pragma solidity ^0.4.24;
/*
* @title String & slice utility library for Solidity contracts.
* @author Nick Johnson <arachnid@notdot.net>
*
* @dev Functionality in this library is largely implemented using an
* abstraction called a 'slice'. A slice represents a part of a string -
* anything from the entire string to a single character, or even no
* characters at all (a 0-length slice). Since a slice only has to specify
* an offset and a length, copying and manipulating slices is a lot less
* expensive than copying and manipulating the strings they reference.
*
* To further reduce gas costs, most functions on slice that need to return
* a slice modify the original one instead of allocating a new one; for
* instance, `s.split(".")` will return the text up to the first '.',
* modifying s to only contain the remainder of the string after the '.'.
* In situations where you do not want to modify the original slice, you
* can make a copy first with `.copy()`, for example:
* `s.copy().split(".")`. Try and avoid using this idiom in loops; since
* Solidity has no memory management, it will result in allocating many
* short-lived slices that are later discarded.
*
* Functions that return two slices come in two versions: a non-allocating
* version that takes the second slice as an argument, modifying it in
* place, and an allocating version that allocates and returns the second
* slice; see `nextRune` for example.
*
* Functions that have to copy string data will return strings rather than
* slices; these can be cast back to slices for further processing if
* required.
*
* For convenience, some functions are provided with non-modifying
* variants that create a new slice and return both; for instance,
* `s.splitNew('.')` leaves s unmodified, and returns two values
* corresponding to the left and right parts of the string.
*/
library strings {
struct slice {
uint _len;
uint _ptr;
}
function memcpy(uint dest, uint src, uint len) private pure {
// Copy word-length chunks while possible
for(; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
// Copy remaining bytes
uint mask = 256 ** (32 - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
/*
* @dev Returns a slice containing the entire string.
* @param self The string to make a slice from.
* @return A newly allocated slice containing the entire string.
*/
function toSlice(string memory self) internal pure returns (slice memory) {
uint ptr;
assembly {
ptr := add(self, 0x20)
}
return slice(bytes(self).length, ptr);
}
/*
* @dev Returns the length of a null-terminated bytes32 string.
* @param self The value to find the length of.
* @return The length of the string, from 0 to 32.
*/
function len(bytes32 self) internal pure returns (uint) {
uint ret;
if (self == 0)
return 0;
if (self & 0xffffffffffffffffffffffffffffffff == 0) {
ret += 16;
self = bytes32(uint(self) / 0x100000000000000000000000000000000);
}
if (self & 0xffffffffffffffff == 0) {
ret += 8;
self = bytes32(uint(self) / 0x10000000000000000);
}
if (self & 0xffffffff == 0) {
ret += 4;
self = bytes32(uint(self) / 0x100000000);
}
if (self & 0xffff == 0) {
ret += 2;
self = bytes32(uint(self) / 0x10000);
}
if (self & 0xff == 0) {
ret += 1;
}
return 32 - ret;
}
/*
* @dev Returns a slice containing the entire bytes32, interpreted as a
* null-terminated utf-8 string.
* @param self The bytes32 value to convert to a slice.
* @return A new slice containing the value of the input argument up to the
* first null.
*/
function toSliceB32(bytes32 self) internal pure returns (slice memory ret) {
// Allocate space for `self` in memory, copy it there, and point ret at it
assembly {
let ptr := mload(0x40)
mstore(0x40, add(ptr, 0x20))
mstore(ptr, self)
mstore(add(ret, 0x20), ptr)
}
ret._len = len(self);
}
/*
* @dev Returns a new slice containing the same data as the current slice.
* @param self The slice to copy.
* @return A new slice containing the same data as `self`.
*/
function copy(slice memory self) internal pure returns (slice memory) {
return slice(self._len, self._ptr);
}
/*
* @dev Copies a slice to a new string.
* @param self The slice to copy.
* @return A newly allocated string containing the slice's text.
*/
function toString(slice memory self) internal pure returns (string memory) {
string memory ret = new string(self._len);
uint retptr;
assembly { retptr := add(ret, 32) }
memcpy(retptr, self._ptr, self._len);
return ret;
}
/*
* @dev Returns the length in runes of the slice. Note that this operation
* takes time proportional to the length of the slice; avoid using it
* in loops, and call `slice.empty()` if you only need to know whether
* the slice is empty or not.
* @param self The slice to operate on.
* @return The length of the slice in runes.
*/
function len(slice memory self) internal pure returns (uint l) {
// Starting at ptr-31 means the LSB will be the byte we care about
uint ptr = self._ptr - 31;
uint end = ptr + self._len;
for (l = 0; ptr < end; l++) {
uint8 b;
assembly { b := and(mload(ptr), 0xFF) }
if (b < 0x80) {
ptr += 1;
} else if(b < 0xE0) {
ptr += 2;
} else if(b < 0xF0) {
ptr += 3;
} else if(b < 0xF8) {
ptr += 4;
} else if(b < 0xFC) {
ptr += 5;
} else {
ptr += 6;
}
}
}
/*
* @dev Returns true if the slice is empty (has a length of 0).
* @param self The slice to operate on.
* @return True if the slice is empty, False otherwise.
*/
function empty(slice memory self) internal pure returns (bool) {
return self._len == 0;
}
/*
* @dev Returns a positive number if `other` comes lexicographically after
* `self`, a negative number if it comes before, or zero if the
* contents of the two slices are equal. Comparison is done per-rune,
* on unicode codepoints.
* @param self The first slice to compare.
* @param other The second slice to compare.
* @return The result of the comparison.
*/
function compare(slice memory self, slice memory other) internal pure returns (int) {
uint shortest = self._len;
if (other._len < self._len)
shortest = other._len;
uint selfptr = self._ptr;
uint otherptr = other._ptr;
for (uint idx = 0; idx < shortest; idx += 32) {
uint a;
uint b;
assembly {
a := mload(selfptr)
b := mload(otherptr)
}
if (a != b) {
// Mask out irrelevant bytes and check again
uint256 mask = uint256(-1); // 0xffff...
if(shortest < 32) {
mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
}
uint256 diff = (a & mask) - (b & mask);
if (diff != 0)
return int(diff);
}
selfptr += 32;
otherptr += 32;
}
return int(self._len) - int(other._len);
}
/*
* @dev Returns true if the two slices contain the same text.
* @param self The first slice to compare.
* @param self The second slice to compare.
* @return True if the slices are equal, false otherwise.
*/
function equals(slice memory self, slice memory other) internal pure returns (bool) {
return compare(self, other) == 0;
}
/*
* @dev Extracts the first rune in the slice into `rune`, advancing the
* slice to point to the next rune and returning `self`.
* @param self The slice to operate on.
* @param rune The slice that will contain the first rune.
* @return `rune`.
*/
function nextRune(slice memory self, slice memory rune) internal pure returns (slice memory) {
rune._ptr = self._ptr;
if (self._len == 0) {
rune._len = 0;
return rune;
}
uint l;
uint b;
// Load the first byte of the rune into the LSBs of b
assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
if (b < 0x80) {
l = 1;
} else if(b < 0xE0) {
l = 2;
} else if(b < 0xF0) {
l = 3;
} else {
l = 4;
}
// Check for truncated codepoints
if (l > self._len) {
rune._len = self._len;
self._ptr += self._len;
self._len = 0;
return rune;
}
self._ptr += l;
self._len -= l;
rune._len = l;
return rune;
}
/*
* @dev Returns the first rune in the slice, advancing the slice to point
* to the next rune.
* @param self The slice to operate on.
* @return A slice containing only the first rune from `self`.
*/
function nextRune(slice memory self) internal pure returns (slice memory ret) {
nextRune(self, ret);
}
/*
* @dev Returns the number of the first codepoint in the slice.
* @param self The slice to operate on.
* @return The number of the first codepoint in the slice.
*/
function ord(slice memory self) internal pure returns (uint ret) {
if (self._len == 0) {
return 0;
}
uint word;
uint length;
uint divisor = 2 ** 248;
// Load the rune into the MSBs of b
assembly { word:= mload(mload(add(self, 32))) }
uint b = word / divisor;
if (b < 0x80) {
ret = b;
length = 1;
} else if(b < 0xE0) {
ret = b & 0x1F;
length = 2;
} else if(b < 0xF0) {
ret = b & 0x0F;
length = 3;
} else {
ret = b & 0x07;
length = 4;
}
// Check for truncated codepoints
if (length > self._len) {
return 0;
}
for (uint i = 1; i < length; i++) {
divisor = divisor / 256;
b = (word / divisor) & 0xFF;
if (b & 0xC0 != 0x80) {
// Invalid UTF-8 sequence
return 0;
}
ret = (ret * 64) | (b & 0x3F);
}
return ret;
}
/*
* @dev Returns the keccak-256 hash of the slice.
* @param self The slice to hash.
* @return The hash of the slice.
*/
function keccak(slice memory self) internal pure returns (bytes32 ret) {
assembly {
ret := keccak256(mload(add(self, 32)), mload(self))
}
}
/*
* @dev Returns true if `self` starts with `needle`.
* @param self The slice to operate on.
* @param needle The slice to search for.
* @return True if the slice starts with the provided text, false otherwise.
*/
function startsWith(slice memory self, slice memory needle) internal pure returns (bool) {
if (self._len < needle._len) {
return false;
}
if (self._ptr == needle._ptr) {
return true;
}
bool equal;
assembly {
let length := mload(needle)
let selfptr := mload(add(self, 0x20))
let needleptr := mload(add(needle, 0x20))
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
}
return equal;
}
/*
* @dev If `self` starts with `needle`, `needle` is removed from the
* beginning of `self`. Otherwise, `self` is unmodified.
* @param self The slice to operate on.
* @param needle The slice to search for.
* @return `self`
*/
function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {
if (self._len < needle._len) {
return self;
}
bool equal = true;
if (self._ptr != needle._ptr) {
assembly {
let length := mload(needle)
let selfptr := mload(add(self, 0x20))
let needleptr := mload(add(needle, 0x20))
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
}
}
if (equal) {
self._len -= needle._len;
self._ptr += needle._len;
}
return self;
}
/*
* @dev Returns true if the slice ends with `needle`.
* @param self The slice to operate on.
* @param needle The slice to search for.
* @return True if the slice starts with the provided text, false otherwise.
*/
function endsWith(slice memory self, slice memory needle) internal pure returns (bool) {
if (self._len < needle._len) {
return false;
}
uint selfptr = self._ptr + self._len - needle._len;
if (selfptr == needle._ptr) {
return true;
}
bool equal;
assembly {
let length := mload(needle)
let needleptr := mload(add(needle, 0x20))
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
}
return equal;
}
/*
* @dev If `self` ends with `needle`, `needle` is removed from the
* end of `self`. Otherwise, `self` is unmodified.
* @param self The slice to operate on.
* @param needle The slice to search for.
* @return `self`
*/
function until(slice memory self, slice memory needle) internal pure returns (slice memory) {
if (self._len < needle._len) {
return self;
}
uint selfptr = self._ptr + self._len - needle._len;
bool equal = true;
if (selfptr != needle._ptr) {
assembly {
let length := mload(needle)
let needleptr := mload(add(needle, 0x20))
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
}
}
if (equal) {
self._len -= needle._len;
}
return self;
}
// Returns the memory address of the first byte of the first occurrence of
// `needle` in `self`, or the first byte after `self` if not found.
function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
uint ptr = selfptr;
uint idx;
if (needlelen <= selflen) {
if (needlelen <= 32) {
bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
bytes32 needledata;
assembly { needledata := and(mload(needleptr), mask) }
uint end = selfptr + selflen - needlelen;
bytes32 ptrdata;
assembly { ptrdata := and(mload(ptr), mask) }
while (ptrdata != needledata) {
if (ptr >= end)
return selfptr + selflen;
ptr++;
assembly { ptrdata := and(mload(ptr), mask) }
}
return ptr;
} else {
// For long needles, use hashing
bytes32 hash;
assembly { hash := keccak256(needleptr, needlelen) }
for (idx = 0; idx <= selflen - needlelen; idx++) {
bytes32 testHash;
assembly { testHash := keccak256(ptr, needlelen) }
if (hash == testHash)
return ptr;
ptr += 1;
}
}
}
return selfptr + selflen;
}
// Returns the memory address of the first byte after the last occurrence of
// `needle` in `self`, or the address of `self` if not found.
function rfindPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
uint ptr;
if (needlelen <= selflen) {
if (needlelen <= 32) {
bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
bytes32 needledata;
assembly { needledata := and(mload(needleptr), mask) }
ptr = selfptr + selflen - needlelen;
bytes32 ptrdata;
assembly { ptrdata := and(mload(ptr), mask) }
while (ptrdata != needledata) {
if (ptr <= selfptr)
return selfptr;
ptr--;
assembly { ptrdata := and(mload(ptr), mask) }
}
return ptr + needlelen;
} else {
// For long needles, use hashing
bytes32 hash;
assembly { hash := keccak256(needleptr, needlelen) }
ptr = selfptr + (selflen - needlelen);
while (ptr >= selfptr) {
bytes32 testHash;
assembly { testHash := keccak256(ptr, needlelen) }
if (hash == testHash)
return ptr + needlelen;
ptr -= 1;
}
}
}
return selfptr;
}
/*
* @dev Modifies `self` to contain everything from the first occurrence of
* `needle` to the end of the slice. `self` is set to the empty slice
* if `needle` is not found.
* @param self The slice to search and modify.
* @param needle The text to search for.
* @return `self`.
*/
function find(slice memory self, slice memory needle) internal pure returns (slice memory) {
uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr);
self._len -= ptr - self._ptr;
self._ptr = ptr;
return self;
}
/*
* @dev Modifies `self` to contain the part of the string from the start of
* `self` to the end of the first occurrence of `needle`. If `needle`
* is not found, `self` is set to the empty slice.
* @param self The slice to search and modify.
* @param needle The text to search for.
* @return `self`.
*/
function rfind(slice memory self, slice memory needle) internal pure returns (slice memory) {
uint ptr = rfindPtr(self._len, self._ptr, needle._len, needle._ptr);
self._len = ptr - self._ptr;
return self;
}
/*
* @dev Splits the slice, setting `self` to everything after the first
* occurrence of `needle`, and `token` to everything before it. If
* `needle` does not occur in `self`, `self` is set to the empty slice,
* and `token` is set to the entirety of `self`.
* @param self The slice to split.
* @param needle The text to search for in `self`.
* @param token An output parameter to which the first token is written.
* @return `token`.
*/
function split(slice memory self, slice memory needle, slice memory token) internal pure returns (slice memory) {
uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr);
token._ptr = self._ptr;
token._len = ptr - self._ptr;
if (ptr == self._ptr + self._len) {
// Not found
self._len = 0;
} else {
self._len -= token._len + needle._len;
self._ptr = ptr + needle._len;
}
return token;
}
/*
* @dev Splits the slice, setting `self` to everything after the first
* occurrence of `needle`, and returning everything before it. If
* `needle` does not occur in `self`, `self` is set to the empty slice,
* and the entirety of `self` is returned.
* @param self The slice to split.
* @param needle The text to search for in `self`.
* @return The part of `self` up to the first occurrence of `delim`.
*/
function split(slice memory self, slice memory needle) internal pure returns (slice memory token) {
split(self, needle, token);
}
/*
* @dev Splits the slice, setting `self` to everything before the last
* occurrence of `needle`, and `token` to everything after it. If
* `needle` does not occur in `self`, `self` is set to the empty slice,
* and `token` is set to the entirety of `self`.
* @param self The slice to split.
* @param needle The text to search for in `self`.
* @param token An output parameter to which the first token is written.
* @return `token`.
*/
function rsplit(slice memory self, slice memory needle, slice memory token) internal pure returns (slice memory) {
uint ptr = rfindPtr(self._len, self._ptr, needle._len, needle._ptr);
token._ptr = ptr;
token._len = self._len - (ptr - self._ptr);
if (ptr == self._ptr) {
// Not found
self._len = 0;
} else {
self._len -= token._len + needle._len;
}
return token;
}
/*
* @dev Splits the slice, setting `self` to everything before the last
* occurrence of `needle`, and returning everything after it. If
* `needle` does not occur in `self`, `self` is set to the empty slice,
* and the entirety of `self` is returned.
* @param self The slice to split.
* @param needle The text to search for in `self`.
* @return The part of `self` after the last occurrence of `delim`.
*/
function rsplit(slice memory self, slice memory needle) internal pure returns (slice memory token) {
rsplit(self, needle, token);
}
/*
* @dev Counts the number of nonoverlapping occurrences of `needle` in `self`.
* @param self The slice to search.
* @param needle The text to search for in `self`.
* @return The number of occurrences of `needle` found in `self`.
*/
function count(slice memory self, slice memory needle) internal pure returns (uint cnt) {
uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr) + needle._len;
while (ptr <= self._ptr + self._len) {
cnt++;
ptr = findPtr(self._len - (ptr - self._ptr), ptr, needle._len, needle._ptr) + needle._len;
}
}
/*
* @dev Returns True if `self` contains `needle`.
* @param self The slice to search.
* @param needle The text to search for in `self`.
* @return True if `needle` is found in `self`, false otherwise.
*/
function contains(slice memory self, slice memory needle) internal pure returns (bool) {
return rfindPtr(self._len, self._ptr, needle._len, needle._ptr) != self._ptr;
}
/*
* @dev Returns a newly allocated string containing the concatenation of
* `self` and `other`.
* @param self The first slice to concatenate.
* @param other The second slice to concatenate.
* @return The concatenation of the two strings.
*/
function concat(slice memory self, slice memory other) internal pure returns (string memory) {
string memory ret = new string(self._len + other._len);
uint retptr;
assembly { retptr := add(ret, 32) }
memcpy(retptr, self._ptr, self._len);
memcpy(retptr + self._len, other._ptr, other._len);
return ret;
}
/*
* @dev Joins an array of slices, using `self` as a delimiter, returning a
* newly allocated string.
* @param self The delimiter to use.
* @param parts A list of slices to join.
* @return A newly allocated string containing all the slices in `parts`,
* joined with `self`.
*/
function join(slice memory self, slice[] memory parts) internal pure returns (string memory) {
if (parts.length == 0)
return "";
uint length = self._len * (parts.length - 1);
for(uint i = 0; i < parts.length; i++)
length += parts[i]._len;
string memory ret = new string(length);
uint retptr;
assembly { retptr := add(ret, 32) }
for(i = 0; i < parts.length; i++) {
memcpy(retptr, parts[i]._ptr, parts[i]._len);
retptr += parts[i]._len;
if (i < parts.length - 1) {
memcpy(retptr, self._ptr, self._len);
retptr += self._len;
}
}
return ret;
}
}
contract Control {
using strings for *;
uint constant REWARD_BASE = 100;
uint constant REWARD_TAX = 8;
uint constant REWARD_GET = REWARD_BASE - REWARD_TAX;
uint constant MAX_ALLBET = 2**120;//avoid bet overflow
uint constant MIN_BET = 0.001 ether;
bytes32 constant SHA_DEUCE = keccak256("DEUCE");
address internal creator;
address internal owner;
uint public destroy_time;
constructor(address target)
public {
creator = msg.sender;
owner = target;
// this contract's exists time is one year
destroy_time = now + 365 * 24 * 60 * 60;
}
function kill()
external payable {
require(now >= destroy_time);
selfdestruct(owner);
}
struct PlayerBet {
uint bet0; //bet to deuce
uint bet1;
uint bet2;
bool drawed;
}
struct MatchBet {
uint betDeadline;
uint allbet;
uint allbet0;//allbet to deuce
uint allbet1;
uint allbet2;
bool ownerDrawed;
bytes32 SHA_WIN;
bytes32 SHA_T1;
bytes32 SHA_T2;
mapping(address => PlayerBet) list;
}
MatchBet[] public MatchList;
modifier onlyOwner() {
require(msg.sender == creator || msg.sender == owner);
_;
}
modifier MatchExist(uint index) {
require(index < MatchList.length);
_;
}
function AddMatch(string troop1, string troop2, uint deadline)
external
onlyOwner {
MatchList.push(MatchBet({
betDeadline :deadline,
allbet :0,
allbet0 :0,
allbet1 :0,
allbet2 :0,
ownerDrawed :false,
SHA_T1 :keccak256(bytes(troop1)),
SHA_T2 :keccak256(bytes(troop2)),
SHA_WIN :bytes32(0)
}));
}
//urgency situation
function MatchResetDeadline(uint index,uint time)
external
onlyOwner MatchExist(index) {
MatchBet storage oMatch = MatchList[index];
oMatch.betDeadline = time;
}
function MatchEnd(uint index,string winTroop)
external
onlyOwner MatchExist(index) {
MatchBet storage oMatch = MatchList[index];
require(oMatch.SHA_WIN == 0);
bytes32 shaWin = keccak256(bytes(winTroop));
require(shaWin == SHA_DEUCE || shaWin == oMatch.SHA_T1 || shaWin == oMatch.SHA_T2 );
oMatch.SHA_WIN = shaWin;
}
function Bet(uint index, string troop)
external payable
MatchExist(index) {
//check bet
require(msg.value >= MIN_BET);
MatchBet storage oMatch = MatchList[index];
//check timeout or match over
require(oMatch.SHA_WIN == 0 && oMatch.betDeadline >= now);
uint tempAllBet = oMatch.allbet + msg.value;
//check if allbet overflow
require(tempAllBet > oMatch.allbet && tempAllBet <= MAX_ALLBET);
PlayerBet storage oBet = oMatch.list[msg.sender];
oMatch.allbet = tempAllBet;
bytes32 shaBetTroop = keccak256(bytes(troop));
if ( shaBetTroop == oMatch.SHA_T1 ) {
oBet.bet1 += msg.value;
oMatch.allbet1 += msg.value;
}
else if ( shaBetTroop == oMatch.SHA_T2 ) {
oBet.bet2 += msg.value;
oMatch.allbet2 += msg.value;
}
else {
require( shaBetTroop == SHA_DEUCE );
oBet.bet0 += msg.value;
oMatch.allbet0 += msg.value;
}
}
function CalReward(MatchBet storage oMatch,PlayerBet storage oBet)
internal view
returns(uint) {
uint myWinBet;
uint allWinBet;
if ( oMatch.SHA_WIN == oMatch.SHA_T1) {
myWinBet = oBet.bet1;
allWinBet = oMatch.allbet1;
}
else if ( oMatch.SHA_WIN == oMatch.SHA_T2 ) {
myWinBet = oBet.bet2;
allWinBet = oMatch.allbet2;
}
else {
myWinBet = oBet.bet0;
allWinBet = oMatch.allbet0;
}
if (myWinBet == 0) return 0;
return myWinBet + (oMatch.allbet - allWinBet) * myWinBet / allWinBet * REWARD_GET / REWARD_BASE;
}
function Withdraw(uint index,address target)
public payable
MatchExist(index) {
MatchBet storage oMatch = MatchList[index];
PlayerBet storage oBet = oMatch.list[target];
if (oBet.drawed) return;
if (oMatch.SHA_WIN == 0) return;
uint reward = CalReward(oMatch,oBet);
if (reward == 0) return;
oBet.drawed = true;
target.transfer(reward);
}
function WithdrawAll(address target)
external payable {
for (uint i=0; i<MatchList.length; i++) {
Withdraw(i,target);
}
}
function CreatorWithdraw(uint index)
internal {
MatchBet storage oMatch = MatchList[index];
if (oMatch.ownerDrawed) return;
if (oMatch.SHA_WIN == 0) return;
oMatch.ownerDrawed = true;
uint allWinBet;
if ( oMatch.SHA_WIN == oMatch.SHA_T1) {
allWinBet = oMatch.allbet1;
}
else if ( oMatch.SHA_WIN == oMatch.SHA_T2 ) {
allWinBet = oMatch.allbet2;
}
else {
allWinBet = oMatch.allbet0;
}
if (oMatch.allbet == allWinBet) return;
if (allWinBet == 0) {
//nobody win, get all bet
owner.transfer(oMatch.allbet);
}
else {
//somebody win, withdraw tax
uint alltax = (oMatch.allbet - allWinBet) * REWARD_TAX / REWARD_BASE;
owner.transfer(alltax);
}
}
function CreatorWithdrawAll()
external payable {
for (uint i=0; i<MatchList.length; i++) {
CreatorWithdraw(i);
}
}
function GetMatchLength()
external view
returns(uint) {
return MatchList.length;
}
function uint2str(uint i)
internal pure
returns (string){
if (i == 0) return "0";
uint j = i;
uint len;
while (j != 0){
len++;
j /= 10;
}
bytes memory bstr = new bytes(len);
while (i != 0){
bstr[--len] = byte(48 + i % 10);
i /= 10;
}
return string(bstr);
}
function GetInfo(MatchBet storage obj,uint idx,address target)
internal view
returns(string){
PlayerBet storage oBet = obj.list[target];
string memory info = "#";
info = info.toSlice().concat(uint2str(idx).toSlice());
info = info.toSlice().concat(",".toSlice()).toSlice().concat(uint2str(oBet.bet1).toSlice());
info = info.toSlice().concat(",".toSlice()).toSlice().concat(uint2str(obj.allbet1).toSlice());
info = info.toSlice().concat(",".toSlice()).toSlice().concat(uint2str(oBet.bet2).toSlice());
info = info.toSlice().concat(",".toSlice()).toSlice().concat(uint2str(obj.allbet2).toSlice());
info = info.toSlice().concat(",".toSlice()).toSlice().concat(uint2str(oBet.bet0).toSlice());
info = info.toSlice().concat(",".toSlice()).toSlice().concat(uint2str(obj.allbet0).toSlice());
if (oBet.drawed) {
info = info.toSlice().concat(",".toSlice()).toSlice().concat("1".toSlice());
}
else {
info = info.toSlice().concat(",".toSlice()).toSlice().concat("0".toSlice());
}
return info;
}
function GetDetail(address target)
external view
returns(string) {
string memory res;
for (uint i=0; i<MatchList.length; i++){
res = res.toSlice().concat(GetInfo(MatchList[i],i,target).toSlice());
}
return res;
}
}
{
"compilationTarget": {
"Control.sol": "Control"
},
"evmVersion": "byzantium",
"libraries": {},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"constant":true,"inputs":[],"name":"destroy_time","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"target","type":"address"}],"name":"WithdrawAll","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"constant":false,"inputs":[{"name":"index","type":"uint256"},{"name":"troop","type":"string"}],"name":"Bet","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"constant":false,"inputs":[{"name":"index","type":"uint256"},{"name":"winTroop","type":"string"}],"name":"MatchEnd","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"kill","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"constant":false,"inputs":[{"name":"index","type":"uint256"},{"name":"time","type":"uint256"}],"name":"MatchResetDeadline","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"troop1","type":"string"},{"name":"troop2","type":"string"},{"name":"deadline","type":"uint256"}],"name":"AddMatch","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"CreatorWithdrawAll","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"constant":false,"inputs":[{"name":"index","type":"uint256"},{"name":"target","type":"address"}],"name":"Withdraw","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"constant":true,"inputs":[{"name":"","type":"uint256"}],"name":"MatchList","outputs":[{"name":"betDeadline","type":"uint256"},{"name":"allbet","type":"uint256"},{"name":"allbet0","type":"uint256"},{"name":"allbet1","type":"uint256"},{"name":"allbet2","type":"uint256"},{"name":"ownerDrawed","type":"bool"},{"name":"SHA_WIN","type":"bytes32"},{"name":"SHA_T1","type":"bytes32"},{"name":"SHA_T2","type":"bytes32"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"GetMatchLength","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"name":"target","type":"address"}],"name":"GetDetail","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[{"name":"target","type":"address"}],"payable":false,"stateMutability":"nonpayable","type":"constructor"}]