// Sources flattened with hardhat v2.6.3 https://hardhat.org
// File @openzeppelin/contracts/utils/ReentrancyGuard.sol@v3.4.2
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor () internal {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// File @openzeppelin/contracts/math/SafeMath.sol@v3.4.2
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}
// File @openzeppelin/contracts/token/ERC20/IERC20.sol@v3.4.2
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File contracts/interface/IDetailedERC20.sol
pragma solidity ^0.6.12;
interface IDetailedERC20 is IERC20 {
function name() external returns (string memory);
function symbol() external returns (string memory);
function decimals() external returns (uint8);
}
// File contracts/interface/IMintableERC20.sol
pragma solidity ^0.6.12;
interface IMintableERC20 is IDetailedERC20{
function mint(address _recipient, uint256 _amount) external;
}
// File @openzeppelin/contracts/introspection/IERC165.sol@v3.4.2
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// File @openzeppelin/contracts/token/ERC721/IERC721.sol@v3.4.2
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
}
// File @openzeppelin/contracts/token/ERC721/IERC721Enumerable.sol@v3.4.2
pragma solidity >=0.6.2 <0.8.0;
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256 tokenId);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}
// File contracts/MGGTokenBox.sol
pragma solidity ^0.6.12;
pragma experimental ABIEncoderV2;
///
/// @dev A contract which allows HOE owner to claim their MGG every week
///
contract MGGTokenBox is ReentrancyGuard {
using SafeMath for uint256;
event PendingGovernanceUpdated(
address pendingGovernance
);
event GovernanceUpdated(
address governance
);
event RewardRateUpdated(
uint256 rewardRate
);
event TokensClaimed(
address indexed user,
uint256 week,
uint256 hoeId,
uint256 amount
);
/// @dev The token which will be minted as a reward for staking.
IMintableERC20 public reward;
IERC721Enumerable public hoeContract;
/// @dev The address of the account which currently has administrative capabilities over this contract.
address public governance;
address public pendingGovernance;
uint256 private constant SECONDS_PER_WEEK = 604800; /* 86400 seconds in a day , 604800 seconds in a week */
// Track claimed tokens by week
// IMPORTANT: The format of the mapping is:
// weekClaimedByTokenId[week][tokenId][claimed]
mapping(uint256 => mapping(uint256 => bool)) public weekClaimedByTokenId;
uint256 private _startTimestamp;
uint256 public tokenIdStart = 0;
uint256 public tokenIdEnd = 9999;
uint256 public rewardPerHOEPerWeek;
constructor(
IMintableERC20 _reward,
address _hoeContractAddress,
uint256 startTimestamp_,
uint256 _rewardPerHOEPerWeek,
address _governance
) public {
require(_governance != address(0), "MGGTokenBox: governance address cannot be 0x0");
reward = _reward;
hoeContract = IERC721Enumerable(_hoeContractAddress);
_startTimestamp = startTimestamp_;
rewardPerHOEPerWeek = _rewardPerHOEPerWeek;
governance = _governance;
}
/// @dev A modifier which reverts when the caller is not the governance.
modifier onlyGovernance() {
require(msg.sender == governance, "MGGTokenBox: only governance");
_;
}
/// @dev Sets the governance.
///
/// This function can only called by the current governance.
///
/// @param _pendingGovernance the new pending governance.
function setPendingGovernance(address _pendingGovernance) external onlyGovernance {
require(_pendingGovernance != address(0), "MGGTokenBox: pending governance address cannot be 0x0");
pendingGovernance = _pendingGovernance;
emit PendingGovernanceUpdated(_pendingGovernance);
}
function acceptGovernance() external {
require(msg.sender == pendingGovernance, "MGGTokenBox: only pending governance");
address _pendingGovernance = pendingGovernance;
governance = _pendingGovernance;
emit GovernanceUpdated(_pendingGovernance);
}
function updateRewardRate(uint256 rewardRate) external onlyGovernance {
rewardPerHOEPerWeek = rewardRate;
emit RewardRateUpdated(rewardRate);
}
function currentWeek() public view returns (uint256 weekNumber) {
return uint256(block.timestamp / SECONDS_PER_WEEK);
}
function startWeek()public view returns (uint256 weekNumber) {
return uint256(_startTimestamp / SECONDS_PER_WEEK);
}
function getClaimStatus(uint256 week, uint256 tokenId)public view returns (bool claimed) {
return weekClaimedByTokenId[week][tokenId];
}
/// @notice Claim MGG for a given HOE ID
/// @param tokenId The tokenId of the HOE NFT
function claimById(uint256 tokenId, uint256 week) external nonReentrant{
// Check that the msgSender owns the token that is being claimed
require(
msg.sender == hoeContract.ownerOf(tokenId),
"MUST_OWN_TOKEN_ID"
);
require(
!weekClaimedByTokenId[week][tokenId],
"Already Claimed"
);
// Further Checks, Effects, and Interactions are contained within the
// _claim() function
_claim(tokenId, msg.sender, week);
}
/// @notice Claim MGG for all tokens owned by the sender
/// @notice This function will run out of gas if you have too much HOE!
function claimAllForOwner(uint256 week) external {
uint256 tokenBalanceOwner = hoeContract.balanceOf(msg.sender);
// Checks
require(tokenBalanceOwner > 0, "NO_TOKENS_OWNED");
// i < tokenBalanceOwner because tokenBalanceOwner is 1-indexed
for (uint256 i = 0; i < tokenBalanceOwner; i++) {
// Further Checks, Effects, and Interactions are contained within
// the _claim() function
if(!weekClaimedByTokenId[week][hoeContract.tokenOfOwnerByIndex(msg.sender, i)]){
_claim(
hoeContract.tokenOfOwnerByIndex(msg.sender, i),
msg.sender,
week
);
}
}
}
/// @dev Internal function to mint MGG upon claiming
function _claim(uint256 tokenId, address tokenOwner, uint256 week) internal {
// Checks
// Check that the token ID is in range
// We use >= and <= to here because all of the token IDs are 0-indexed
require(
tokenId >= tokenIdStart && tokenId <= tokenIdEnd,
"TOKEN_ID_OUT_OF_RANGE"
);
require(
week >= startWeek() && week <= currentWeek(),
"Need Valid Week"
);
// Check that MGG have not already been claimed this week
// for a given tokenId
require(
!weekClaimedByTokenId[week][tokenId],
"Already Claimed"
);
// Mark that MGG has been claimed for this week for the
// given tokenId
weekClaimedByTokenId[week][tokenId] = true;
// Send MGG to the owner of the token ID
reward.mint(tokenOwner, rewardPerHOEPerWeek);
}
}
{
"compilationTarget": {
"MGGTokenBox.sol": "MGGTokenBox"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"contract IMintableERC20","name":"_reward","type":"address"},{"internalType":"address","name":"_hoeContractAddress","type":"address"},{"internalType":"uint256","name":"startTimestamp_","type":"uint256"},{"internalType":"uint256","name":"_rewardPerHOEPerWeek","type":"uint256"},{"internalType":"address","name":"_governance","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"governance","type":"address"}],"name":"GovernanceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"pendingGovernance","type":"address"}],"name":"PendingGovernanceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"rewardRate","type":"uint256"}],"name":"RewardRateUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"week","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"hoeId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokensClaimed","type":"event"},{"inputs":[],"name":"acceptGovernance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"week","type":"uint256"}],"name":"claimAllForOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"week","type":"uint256"}],"name":"claimById","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"currentWeek","outputs":[{"internalType":"uint256","name":"weekNumber","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"week","type":"uint256"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getClaimStatus","outputs":[{"internalType":"bool","name":"claimed","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"governance","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"hoeContract","outputs":[{"internalType":"contract IERC721Enumerable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingGovernance","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reward","outputs":[{"internalType":"contract IMintableERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardPerHOEPerWeek","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_pendingGovernance","type":"address"}],"name":"setPendingGovernance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startWeek","outputs":[{"internalType":"uint256","name":"weekNumber","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenIdEnd","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenIdStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"rewardRate","type":"uint256"}],"name":"updateRewardRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"weekClaimedByTokenId","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]