pragma solidity 0.5.17;
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see {ERC20Detailed}.
*/
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*
* _Available since v2.4.0._
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Converts an `address` into `address payable`. Note that this is
* simply a type cast: the actual underlying value is not changed.
*
* _Available since v2.4.0._
*/
function toPayable(address account) internal pure returns (address payable) {
return address(uint160(account));
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*
* _Available since v2.4.0._
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-call-value
(bool success, ) = recipient.call.value(amount)("");
require(success, "Address: unable to send value, recipient may have reverted");
}
}
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves.
// A Solidity high level call has three parts:
// 1. The target address is checked to verify it contains contract code
// 2. The call itself is made, and success asserted
// 3. The return value is decoded, which in turn checks the size of the returned data.
// solhint-disable-next-line max-line-length
require(address(token).isContract(), "SafeERC20: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
interface ICurveDeposit {
function add_liquidity(uint[4] calldata uamounts, uint min_mint_amount) external;
function remove_liquidity(uint amount, uint[4] calldata min_uamounts) external;
function remove_liquidity_imbalance(uint[4] calldata uamounts, uint max_burn_amount) external;
function remove_liquidity_one_coin(uint _token_amount, int128 i, uint min_uamount) external;
function calc_withdraw_one_coin(uint _token_amount, int128 i) external view returns(uint);
}
interface ICurve {
function add_liquidity(uint[4] calldata uamounts, uint min_mint_amount) external;
function remove_liquidity_imbalance(uint[4] calldata uamounts, uint max_burn_amount) external;
function remove_liquidity(uint amount, uint[4] calldata min_amounts) external;
function calc_token_amount(uint[4] calldata inAmounts, bool deposit) external view returns(uint);
function balances(int128 i) external view returns(uint);
function get_virtual_price() external view returns(uint);
function exchange(int128 i, int128 j, uint256 dx, uint256 min_dy) external;
// for tests
function mock_add_to_balance(uint[4] calldata amounts) external;
}
library Math {
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow, so we distribute
return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
}
}
interface ICore {
function mint(uint dusdAmount, address account) external returns(uint usd);
function redeem(uint dusdAmount, address account) external returns(uint usd);
function dusdToUsd(uint _dusd, bool fee) external view returns(uint usd);
function peaks(address peak) external view returns (uint,uint,uint8);
}
interface IPeak {
function portfolioValue() external view returns(uint);
}
contract IController {
function earn(address _token) external;
function vaultWithdraw(IERC20 token, uint _shares) external;
function withdraw(IERC20 token, uint amount) external;
function getPricePerFullShare(address token) external view returns(uint);
}
contract Initializable {
bool initialized = false;
modifier notInitialized() {
require(!initialized, "already initialized");
initialized = true;
_;
}
// Reserved storage space to allow for layout changes in the future.
uint256[20] private _gap;
function getStore(uint a) internal view returns(uint) {
require(a < 20, "Not allowed");
return _gap[a];
}
function setStore(uint a, uint val) internal {
require(a < 20, "Not allowed");
_gap[a] = val;
}
}
contract OwnableProxy {
bytes32 constant OWNER_SLOT = keccak256("proxy.owner");
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
constructor() internal {
_transferOwnership(msg.sender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns(address _owner) {
bytes32 position = OWNER_SLOT;
assembly {
_owner := sload(position)
}
}
modifier onlyOwner() {
require(isOwner(), "NOT_OWNER");
_;
}
function isOwner() public view returns (bool) {
return owner() == msg.sender;
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
*/
function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
function _transferOwnership(address newOwner) internal {
require(newOwner != address(0), "OwnableProxy: new owner is the zero address");
emit OwnershipTransferred(owner(), newOwner);
bytes32 position = OWNER_SLOT;
assembly {
sstore(position, newOwner)
}
}
}
contract YVaultPeak is OwnableProxy, Initializable, IPeak {
using SafeERC20 for IERC20;
using SafeMath for uint;
using Math for uint;
string constant ERR_INSUFFICIENT_FUNDS = "INSUFFICIENT_FUNDS";
uint constant MAX = 10000;
uint min;
uint redeemMultiplier;
uint[4] feed; // unused for now but might need later
ICore core;
ICurve ySwap;
IERC20 yCrv;
IERC20 yUSD;
IController controller;
function initialize(IController _controller)
public
notInitialized
{
controller = _controller;
// these need to be initialzed here, because the contract is used via a proxy
core = ICore(0xE449Ca7d10b041255E7e989D158Bee355d8f88d3);
ySwap = ICurve(0x45F783CCE6B7FF23B2ab2D70e416cdb7D6055f51);
yCrv = IERC20(0xdF5e0e81Dff6FAF3A7e52BA697820c5e32D806A8);
yUSD = IERC20(0x5dbcF33D8c2E976c6b560249878e6F1491Bca25c);
_setParams(
200, // 200.div(10000) implies to keep 2% of yCRV in the contract
9998 // 9998.div(10000) implies a redeem fee of .02%
);
}
function mintWithYcrv(uint inAmount) external returns(uint dusdAmount) {
yCrv.safeTransferFrom(msg.sender, address(this), inAmount);
dusdAmount = calcMintWithYcrv(inAmount);
core.mint(dusdAmount, msg.sender);
// best effort at keeping min.div(MAX) funds here
uint farm = toFarm();
if (farm > 0) {
yCrv.safeTransfer(address(controller), farm);
controller.earn(address(yCrv)); // this is acting like a callback
}
}
// Sets minimum required on-hand to keep small withdrawals cheap
function toFarm() internal view returns (uint) {
(uint here, uint total) = yCrvDistribution();
uint shouldBeHere = total.mul(min).div(MAX);
if (here > shouldBeHere) {
return here.sub(shouldBeHere);
}
return 0;
}
function yCrvDistribution() public view returns (uint here, uint total) {
here = yCrv.balanceOf(address(this));
total = yUSD.balanceOf(address(controller))
.mul(controller.getPricePerFullShare(address(yCrv)))
.div(1e18)
.add(here);
}
function calcMintWithYcrv(uint inAmount) public view returns (uint dusdAmount) {
return inAmount.mul(yCrvToUsd()).div(1e18);
}
function redeemInYcrv(uint dusdAmount, uint minOut) external returns(uint _yCrv) {
core.redeem(dusdAmount, msg.sender);
_yCrv = dusdAmount.mul(1e18).div(yCrvToUsd()).mul(redeemMultiplier).div(MAX);
uint here = yCrv.balanceOf(address(this));
if (here < _yCrv) {
// withdraw only as much as needed from the vault
uint _withdraw = _yCrv.sub(here).mul(1e18).div(controller.getPricePerFullShare(address(yCrv)));
controller.vaultWithdraw(yCrv, _withdraw);
_yCrv = yCrv.balanceOf(address(this));
}
require(_yCrv >= minOut, ERR_INSUFFICIENT_FUNDS);
yCrv.safeTransfer(msg.sender, _yCrv);
}
function calcRedeemInYcrv(uint dusdAmount) public view returns (uint _yCrv) {
_yCrv = dusdAmount.mul(1e18).div(yCrvToUsd()).mul(redeemMultiplier).div(MAX);
(,uint total) = yCrvDistribution();
return _yCrv.min(total);
}
function yCrvToUsd() public view returns (uint) {
return ySwap.get_virtual_price();
}
// yUSD
function mintWithYusd(uint inAmount) external {
yUSD.safeTransferFrom(msg.sender, address(controller), inAmount);
core.mint(calcMintWithYusd(inAmount), msg.sender);
}
function calcMintWithYusd(uint inAmount) public view returns (uint dusdAmount) {
return inAmount.mul(yUSDToUsd()).div(1e18);
}
function redeemInYusd(uint dusdAmount, uint minOut) external {
core.redeem(dusdAmount, msg.sender);
uint r = dusdAmount.mul(1e18).div(yUSDToUsd()).mul(redeemMultiplier).div(MAX);
// there should be no reason that this contracts has yUSD, however being safe doesn't hurt
uint b = yUSD.balanceOf(address(this));
if (b < r) {
controller.withdraw(yUSD, r.sub(b));
r = yUSD.balanceOf(address(this));
}
require(r >= minOut, ERR_INSUFFICIENT_FUNDS);
yUSD.safeTransfer(msg.sender, r);
}
function calcRedeemInYusd(uint dusdAmount) public view returns (uint) {
uint r = dusdAmount.mul(1e18).div(yUSDToUsd()).mul(redeemMultiplier).div(MAX);
return r.min(
yUSD.balanceOf(address(this))
.add(yUSD.balanceOf(address(controller))));
}
function yUSDToUsd() public view returns (uint) {
return controller.getPricePerFullShare(address(yCrv)) // # yCrv
.mul(yCrvToUsd()) // USD price
.div(1e18);
}
function portfolioValue() external view returns(uint) {
(,uint total) = yCrvDistribution();
return total.mul(yCrvToUsd()).div(1e18);
}
function vars() external view returns(
address _core,
address _ySwap,
address _yCrv,
address _yUSD,
address _controller,
uint _redeemMultiplier,
uint _min
) {
return(
address(core),
address(ySwap),
address(yCrv),
address(yUSD),
address(controller),
redeemMultiplier,
min
);
}
// Privileged methods
function setParams(uint _min, uint _redeemMultiplier) external onlyOwner {
_setParams(_min, _redeemMultiplier);
}
function _setParams(uint _min, uint _redeemMultiplier) internal {
require(min <= MAX && redeemMultiplier <= MAX, "Invalid");
min = _min;
redeemMultiplier = _redeemMultiplier;
}
}
contract YVaultZap {
using SafeMath for uint;
using SafeERC20 for IERC20;
uint constant N_COINS = 4;
string constant ERR_SLIPPAGE = "ERR_SLIPPAGE";
uint[N_COINS] ZEROES = [uint(0),uint(0),uint(0),uint(0)];
address[N_COINS] coins = [
0x16de59092dAE5CcF4A1E6439D611fd0653f0Bd01, // ydai
0xd6aD7a6750A7593E092a9B218d66C0A814a3436e, // yusdc
0x83f798e925BcD4017Eb265844FDDAbb448f1707D, // yusdt
0x73a052500105205d34Daf004eAb301916DA8190f // ytusd
];
address[N_COINS] underlyingCoins = [
0x6B175474E89094C44Da98b954EedeAC495271d0F, // dai
0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, // usdc
0xdAC17F958D2ee523a2206206994597C13D831ec7, // usdt
0x0000000000085d4780B73119b644AE5ecd22b376 // tusd
];
ICurveDeposit yDeposit = ICurveDeposit(0xbBC81d23Ea2c3ec7e56D39296F0cbB648873a5d3);
ICurve ySwap = ICurve(0x45F783CCE6B7FF23B2ab2D70e416cdb7D6055f51);
IERC20 yCrv = IERC20(0xdF5e0e81Dff6FAF3A7e52BA697820c5e32D806A8);
IERC20 dusd = IERC20(0x5BC25f649fc4e26069dDF4cF4010F9f706c23831);
YVaultPeak yVaultPeak;
constructor (YVaultPeak _yVaultPeak) public {
yVaultPeak = _yVaultPeak;
}
/**
* @dev Mint DUSD
* @param inAmounts Exact inAmounts in the same order as required by the curve pool
* @param minDusdAmount Minimum DUSD to mint, used for capping slippage
*/
function mint(uint[N_COINS] calldata inAmounts, uint minDusdAmount)
external
returns (uint dusdAmount)
{
address[N_COINS] memory _coins = underlyingCoins;
for (uint i = 0; i < N_COINS; i++) {
if (inAmounts[i] > 0) {
IERC20(_coins[i]).safeTransferFrom(msg.sender, address(this), inAmounts[i]);
IERC20(_coins[i]).safeApprove(address(yDeposit), inAmounts[i]);
}
}
yDeposit.add_liquidity(inAmounts, 0);
uint inAmount = yCrv.balanceOf(address(this));
yCrv.safeApprove(address(yVaultPeak), 0);
yCrv.safeApprove(address(yVaultPeak), inAmount);
dusdAmount = yVaultPeak.mintWithYcrv(inAmount);
require(dusdAmount >= minDusdAmount, ERR_SLIPPAGE);
dusd.safeTransfer(msg.sender, dusdAmount);
}
function calcMint(uint[N_COINS] memory inAmounts)
public view
returns (uint dusdAmount)
{
for(uint i = 0; i < N_COINS; i++) {
inAmounts[i] = inAmounts[i].mul(1e18).div(yERC20(coins[i]).getPricePerFullShare());
}
uint _yCrv = ySwap.calc_token_amount(inAmounts, true /* deposit */);
return yVaultPeak.calcMintWithYcrv(_yCrv);
}
/**
* @dev Redeem DUSD
* @param dusdAmount Exact dusdAmount to burn
* @param minAmounts Min expected amounts to cap slippage
*/
function redeem(uint dusdAmount, uint[N_COINS] calldata minAmounts)
external
{
dusd.safeTransferFrom(msg.sender, address(this), dusdAmount);
uint r = yVaultPeak.redeemInYcrv(dusdAmount, 0);
yCrv.safeApprove(address(yDeposit), r);
yDeposit.remove_liquidity(r, ZEROES);
address[N_COINS] memory _coins = underlyingCoins;
uint toTransfer;
for (uint i = 0; i < N_COINS; i++) {
toTransfer = IERC20(_coins[i]).balanceOf(address(this));
require(toTransfer >= minAmounts[i], ERR_SLIPPAGE);
IERC20(_coins[i]).safeTransfer(msg.sender, toTransfer);
}
}
function calcRedeem(uint dusdAmount)
public view
returns (uint[N_COINS] memory amounts)
{
uint _yCrv = yVaultPeak.calcRedeemInYcrv(dusdAmount);
uint totalSupply = yCrv.totalSupply();
for(uint i = 0; i < N_COINS; i++) {
amounts[i] = ySwap.balances(int128(i))
.mul(_yCrv)
.div(totalSupply)
.mul(yERC20(coins[i]).getPricePerFullShare())
.div(1e18);
}
}
function redeemInSingleCoin(uint dusdAmount, uint i, uint minOut)
external
{
dusd.safeTransferFrom(msg.sender, address(this), dusdAmount);
uint r = yVaultPeak.redeemInYcrv(dusdAmount, 0);
yCrv.safeApprove(address(yDeposit), r);
yDeposit.remove_liquidity_one_coin(r, int128(i), minOut); // checks for slippage
IERC20 coin = IERC20(underlyingCoins[i]);
uint toTransfer = coin.balanceOf(address(this));
coin.safeTransfer(msg.sender, toTransfer);
}
function calcRedeemInSingleCoin(uint dusdAmount, uint i)
public view
returns(uint)
{
uint _yCrv = yVaultPeak.calcRedeemInYcrv(dusdAmount);
return yDeposit.calc_withdraw_one_coin(_yCrv, int128(i));
}
}
interface yERC20 {
function getPricePerFullShare() external view returns(uint);
}
{
"compilationTarget": {
"YVaultZap.sol": "YVaultZap"
},
"evmVersion": "istanbul",
"libraries": {},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"contract YVaultPeak","name":"_yVaultPeak","type":"address"}],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"constant":true,"inputs":[{"internalType":"uint256[4]","name":"inAmounts","type":"uint256[4]"}],"name":"calcMint","outputs":[{"internalType":"uint256","name":"dusdAmount","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"uint256","name":"dusdAmount","type":"uint256"}],"name":"calcRedeem","outputs":[{"internalType":"uint256[4]","name":"amounts","type":"uint256[4]"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"uint256","name":"dusdAmount","type":"uint256"},{"internalType":"uint256","name":"i","type":"uint256"}],"name":"calcRedeemInSingleCoin","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256[4]","name":"inAmounts","type":"uint256[4]"},{"internalType":"uint256","name":"minDusdAmount","type":"uint256"}],"name":"mint","outputs":[{"internalType":"uint256","name":"dusdAmount","type":"uint256"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"dusdAmount","type":"uint256"},{"internalType":"uint256[4]","name":"minAmounts","type":"uint256[4]"}],"name":"redeem","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"dusdAmount","type":"uint256"},{"internalType":"uint256","name":"i","type":"uint256"},{"internalType":"uint256","name":"minOut","type":"uint256"}],"name":"redeemInSingleCoin","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"}]