bytes","name":"extraArgs","type":"bytes"}],"indexed":false,"internalType":"struct Messages.MessageToSend","name":"message","type":"tuple"}],"name":"SendMessage","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MANAGER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptDefaultAdminTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint16","name":"folksChainId","type":"uint16"},{"internalType":"uint16","name":"wormholeChainId","type":"uint16"},{"internalType":"bytes32","name":"adapterAddress","type":"bytes32"}],"name":"addChain","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newAdmin","type":"address"}],"name":"beginDefaultAdminTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"bridgeRouter","outputs":[{"internalType":"contract IBridgeRouter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cancelDefaultAdminTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint48","name":"newDelay","type":"uint48"}],"name":"changeDefaultAdminDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"defaultAdmin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"defaultAdminDelay","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"defaultAdminDelayIncreaseWait","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint16","name":"chainId","type":"uint16"}],"name":"getChainAdapter","outputs":[{"internalType":"uint16","name":"wormholeChainId","type":"uint16"},{"internalType":"bytes32","name":"adapterAddress","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"uint16","name":"adapterId","type":"uint16"},{"internalType":"uint16","name":"returnAdapterId","type":"uint16"},{"internalType":"uint256","name":"receiverValue","type":"uint256"},{"internalType":"uint256","name":"gasLimit","type":"uint256"},{"internalType":"uint256","name":"returnGasLimit","type":"uint256"}],"internalType":"struct Messages.MessageParams","name":"params","type":"tuple"},{"internalType":"bytes32","name":"sender","type":"bytes32"},{"internalType":"uint16","name":"destinationChainId","type":"uint16"},{"internalType":"bytes32","name":"handler","type":"bytes32"},{"internalType":"bytes","name":"payload","type":"bytes"},{"internalType":"uint64","name":"finalityLevel","type":"uint64"},{"internalType":"bytes","name":"extraArgs","type":"bytes"}],"internalType":"struct Messages.MessageToSend","name":"message","type":"tuple"}],"name":"getSendFee","outputs":[{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint16","name":"chainId","type":"uint16"}],"name":"isChainAvailable","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingDefaultAdmin","outputs":[{"internalType":"address","name":"newAdmin","type":"address"},{"internalType":"uint48","name":"schedule","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingDefaultAdminDelay","outputs":[{"internalType":"uint48","name":"newDelay","type":"uint48"},{"internalType":"uint48","name":"schedule","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"payload","type":"bytes"},{"internalType":"bytes[]","name":"","type":"bytes[]"},{"internalType":"bytes32","name":"sourceAddress","type":"bytes32"},{"internalType":"uint16","name":"sourceChain","type":"uint16"},{"internalType":"bytes32","name":"deliveryHash","type":"bytes32"}],"name":"receiveWormholeMessages","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"refundAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint16","name":"folksChainId","type":"uint16"}],"name":"removeChain","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rollbackDefaultAdminDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"uint16","name":"adapterId","type":"uint16"},{"internalType":"uint16","name":"returnAdapterId","type":"uint16"},{"internalType":"uint256","name":"receiverValue","type":"uint256"},{"internalType":"uint256","name":"gasLimit","type":"uint256"},{"internalType":"uint256","name":"returnGasLimit","type":"uint256"}],"internalType":"struct Messages.MessageParams","name":"params","type":"tuple"},{"internalType":"bytes32","name":"sender","type":"bytes32"},{"internalType":"uint16","name":"destinationChainId","type":"uint16"},{"internalType":"bytes32","name":"handler","type":"bytes32"},{"internalType":"bytes","name":"payload","type":"bytes"},{"internalType":"uint64","name":"finalityLevel","type":"uint64"},{"internalType":"bytes","name":"extraArgs","type":"bytes"}],"internalType":"struct Messages.MessageToSend","name":"message","type":"tuple"}],"name":"sendMessage","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_refundAddress","type":"address"}],"name":"setRefundAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"wormhole","outputs":[{"internalType":"contract IWormhole","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"wormholeRelayer","outputs":[{"internalType":"contract IWormholeRelayer","name":"","type":"address"}],"stateMutability":"view","type":"function"}]