// SPDX-License-Identifier: MIT
// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
pragma solidity ^0.6.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
function decimals() external view returns (uint8);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: @openzeppelin/contracts/math/SafeMath.sol
pragma solidity ^0.6.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File: @openzeppelin/contracts/utils/Address.sol
pragma solidity ^0.6.2;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol
pragma solidity ^0.6.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// File: @openzeppelin/contracts/GSN/Context.sol
pragma solidity ^0.6.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File: @openzeppelin/contracts/access/Ownable.sol
pragma solidity ^0.6.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* Returns the address of the current owner.
*/
function governance() public view returns (address) {
return _owner;
}
/**
* Throws if called by any account other than the owner.
*/
modifier onlyGovernance() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferGovernance(address newOwner) internal virtual onlyGovernance {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// File: contracts/GasTreasury.sol
// Used to convert weth to eth
interface WrappedEther {
function withdraw(uint) external;
}
// Used to call maintenance functions from the main contract
interface Operator {
function rebalancePoolRewards() external;
function mintNewWeek() external;
}
pragma solidity ^0.6.6;
// Gas Treasury is an intermediate treasury that can be used to pay for operations required by the Stabilize protocol
// The gas treasury can call mintnewweek and rebalancepoolrewards and pay the caller back for those calls (up to a certain gas price)
// The treasury is also used as a reservoir for the team to obtain funds needed to build new contracts or run maintenance calls
// The team can also forward funds from the gas treasury to the treasury furnace when ready
// In case of lost tokens, team can recover them
contract StabilizeGasTreasury is Ownable {
using SafeMath for uint256;
using SafeERC20 for IERC20;
// variables
address public treasuryFurnaceAddress; // The address for the normal Treasury furnance
address public operatorAddress; // The address for the operator contract
uint256 public lastRebalanceTime; // The last time the gas treasury paid for a rebalance
uint256 public maxGasPrice = 30; // This is the maximum gas price in Gwei that this contract will payout at
uint256 public minRebalanceInterval = 86400; // The minimum amount of time needed in between rebalance periods
address constant wethAddress = address(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2);
constructor(
address _treasury,
address _operator
) public {
treasuryFurnaceAddress = _treasury;
operatorAddress = _operator;
}
// functions
function balance() public view returns (uint256) {
IERC20 token = IERC20(wethAddress);
return token.balanceOf(address(this));
}
function subsidizedMintNewWeek() external {
uint256 startGas = gasleft();
uint256 weiGasPriceMax = maxGasPrice.mul(10**9); // The maximum gas price in Wei units
uint256 weiGasPrice = tx.gasprice; // The gas price for the current transaction
if(weiGasPrice > weiGasPriceMax){
// User should not spend more than the gas price max
weiGasPrice = weiGasPriceMax;
}
Operator(operatorAddress).mintNewWeek(); // Mint the new week
uint256 gasPayoutEstimate = startGas.sub(gasleft()).add(60000); // Estimate the amount of gas used by this operation and the next few
gasPayoutEstimate = gasPayoutEstimate.mul(weiGasPrice);
uint256 wethBalance = balance();
if(gasPayoutEstimate > wethBalance){
gasPayoutEstimate = wethBalance; // Payout cannot be greater than contract balance
}
if(gasPayoutEstimate > 0){
WrappedEther(wethAddress).withdraw(gasPayoutEstimate); // This will send ETH to this contract and burn WETH
msg.sender.transfer(gasPayoutEstimate); // Send ETH back to user
}
}
function subsidizedRebalancePoolRewards() external {
uint256 startGas = gasleft();
require(now.sub(lastRebalanceTime) > minRebalanceInterval, "Too soon to run another subsidized rebalance event");
lastRebalanceTime = now;
uint256 weiGasPriceMax = maxGasPrice.mul(10**9); // The maximum gas price in Wei units
uint256 weiGasPrice = tx.gasprice; // The gas price for the current transaction
if(weiGasPrice > weiGasPriceMax){
// User should not spend more than the gas price max
weiGasPrice = weiGasPriceMax;
}
Operator(operatorAddress).rebalancePoolRewards(); // Rebalance the pool
uint256 gasPayoutEstimate = startGas.sub(gasleft()).add(60000); // Estimate the amount of gas used by this operation and the next few
gasPayoutEstimate = gasPayoutEstimate.mul(weiGasPrice);
uint256 wethBalance = balance();
if(gasPayoutEstimate > wethBalance){
gasPayoutEstimate = wethBalance; // Payout cannot be greater than contract balance
}
if(gasPayoutEstimate > 0){
WrappedEther(wethAddress).withdraw(gasPayoutEstimate); // This will send ETH to this contract and burn WETH
msg.sender.transfer(gasPayoutEstimate); // Send ETH back to user
}
}
receive() external payable {
// We need an anonymous fallback function to accept ether into this contract
}
// Governance only functions
// Non-timelock governance
// Recover non-WETH lost tokens
function recoverLostTokens(address _token, uint256 _amount) external onlyGovernance {
require(_token != wethAddress, "Cannot recover WETH via this function");
IERC20 token = IERC20(_token);
token.safeTransfer(governance(), _amount);
}
// Governance at anytime can push WETH to the main TreasuryFurnace
function pushBalanceToTreasury(uint256 _amount) external onlyGovernance {
IERC20 weth = IERC20(wethAddress);
weth.safeTransfer(treasuryFurnaceAddress, _amount);
}
// Timelock variables
// Timelock doesn't activate until WETH is present at address
uint256 private _timelockStart; // The start of the timelock to change governance variables
uint256 private _timelockType; // The function that needs to be changed
uint256 constant _timelockDuration = 86400; // Timelock is 24 hours
// Reusable timelock variables
address private _timelock_address;
uint256 private _timelock_data;
modifier timelockConditionsMet(uint256 _type) {
require(_timelockType == _type, "Timelock not acquired for this function");
_timelockType = 0; // Reset the type once the timelock is used
if(balance() > 0){
// Timelock is only required after weth is in contract
require(now >= _timelockStart + _timelockDuration, "Timelock time not met");
}
_;
}
// Change the owner of the token contract
// --------------------
function startGovernanceChange(address _address) external onlyGovernance {
_timelockStart = now;
_timelockType = 1;
_timelock_address = _address;
}
function finishGovernanceChange() external onlyGovernance timelockConditionsMet(1) {
transferGovernance(_timelock_address);
}
// --------------------
// Change the treasury furnance address
// --------------------
function startChangeTreasuryFurnace(address _address) external onlyGovernance {
_timelockStart = now;
_timelockType = 2;
_timelock_address = _address;
}
function finishChangeTreasuryFurnace() public onlyGovernance timelockConditionsMet(2) {
treasuryFurnaceAddress = _timelock_address;
}
// --------------------
// Change the gas price maximum
// --------------------
function startChangeGasPriceMax(uint256 _price) external onlyGovernance {
require(_price > 0, "Price must be greater than 0");
_timelockStart = now;
_timelockType = 3;
_timelock_data = _price;
}
function finishChangeGasPriceMax() public onlyGovernance timelockConditionsMet(3) {
maxGasPrice = _timelock_data;
}
// --------------------
// Change the gas price maximum
// --------------------
function startChangeMinInterval(uint256 _interval) external onlyGovernance {
_timelockStart = now;
_timelockType = 4;
_timelock_data = _interval;
}
function finishChangeMinInterval() public onlyGovernance timelockConditionsMet(4) {
minRebalanceInterval = _timelock_data;
}
// --------------------
// Pull funds from contract to governance for expenditures
// --------------------
function startWithdrawForGovernance(uint256 _amount) external onlyGovernance {
_timelockStart = now;
_timelockType = 5;
_timelock_data = _amount;
}
function finishWithdrawForGovernance() public onlyGovernance timelockConditionsMet(5) {
uint256 amount = _timelock_data;
IERC20 weth = IERC20(wethAddress);
weth.safeTransfer(governance(), amount);
}
// --------------------
}
{
"compilationTarget": {
"StabilizeGasTreasury.sol": "StabilizeGasTreasury"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_treasury","type":"address"},{"internalType":"address","name":"_operator","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"balance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"finishChangeGasPriceMax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"finishChangeMinInterval","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"finishChangeTreasuryFurnace","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"finishGovernanceChange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"finishWithdrawForGovernance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"governance","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastRebalanceTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxGasPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minRebalanceInterval","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"operatorAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"pushBalanceToTreasury","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"recoverLostTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_price","type":"uint256"}],"name":"startChangeGasPriceMax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_interval","type":"uint256"}],"name":"startChangeMinInterval","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"startChangeTreasuryFurnace","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"startGovernanceChange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"startWithdrawForGovernance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"subsidizedMintNewWeek","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"subsidizedRebalancePoolRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasuryFurnaceAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]