// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "./IAdminControl.sol";
abstract contract AdminControl is Ownable, IAdminControl, ERC165 {
using EnumerableSet for EnumerableSet.AddressSet;
// Track registered admins
EnumerableSet.AddressSet private _admins;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return interfaceId == type(IAdminControl).interfaceId
|| super.supportsInterface(interfaceId);
}
/**
* @dev Only allows approved admins to call the specified function
*/
modifier adminRequired() {
require(owner() == msg.sender || _admins.contains(msg.sender), "AdminControl: Must be owner or admin");
_;
}
/**
* @dev See {IAdminControl-getAdmins}.
*/
function getAdmins() external view override returns (address[] memory admins) {
admins = new address[](_admins.length());
for (uint i = 0; i < _admins.length(); i++) {
admins[i] = _admins.at(i);
}
return admins;
}
/**
* @dev See {IAdminControl-approveAdmin}.
*/
function approveAdmin(address admin) external override onlyOwner {
if (!_admins.contains(admin)) {
emit AdminApproved(admin, msg.sender);
_admins.add(admin);
}
}
/**
* @dev See {IAdminControl-revokeAdmin}.
*/
function revokeAdmin(address admin) external override onlyOwner {
if (_admins.contains(admin)) {
emit AdminRevoked(admin, msg.sender);
_admins.remove(admin);
}
}
/**
* @dev See {IAdminControl-isAdmin}.
*/
function isAdmin(address admin) public override view returns (bool) {
return (owner() == admin || _admins.contains(admin));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
/**
* @dev Interface for admin control
*/
interface IAdminControl is IERC165 {
event AdminApproved(address indexed account, address indexed sender);
event AdminRevoked(address indexed account, address indexed sender);
/**
* @dev gets address of all admins
*/
function getAdmins() external view returns (address[] memory);
/**
* @dev add an admin. Can only be called by contract owner.
*/
function approveAdmin(address admin) external;
/**
* @dev remove an admin. Can only be called by contract owner.
*/
function revokeAdmin(address admin) external;
/**
* @dev checks whether or not given address is an admin
* Returns True if they are
*/
function isAdmin(address admin) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
/**
* @dev Core creator interface
*/
interface ICreatorCore is IERC165 {
event ExtensionRegistered(address indexed extension, address indexed sender);
event ExtensionUnregistered(address indexed extension, address indexed sender);
event ExtensionBlacklisted(address indexed extension, address indexed sender);
event MintPermissionsUpdated(address indexed extension, address indexed permissions, address indexed sender);
event RoyaltiesUpdated(uint256 indexed tokenId, address payable[] receivers, uint256[] basisPoints);
event DefaultRoyaltiesUpdated(address payable[] receivers, uint256[] basisPoints);
event ApproveTransferUpdated(address extension);
event ExtensionRoyaltiesUpdated(address indexed extension, address payable[] receivers, uint256[] basisPoints);
event ExtensionApproveTransferUpdated(address indexed extension, bool enabled);
/**
* @dev gets address of all extensions
*/
function getExtensions() external view returns (address[] memory);
/**
* @dev add an extension. Can only be called by contract owner or admin.
* extension address must point to a contract implementing ICreatorExtension.
* Returns True if newly added, False if already added.
*/
function registerExtension(address extension, string calldata baseURI) external;
/**
* @dev add an extension. Can only be called by contract owner or admin.
* extension address must point to a contract implementing ICreatorExtension.
* Returns True if newly added, False if already added.
*/
function registerExtension(address extension, string calldata baseURI, bool baseURIIdentical) external;
/**
* @dev add an extension. Can only be called by contract owner or admin.
* Returns True if removed, False if already removed.
*/
function unregisterExtension(address extension) external;
/**
* @dev blacklist an extension. Can only be called by contract owner or admin.
* This function will destroy all ability to reference the metadata of any tokens created
* by the specified extension. It will also unregister the extension if needed.
* Returns True if removed, False if already removed.
*/
function blacklistExtension(address extension) external;
/**
* @dev set the baseTokenURI of an extension. Can only be called by extension.
*/
function setBaseTokenURIExtension(string calldata uri) external;
/**
* @dev set the baseTokenURI of an extension. Can only be called by extension.
* For tokens with no uri configured, tokenURI will return "uri+tokenId"
*/
function setBaseTokenURIExtension(string calldata uri, bool identical) external;
/**
* @dev set the common prefix of an extension. Can only be called by extension.
* If configured, and a token has a uri set, tokenURI will return "prefixURI+tokenURI"
* Useful if you want to use ipfs/arweave
*/
function setTokenURIPrefixExtension(string calldata prefix) external;
/**
* @dev set the tokenURI of a token extension. Can only be called by extension that minted token.
*/
function setTokenURIExtension(uint256 tokenId, string calldata uri) external;
/**
* @dev set the tokenURI of a token extension for multiple tokens. Can only be called by extension that minted token.
*/
function setTokenURIExtension(uint256[] memory tokenId, string[] calldata uri) external;
/**
* @dev set the baseTokenURI for tokens with no extension. Can only be called by owner/admin.
* For tokens with no uri configured, tokenURI will return "uri+tokenId"
*/
function setBaseTokenURI(string calldata uri) external;
/**
* @dev set the common prefix for tokens with no extension. Can only be called by owner/admin.
* If configured, and a token has a uri set, tokenURI will return "prefixURI+tokenURI"
* Useful if you want to use ipfs/arweave
*/
function setTokenURIPrefix(string calldata prefix) external;
/**
* @dev set the tokenURI of a token with no extension. Can only be called by owner/admin.
*/
function setTokenURI(uint256 tokenId, string calldata uri) external;
/**
* @dev set the tokenURI of multiple tokens with no extension. Can only be called by owner/admin.
*/
function setTokenURI(uint256[] memory tokenIds, string[] calldata uris) external;
/**
* @dev set a permissions contract for an extension. Used to control minting.
*/
function setMintPermissions(address extension, address permissions) external;
/**
* @dev Configure so transfers of tokens created by the caller (must be extension) gets approval
* from the extension before transferring
*/
function setApproveTransferExtension(bool enabled) external;
/**
* @dev get the extension of a given token
*/
function tokenExtension(uint256 tokenId) external view returns (address);
/**
* @dev Set default royalties
*/
function setRoyalties(address payable[] calldata receivers, uint256[] calldata basisPoints) external;
/**
* @dev Set royalties of a token
*/
function setRoyalties(uint256 tokenId, address payable[] calldata receivers, uint256[] calldata basisPoints) external;
/**
* @dev Set royalties of an extension
*/
function setRoyaltiesExtension(address extension, address payable[] calldata receivers, uint256[] calldata basisPoints) external;
/**
* @dev Get royalites of a token. Returns list of receivers and basisPoints
*/
function getRoyalties(uint256 tokenId) external view returns (address payable[] memory, uint256[] memory);
// Royalty support for various other standards
function getFeeRecipients(uint256 tokenId) external view returns (address payable[] memory);
function getFeeBps(uint256 tokenId) external view returns (uint[] memory);
function getFees(uint256 tokenId) external view returns (address payable[] memory, uint256[] memory);
function royaltyInfo(uint256 tokenId, uint256 value) external view returns (address, uint256);
/**
* @dev Set the default approve transfer contract location.
*/
function setApproveTransfer(address extension) external;
/**
* @dev Get the default approve transfer contract location.
*/
function getApproveTransfer() external view returns (address);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC1155/IERC1155.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[EIP].
*
* _Available since v3.1._
*/
interface IERC1155 is IERC165 {
/**
* @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] values
);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(address indexed account, address indexed operator, bool approved);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the amount of tokens of token type `id` owned by `account`.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function balanceOf(address account, uint256 id) external view returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids)
external
view
returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the caller.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator) external view returns (bool);
/**
* @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `amount`.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(
address from,
address to,
uint256 id,
uint256 amount,
bytes calldata data
) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `amounts` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amounts,
bytes calldata data
) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev _Available since v3.1._
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "./ICreatorCore.sol";
/**
* @dev Core ERC721 creator interface
*/
interface IERC721CreatorCore is ICreatorCore {
/**
* @dev mint a token with no extension. Can only be called by an admin.
* Returns tokenId minted
*/
function mintBase(address to) external returns (uint256);
/**
* @dev mint a token with no extension. Can only be called by an admin.
* Returns tokenId minted
*/
function mintBase(address to, string calldata uri) external returns (uint256);
/**
* @dev batch mint a token with no extension. Can only be called by an admin.
* Returns tokenId minted
*/
function mintBaseBatch(address to, uint16 count) external returns (uint256[] memory);
/**
* @dev batch mint a token with no extension. Can only be called by an admin.
* Returns tokenId minted
*/
function mintBaseBatch(address to, string[] calldata uris) external returns (uint256[] memory);
/**
* @dev mint a token. Can only be called by a registered extension.
* Returns tokenId minted
*/
function mintExtension(address to) external returns (uint256);
/**
* @dev mint a token. Can only be called by a registered extension.
* Returns tokenId minted
*/
function mintExtension(address to, string calldata uri) external returns (uint256);
/**
* @dev mint a token. Can only be called by a registered extension.
* Returns tokenId minted
*/
function mintExtension(address to, uint80 data) external returns (uint256);
/**
* @dev batch mint a token. Can only be called by a registered extension.
* Returns tokenIds minted
*/
function mintExtensionBatch(address to, uint16 count) external returns (uint256[] memory);
/**
* @dev batch mint a token. Can only be called by a registered extension.
* Returns tokenId minted
*/
function mintExtensionBatch(address to, string[] calldata uris) external returns (uint256[] memory);
/**
* @dev batch mint a token. Can only be called by a registered extension.
* Returns tokenId minted
*/
function mintExtensionBatch(address to, uint80[] calldata data) external returns (uint256[] memory);
/**
* @dev burn a token. Can only be called by token owner or approved address.
* On burn, calls back to the registered extension's onBurn method
*/
function burn(uint256 tokenId) external;
/**
* @dev get token data
*/
function tokenData(uint256 tokenId) external view returns (uint80);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "./IPhysicalClaimCore.sol";
interface IPhysicalClaim is IPhysicalClaimCore {
/**
* @notice initialize a new physical claim, emit initialize event
* @param instanceId the instanceId of the physicalClaim for the physical claim
* @param physicalClaimParameters the parameters which will affect the redemption behavior of the physical claim
*/
function initializePhysicalClaim(uint256 instanceId, PhysicalClaimParameters calldata physicalClaimParameters) external;
/**
* @notice update an existing physical claim
* @param instanceId the instanceId of the physicalClaim for the physical claim
* @param physicalClaimParameters the parameters which will affect the redemption behavior of the physical claim
*/
function updatePhysicalClaim(uint256 instanceId, PhysicalClaimParameters calldata physicalClaimParameters) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol";
import "@openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol";
import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
/**
* Burn Redeem Core interface
*/
interface IPhysicalClaimCore is IERC165, IERC721Receiver, IERC1155Receiver {
error InvalidInstance();
error UnsupportedContractVersion();
error InvalidToken(uint256);
error InvalidInput(); // 0xb4fa3fb3
error InvalidBurnTokenSpec();
error InvalidBurnFunctionSpec();
error InvalidData();
error TransferFailure();
error ContractDeprecated();
error PhysicalClaimDoesNotExist(uint256);
error PhysicalClaimInactive(uint256);
error InvalidBurnAmount(); // 0x2075cc10
error InvalidRedeemAmount(); // 0x918e94c5
error InvalidPaymentAmount(); // 0xfc512fde
error InvalidSignature(); // 0x8baa579f
error InvalidVariation(); // 0xc674e37c
/**
* @notice the validation type used for a `BurnItem`
* CONTRACT any token from a specific contract is valid
* RANGE token IDs within a range (inclusive) are valid
* MERKLE_TREE various individual token IDs included in a merkle tree are valid
* ANY any token from any contract
*/
enum ValidationType { INVALID, CONTRACT, RANGE, MERKLE_TREE, ANY }
enum BurnTokenSpec { ERC721, ERC1155, ERC721_NO_BURN }
enum BurnFunctionSpec { NONE, MANIFOLD, OPENZEPPELIN }
/**
* @notice a `BurnItem` indicates which tokens are eligible to be burned
* @param validationType which type of validation used to check that the burn item is
* satisfied
* @param tokenSpec the burn item token type
* @param burnSpec whether the contract for a token has a `burn` function and, if so,
* what interface
* @param amount (only for ERC1155 tokens) the amount (value) required to burn
* @param minTokenId (only for RANGE validation) the minimum valid token ID
* @param maxTokenId (only for RANGE validation) the maximum valid token ID
* @param merkleRoot (only for MERKLE_TREE validation) the root of the merkle tree of
* valid token IDs
*/
struct BurnItem {
ValidationType validationType;
address contractAddress;
BurnTokenSpec burnTokenSpec;
BurnFunctionSpec burnFunctionSpec;
uint72 amount;
uint256 minTokenId;
uint256 maxTokenId;
bytes32 merkleRoot;
}
/**
* @param totalSupply the maximum number of times the variation can be redeemed (0 means no limit)
* @param redeemedCount the number of times the variation has been redeemed
* @param active whether the variation is active
*/
struct VariationState {
uint16 totalSupply;
uint16 redeemedCount;
bool active;
}
/**
* @notice a `BurnGroup` is a group of valid `BurnItem`s
* @param requiredCount the number of `BurnItem`s (0 < requiredCount <= items.length) that
* need to be included in a burn
* @param items the list of `BurnItem`s
*/
struct BurnGroup {
uint256 requiredCount;
BurnItem[] items;
}
/**
* @notice parameters for burn redeem intialization/updates
* @param paymentReceiver the address to forward proceeds from paid burn redeems
* @param totalSupply the maximum number of redemptions to redeem (0 for unlimited)
* @param startDate the starting time for the burn redeem (0 for immediately)
* @param endDate the end time for the burn redeem (0 for never)
* @param signer the address of the signer for the transaction details
* @param burnSet a list of `BurnGroup`s that must each be satisfied for a burn redeem
* @param variationLimits a list of `Variation` ids and limits
*/
struct PhysicalClaimParameters {
address payable paymentReceiver;
uint16 totalSupply;
uint48 startDate;
uint48 endDate;
address signer;
BurnGroup[] burnSet;
VariationLimit[] variationLimits;
}
/**
* @notice parameters
*/
struct VariationLimit {
uint8 id;
uint16 totalSupply;
}
/**
* @notice the state for a physical claim
* @param paymentReceiver the address to forward proceeds from paid burn redeems
* @param redeemedCount the amount currently redeemed
* @param totalSupply the maximum number of redemptions to redeem (0 for unlimited)
* @param startDate the starting time for the burn redeem (0 for immediately)
* @param endDate the end time for the burn redeem (0 for never)
* @param signer the address of the signer for the transaction details
* @param burnSet a list of `BurnGroup`s that must each be satisfied for a burn redeem
* @param variationIds a list of variation IDs for the redemptions
* @param variations a mapping of `Variation`s for the redemptions
*/
struct PhysicalClaim {
address payable paymentReceiver;
uint16 redeemedCount;
uint16 totalSupply;
uint48 startDate;
uint48 endDate;
address signer;
BurnGroup[] burnSet;
uint8[] variationIds;
mapping(uint8 => VariationState) variations;
}
/**
* @notice the state for a physical claim
* @param paymentReceiver the address to forward proceeds from paid burn redeems
* @param redeemedCount the amount currently redeemed
* @param totalSupply the maximum number of redemptions to redeem (0 for unlimited)
* @param startDate the starting time for the burn redeem (0 for immediately)
* @param endDate the end time for the burn redeem (0 for never)
* @param signer the address of the signer for the transaction details
* @param burnSet a list of `BurnGroup`s that must each be satisfied for a burn redeem
* @param variationIds a list of variation IDs for the redemptions
* @param variations a mapping of `Variation`s for the redemptions
*/
struct PhysicalClaimView {
address payable paymentReceiver;
uint16 redeemedCount;
uint16 totalSupply;
uint48 startDate;
uint48 endDate;
address signer;
BurnGroup[] burnSet;
VariationState[] variationStates;
}
/**
* @notice a submission for a physical claim
* @param instanceId the instanceId of the physical claim
* @param count the number of times to perform a claim for this instance
* @param currentClaimCount the current number of times the physical claim has been redeemed
* @param variation the variation to redeem
* @param data the data for the transaction
* @param signature the signature for the transaction
* @param message the message for the transaction
* @param nonce the nonce for the transaction
* @param totalCost the total cost for the transaction
* @param burnTokens the tokens to burn
*/
struct PhysicalClaimSubmission {
uint56 instanceId;
uint16 count;
uint16 currentClaimCount;
uint8 variation;
bytes data;
bytes signature;
bytes32 message;
bytes32 nonce;
uint256 totalCost;
BurnToken[] burnTokens;
}
/**
* @notice a pointer to a `BurnItem` in a `BurnGroup` used in calls to `burnRedeem`
* @param groupIndex the index of the `BurnGroup` in `PhysicalClaim.burnSet`
* @param itemIndex the index of the `BurnItem` in `BurnGroup.items`
* @param contractAddress the address of the contract for the token
* @param id the token ID
* @param merkleProof the merkle proof for the token ID (only for MERKLE_TREE validation)
*/
struct BurnToken {
uint48 groupIndex;
uint48 itemIndex;
address contractAddress;
uint256 id;
bytes32[] merkleProof;
}
struct TokensUsedQuery {
uint256 instanceId;
address[] contractAddresses;
uint256[] tokenIds;
}
/**
* @notice get a physical claim corresponding to an instanceId
* @param instanceId the instanceId of the physical claim
* @return PhysicalClaim the physical claim object
*/
function getPhysicalClaim(uint256 instanceId) external view returns(PhysicalClaimView memory);
/**
* @notice gets the number of redemptions for a physical claim for a given redeemer
* @param instanceId the instanceId of the physical claim
* @return redeemer the address who redeemed
*/
function getRedemptions(uint256 instanceId, address redeemer) external view returns(uint256);
/**
* @notice gets the redemption state for a physical claim for a given variation
* @param instanceId the instanceId of the physical claim
* @param variation the variation
* @return VariationState the max and available for the variation
*/
function getVariationState(uint256 instanceId, uint8 variation) external view returns(VariationState memory);
/**
* @notice gets the redemption state for a tokenId/contractAddress on an instance
* @param tokensUsedQuery the query for instance id and list of tokenIds and contracts
* @return bool[] true/false for each tokenId/contractAddress pair
*/
function getAreTokensUsed(TokensUsedQuery calldata tokensUsedQuery) external view returns(bool[] memory);
/**
* @notice burn tokens and physical claims multiple times in a single transaction
* @param submissions the submissions for the physical claims
*/
function burnRedeem(PhysicalClaimSubmission[] calldata submissions) external payable;
/**
* @notice recover a token that was sent to the contract without safeTransferFrom
* @param tokenAddress the address of the token contract
* @param tokenId the id of the token
* @param destination the address to send the token to
*/
function recover(address tokenAddress, uint256 tokenId, address destination) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface Burnable721 {
function burn(uint256 tokenId) external;
}
interface OZBurnable1155 {
function burn(address account, uint256 id, uint256 value) external;
}
interface Manifold1155 {
function burn(address account, uint256[] memory tokenIds, uint256[] memory amounts) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "@manifoldxyz/creator-core-solidity/contracts/core/IERC721CreatorCore.sol";
import "./PhysicalClaimCore.sol";
import "./PhysicalClaimLib.sol";
import "./IPhysicalClaim.sol";
// Let's get Physical 💋
contract PhysicalClaim is PhysicalClaimCore, IPhysicalClaim {
using Strings for uint256;
constructor(address initialOwner) PhysicalClaimCore(initialOwner) {}
function supportsInterface(bytes4 interfaceId) public view virtual override(PhysicalClaimCore, IERC165) returns (bool) {
return interfaceId == type(IPhysicalClaim).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev See {IPhysicalClaim-initializePhysicalClaim}.
*/
function initializePhysicalClaim(
uint256 instanceId,
PhysicalClaimParameters calldata physicalClaimParameters
) external {
// Max uint56 for instanceId
if (instanceId == 0 || instanceId > MAX_UINT_56) {
revert InvalidInput();
}
_initialize(instanceId, physicalClaimParameters);
}
/**
* @dev See {IPhysicalClaim-updatePhysicalClaim}.
*/
function updatePhysicalClaim(
uint256 instanceId,
PhysicalClaimParameters calldata physicalClaimParameters
) external {
_validateAdmin(instanceId);
_update(instanceId, physicalClaimParameters);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@manifoldxyz/libraries-solidity/contracts/access/AdminControl.sol";
import "@manifoldxyz/libraries-solidity/contracts/access/IAdminControl.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "./PhysicalClaimLib.sol";
import "./IPhysicalClaimCore.sol";
import "./Interfaces.sol";
/**
* @title Physical Claim Core
* @author manifold.xyz
* @notice Core logic for Physical Claim shared extensions.
*/
abstract contract PhysicalClaimCore is ERC165, AdminControl, ReentrancyGuard, IPhysicalClaimCore {
using Strings for uint256;
using ECDSA for bytes32;
uint256 internal constant MAX_UINT_16 = 0xffff;
uint256 internal constant MAX_UINT_56 = 0xffffffffffffff;
bool public deprecated;
// { instanceId => PhysicalClaim }
mapping(uint256 => PhysicalClaim) internal _physicalClaims;
// { instanceId => creator } -> TODO: make it so multiple people can administer a physical claim
mapping(uint256 => address) internal _physicalClaimCreator;
// { instanceId => { redeemer => uint256 } }
mapping(uint256 => mapping(address => uint256)) internal _redemptionCounts;
// { instanceId => nonce => t/f }
mapping(uint256 => mapping(bytes32 => bool)) internal _usedMessages;
// { instanceId => { contractAddress => { tokenId => t/f }}
// Track used tokens for a given instannceId
mapping(uint256 => mapping(address => mapping(uint256 => bool))) internal _usedTokens;
constructor(address initialOwner) {
_transferOwnership(initialOwner);
}
function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165, AdminControl) returns (bool) {
return interfaceId == type(IPhysicalClaimCore).interfaceId ||
interfaceId == type(IERC721Receiver).interfaceId ||
interfaceId == type(IERC1155Receiver).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* Admin function to deprecate the contract
*/
function deprecate(bool _deprecated) external adminRequired {
deprecated = _deprecated;
}
/**
* Initialiazes a physical claim with base parameters
*/
function _initialize(
uint256 instanceId,
PhysicalClaimParameters calldata physicalClaimParameters
) internal {
if (deprecated) {
revert ContractDeprecated();
}
if (_physicalClaimCreator[instanceId] != address(0)) {
revert InvalidInstance();
}
_physicalClaimCreator[instanceId] = msg.sender;
PhysicalClaimLib.initialize(instanceId, _physicalClaims[instanceId], physicalClaimParameters);
}
/**
* Updates a physical claim with base parameters
*/
function _update(
uint256 instanceId,
PhysicalClaimParameters calldata physicalClaimParameters
) internal {
PhysicalClaimLib.update(instanceId, _getPhysicalClaim(instanceId), physicalClaimParameters);
}
/**
* Validates that this physical claim is managed by the user
*/
function _validateAdmin(
uint256 instanceId
) internal view {
require(_physicalClaimCreator[instanceId] == msg.sender, "Must be admin");
}
/**
* See {IPhysicalClaimCore-getPhysicalClaim}.
*/
function getPhysicalClaim(uint256 instanceId) external override view returns(PhysicalClaimView memory) {
PhysicalClaim storage physicalClaimInstance = _getPhysicalClaim(instanceId);
VariationState[] memory variationStates = new VariationState[](physicalClaimInstance.variationIds.length);
for (uint256 i; i < physicalClaimInstance.variationIds.length;) {
variationStates[i] = physicalClaimInstance.variations[physicalClaimInstance.variationIds[i]];
unchecked { ++i; }
}
return PhysicalClaimView({
paymentReceiver: physicalClaimInstance.paymentReceiver,
redeemedCount: physicalClaimInstance.redeemedCount,
totalSupply: physicalClaimInstance.totalSupply,
startDate: physicalClaimInstance.startDate,
endDate: physicalClaimInstance.endDate,
signer: physicalClaimInstance.signer,
burnSet: physicalClaimInstance.burnSet,
variationStates: variationStates
});
}
/**
* See {IPhysicalClaimCore-getPhysicalClaim}.
*/
function getRedemptions(uint256 instanceId, address redeemer) external override view returns(uint256) {
return _redemptionCounts[instanceId][redeemer];
}
/**
* See {IPhysicalClaimCore-getVariationState}.
*/
function getVariationState(uint256 instanceId, uint8 variation) external override view returns(VariationState memory) {
return _getPhysicalClaim(instanceId).variations[variation];
}
function getAreTokensUsed(TokensUsedQuery calldata tokensUsedQuery) external override view returns(bool[] memory results) {
results = new bool[](tokensUsedQuery.tokenIds.length);
for (uint i = 0; i < results.length; i++) {
address contractAddress = tokensUsedQuery.contractAddresses[i];
uint256 tokenId = tokensUsedQuery.tokenIds[i];
results[i] = _usedTokens[tokensUsedQuery.instanceId][contractAddress][tokenId];
}
}
/**
* Helper to get physical claim instance
*/
function _getPhysicalClaim(uint256 instanceId) internal view returns(PhysicalClaim storage physicalClaimInstance) {
physicalClaimInstance = _physicalClaims[instanceId];
if (physicalClaimInstance.paymentReceiver == address(0)) {
revert InvalidInstance();
}
}
/**
* (Batch overload) see {IPhysicalClaimCore-burnRedeem}.
*/
function burnRedeem(PhysicalClaimSubmission[] calldata submissions) external payable override nonReentrant {
if (submissions.length == 0) revert InvalidInput();
uint256 msgValueRemaining = msg.value;
for (uint256 i; i < submissions.length;) {
PhysicalClaimSubmission memory currentSub = submissions[i];
uint256 instanceId = currentSub.instanceId;
// The expectedCount must match the user's current redemption count to enforce idempotency
if (currentSub.currentClaimCount != _redemptionCounts[instanceId][msg.sender]) revert InvalidInput();
uint256 totalCost = currentSub.totalCost;
// Check that we have enough funds for the redemption
if (totalCost > 0) {
if (msgValueRemaining < totalCost) {
revert InvalidPaymentAmount();
}
msgValueRemaining -= totalCost;
}
_burnRedeem(currentSub);
unchecked { ++i; }
}
}
function _burnRedeem(PhysicalClaimSubmission memory submission) private {
uint56 instanceId = submission.instanceId;
PhysicalClaim storage physicalClaimInstance = _getPhysicalClaim(instanceId);
// Get the amount that can be burned
uint16 physicalClaimCount = _getAvailablePhysicalClaimCount(physicalClaimInstance, submission.variation, submission.count);
// Signer being set means that the physical claim is a paid claim
if (physicalClaimInstance.signer != address(0)) {
// Check that the message value is what was signed...
_checkPriceSignature(instanceId, submission.signature, submission.message, submission.nonce, physicalClaimInstance.signer, submission.totalCost);
_forwardValue(physicalClaimInstance.paymentReceiver, submission.totalCost);
}
// Do physical claim
_burnTokens(instanceId, physicalClaimInstance, submission.burnTokens, physicalClaimCount, msg.sender, submission.data);
_redeem(instanceId, physicalClaimInstance, msg.sender, submission.variation, physicalClaimCount, submission.data);
}
function _checkPriceSignature(uint56 instanceId, bytes memory signature, bytes32 message, bytes32 nonce, address signingAddress, uint256 cost) internal {
// Verify valid message based on input variables
bytes32 expectedMessage = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", instanceId, cost));
// Verify nonce usage/re-use
require(!_usedMessages[instanceId][nonce], "Cannot replay transaction");
address signer = message.recover(signature);
if (message != expectedMessage || signer != signingAddress) revert InvalidSignature();
_usedMessages[instanceId][nonce] = true;
}
/**
* @dev See {IPhysicalClaimCore-recover}.
*/
function recover(address tokenAddress, uint256 tokenId, address destination) external override adminRequired {
IERC721(tokenAddress).transferFrom(address(this), destination, tokenId);
}
/**
* @dev See {IERC721Receiver-onReceived}.
*/
function onERC721Received(
address,
address from,
uint256 id,
bytes calldata data
) external override nonReentrant returns(bytes4) {
// Check calldata is valid
if (data.length % 32 != 0) {
revert InvalidData();
}
uint56 instanceId;
uint256 burnItemIndex;
bytes32[] memory merkleProof;
uint8 variation;
(instanceId, burnItemIndex, merkleProof, variation) = abi.decode(data, (uint56, uint256, bytes32[], uint8));
_onERC721Received(from, id, instanceId, burnItemIndex, merkleProof, variation);
return this.onERC721Received.selector;
}
/**
* @notice token transfer callback
*/
function _onERC721Received(
address from,
uint256 tokenId,
uint56 instanceId,
uint256 burnItemIndex,
bytes32[] memory merkleProof,
uint8 variation
) private {
PhysicalClaim storage physicalClaimInstance = _getPhysicalClaim(instanceId);
// Note: since safeTransferFrom can't take funds, we are restricted to non-signature mints
if (physicalClaimInstance.signer != address(0)) revert InvalidInput();
// A single can only be sent in directly for a burn if:
// 1. There is no cost to the burn (because no payment can be sent with a transfer)
// 2. The burn only requires one NFT (one burnSet element and one count)
_validateReceivedInput(physicalClaimInstance.burnSet.length, physicalClaimInstance.burnSet[0].requiredCount);
// Validate we have remaining amounts available (will revert if not)
_getAvailablePhysicalClaimCount(physicalClaimInstance, variation, 1);
// Check that the burn token is valid
BurnItem memory burnItem = physicalClaimInstance.burnSet[0].items[burnItemIndex];
// Can only take in one burn item
if (burnItem.burnTokenSpec != BurnTokenSpec.ERC721) {
revert InvalidInput();
}
PhysicalClaimLib.validateBurnItem(burnItem, msg.sender, tokenId, merkleProof);
// Do burn and redeem
_burn(instanceId, burnItem, address(this), msg.sender, tokenId, 1, "");
_redeem(instanceId, physicalClaimInstance, from, variation, 1, "");
}
/**
* @dev See {IERC1155Receiver-onERC1155Received}.
*/
function onERC1155Received(
address,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external override nonReentrant returns(bytes4) {
// Check calldata is valid
if (data.length % 32 != 0) {
revert InvalidData();
}
uint56 instanceId;
uint16 burnRedeemCount;
uint256 burnItemIndex;
bytes32[] memory merkleProof;
uint8 variation;
(instanceId, burnRedeemCount, burnItemIndex, merkleProof, variation) = abi.decode(data, (uint56, uint16, uint256, bytes32[], uint8));
// Do burn redeem
_onERC1155Received(from, id, value, instanceId, burnRedeemCount, burnItemIndex, merkleProof, variation);
return this.onERC1155Received.selector;
}
/**
* Execute onERC1155Received burn/redeem
*/
function _onERC1155Received(address from, uint256 tokenId, uint256 value, uint56 instanceId, uint16 burnRedeemCount, uint256 burnItemIndex, bytes32[] memory merkleProof, uint8 variation) private {
PhysicalClaim storage physicalClaimInstance = _getPhysicalClaim(instanceId);
// Note: since safeTransferFrom can't take funds, we are restricted to non-signature mints
if (physicalClaimInstance.signer != address(0)) revert InvalidInput();
// A single 1155 can only be sent in directly for a burn if:
// 1. The burn only requires one NFT (one burn set element and one required count in the set)
// 2. They are an active member (because no fee payment can be sent with a transfer)
_validateReceivedInput(physicalClaimInstance.burnSet.length, physicalClaimInstance.burnSet[0].requiredCount);
uint16 availableBurnRedeemCount = _getAvailablePhysicalClaimCount(physicalClaimInstance, variation, burnRedeemCount);
// Check that the burn token is valid
BurnItem memory burnItem = physicalClaimInstance.burnSet[0].items[burnItemIndex];
if (value != burnItem.amount * burnRedeemCount) {
revert InvalidBurnAmount();
}
PhysicalClaimLib.validateBurnItem(burnItem, msg.sender, tokenId, merkleProof);
// Do burn and redeem
_burn(instanceId, burnItem, address(this), msg.sender, tokenId, availableBurnRedeemCount, "");
_redeem(instanceId, physicalClaimInstance, from, variation, availableBurnRedeemCount, "");
// Return excess amount
if (availableBurnRedeemCount != burnRedeemCount) {
IERC1155(msg.sender).safeTransferFrom(address(this), from, tokenId, (burnRedeemCount - availableBurnRedeemCount) * burnItem.amount, "");
}
}
/**
* @dev See {IERC1155Receiver-onERC1155BatchReceived}.
*/
function onERC1155BatchReceived(
address,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external override nonReentrant returns(bytes4) {
// Do not support batch burning right now
revert InvalidInput();
}
function _validateReceivedInput(uint256 length, uint256 requiredCount) private pure {
if (length != 1 || requiredCount != 1) {
revert InvalidInput();
}
}
/**
* Send funds to receiver
*/
function _forwardValue(address payable receiver, uint256 amount) private {
(bool sent, ) = receiver.call{value: amount}("");
if (!sent) {
revert TransferFailure();
}
}
/**
* Burn all listed tokens and check that the burn set is satisfied
*/
function _burnTokens(uint56 instanceId, PhysicalClaim storage burnRedeemInstance, BurnToken[] memory burnTokens, uint256 burnRedeemCount, address owner, bytes memory data) private {
// Check that each group in the burn set is satisfied
uint256[] memory groupCounts = new uint256[](burnRedeemInstance.burnSet.length);
for (uint256 i; i < burnTokens.length;) {
BurnToken memory burnToken = burnTokens[i];
BurnItem memory burnItem = burnRedeemInstance.burnSet[burnToken.groupIndex].items[burnToken.itemIndex];
PhysicalClaimLib.validateBurnItem(burnItem, burnToken.contractAddress, burnToken.id, burnToken.merkleProof);
_burn(instanceId, burnItem, owner, burnToken.contractAddress, burnToken.id, burnRedeemCount, data);
groupCounts[burnToken.groupIndex] += burnRedeemCount;
unchecked { ++i; }
}
for (uint256 i; i < groupCounts.length;) {
if (groupCounts[i] != burnRedeemInstance.burnSet[i].requiredCount * burnRedeemCount) {
revert InvalidBurnAmount();
}
unchecked { ++i; }
}
}
/**
* Helper to get the number of burn redeems the person can accomplish
*/
function _getAvailablePhysicalClaimCount(PhysicalClaim storage instance, uint8 variation, uint16 count) internal view returns(uint16 burnRedeemCount) {
uint16 remainingTotalCount;
if (instance.totalSupply == 0) {
// If totalSupply is 0, it means unlimited redemptions
remainingTotalCount = count;
} else {
// Get the remaining total redemptions
remainingTotalCount = (instance.totalSupply - instance.redeemedCount);
}
// Get the max redemptions for this variation
VariationState memory variationState = instance.variations[variation];
if (!variationState.active) revert InvalidVariation();
uint16 variationRemainingCount;
if (variationState.totalSupply == 0) {
// If totalSupply of variation is 0, it means unlimited available
variationRemainingCount = count;
} else {
// Get the remaining variation redemptions
variationRemainingCount = (variationState.totalSupply - variationState.redeemedCount);
}
// Use whichever is lesser...
uint16 comparator = remainingTotalCount > variationRemainingCount ? variationRemainingCount : remainingTotalCount;
// Use the lesser of what's available or the desired count
if (comparator > count) {
burnRedeemCount = count;
} else {
burnRedeemCount = comparator;
}
// No more remaining
if (burnRedeemCount == 0) revert InvalidRedeemAmount();
}
/**
* Helper to burn token
*/
function _burn(uint56 instanceId, BurnItem memory burnItem, address from, address contractAddress, uint256 tokenId, uint256 burnRedeemCount, bytes memory data) private {
if (burnItem.burnTokenSpec == BurnTokenSpec.ERC1155) {
uint256 amount = burnItem.amount * burnRedeemCount;
if (burnItem.burnFunctionSpec == BurnFunctionSpec.NONE) {
// Send to 0xdEaD to burn if contract doesn't have burn function
IERC1155(contractAddress).safeTransferFrom(from, address(0xdEaD), tokenId, amount, data);
} else if (burnItem.burnFunctionSpec == BurnFunctionSpec.MANIFOLD) {
// Burn using the creator core's burn function
uint256[] memory tokenIds = new uint256[](1);
tokenIds[0] = tokenId;
uint256[] memory amounts = new uint256[](1);
amounts[0] = amount;
Manifold1155(contractAddress).burn(from, tokenIds, amounts);
} else if (burnItem.burnFunctionSpec == BurnFunctionSpec.OPENZEPPELIN) {
// Burn using OpenZeppelin's burn function
OZBurnable1155(contractAddress).burn(from, tokenId, amount);
} else {
revert InvalidBurnFunctionSpec();
}
} else if (burnItem.burnTokenSpec == BurnTokenSpec.ERC721) {
if (burnRedeemCount != 1) {
revert InvalidBurnAmount();
}
if (burnItem.burnFunctionSpec == BurnFunctionSpec.NONE) {
// Send to 0xdEaD to burn if contract doesn't have burn function
IERC721(contractAddress).safeTransferFrom(from, address(0xdEaD), tokenId, data);
} else if (burnItem.burnFunctionSpec == BurnFunctionSpec.MANIFOLD || burnItem.burnFunctionSpec == BurnFunctionSpec.OPENZEPPELIN) {
if (from != address(this)) {
// 721 `burn` functions do not have a `from` parameter, so we must verify the owner
if (IERC721(contractAddress).ownerOf(tokenId) != from) {
revert TransferFailure();
}
}
// Burn using the contract's burn function
Burnable721(contractAddress).burn(tokenId);
} else {
revert InvalidBurnFunctionSpec();
}
} else if (burnItem.burnTokenSpec == BurnTokenSpec.ERC721_NO_BURN) {
if (burnRedeemCount != 1) {
revert InvalidBurnAmount();
}
if (_usedTokens[instanceId][contractAddress][tokenId]) {
revert InvalidBurnAmount();
}
if (IERC721(contractAddress).ownerOf(tokenId) != from) {
revert InvalidBurnAmount();
}
_usedTokens[instanceId][contractAddress][tokenId] = true;
emit PhysicalClaimLib.PhysicalClaimTokenConsumed(instanceId, tokenId, contractAddress);
} else {
revert InvalidBurnTokenSpec();
}
}
/**
* Helper to redeem multiple redeem
*/
function _redeem(uint256 instanceId, PhysicalClaim storage physicalClaimInstance, address to, uint8 variation, uint16 count, bytes memory data) internal {
uint256 totalCount = count;
if (totalCount > MAX_UINT_16) {
revert InvalidInput();
}
physicalClaimInstance.redeemedCount += uint16(totalCount);
physicalClaimInstance.variations[variation].redeemedCount += count;
_redemptionCounts[instanceId][to] += count;
emit PhysicalClaimLib.PhysicalClaimRedemption(instanceId, variation, count, data);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "./IPhysicalClaimCore.sol";
/**
* @title Physical Claim Lib
* @author manifold.xyz
* @notice Library for Physical Claim shared extensions.
*/
library PhysicalClaimLib {
event PhysicalClaimInitialized(uint256 indexed instanceId, address initializer);
event PhysicalClaimUpdated(uint256 indexed instanceId);
event PhysicalClaimRedemption(uint256 indexed instanceId, uint8 indexed variation, uint32 count, bytes data);
event PhysicalClaimTokenConsumed(uint256 indexed instanceId, uint256 tokenId, address contractAddress);
error PhysicalClaimAlreadyInitialized();
error InvalidBurnItem();
error InvalidBurnToken();
error InvalidMerkleProof();
error InvalidStorageProtocol();
error InvalidPaymentReceiver();
error InvalidDates();
error InvalidInput();
/**
* Initialiazes a burn redeem with base parameters
*/
function initialize(
uint256 instanceId,
IPhysicalClaimCore.PhysicalClaim storage physicalClaimInstance,
IPhysicalClaimCore.PhysicalClaimParameters calldata physicalClaimParameters
) public {
_validateParameters(physicalClaimParameters);
// Create the physical claim
_setParameters(physicalClaimInstance, physicalClaimParameters);
_setBurnGroups(physicalClaimInstance, physicalClaimParameters.burnSet);
emit PhysicalClaimInitialized(instanceId, msg.sender);
}
/**
* Updates a physical claim with base parameters
*/
function update(
uint256 instanceId,
IPhysicalClaimCore.PhysicalClaim storage physicalClaimInstance,
IPhysicalClaimCore.PhysicalClaimParameters calldata physicalClaimParameters
) public {
_validateParameters(physicalClaimParameters);
// Overwrite the existing burnRedeem
_setParameters(physicalClaimInstance, physicalClaimParameters);
_setBurnGroups(physicalClaimInstance, physicalClaimParameters.burnSet);
syncTotalSupply(physicalClaimInstance);
emit PhysicalClaimUpdated(instanceId);
}
/**
* Helper to update total supply if redeemedCount exceeds totalSupply after airdrop or instance update.
*/
function syncTotalSupply(IPhysicalClaimCore.PhysicalClaim storage physicalClaimInstance) public {
if (
physicalClaimInstance.totalSupply != 0 &&
physicalClaimInstance.redeemedCount > physicalClaimInstance.totalSupply
) {
physicalClaimInstance.totalSupply = physicalClaimInstance.redeemedCount;
}
}
/*
* Helper to validate burn item
*/
function validateBurnItem(IPhysicalClaimCore.BurnItem memory burnItem, address contractAddress, uint256 tokenId, bytes32[] memory merkleProof) public pure {
if (burnItem.validationType == IPhysicalClaimCore.ValidationType.ANY) {
return;
}
if (contractAddress != burnItem.contractAddress) {
revert InvalidBurnToken();
}
if (burnItem.validationType == IPhysicalClaimCore.ValidationType.CONTRACT) {
return;
} else if (burnItem.validationType == IPhysicalClaimCore.ValidationType.RANGE) {
if (tokenId < burnItem.minTokenId || tokenId > burnItem.maxTokenId) {
revert IPhysicalClaimCore.InvalidToken(tokenId);
}
return;
} else if (burnItem.validationType == IPhysicalClaimCore.ValidationType.MERKLE_TREE) {
bytes32 leaf = keccak256(abi.encodePacked(tokenId));
if (!MerkleProof.verify(merkleProof, burnItem.merkleRoot, leaf)) {
revert InvalidMerkleProof();
}
return;
}
revert InvalidBurnItem();
}
/**
* Helper to validate the parameters for a physical claim
*/
function _validateParameters(IPhysicalClaimCore.PhysicalClaimParameters calldata physicalClaimParameters) internal pure {
if (physicalClaimParameters.paymentReceiver == address(0)) {
revert InvalidPaymentReceiver();
}
if (physicalClaimParameters.endDate != 0 && physicalClaimParameters.startDate >= physicalClaimParameters.endDate) {
revert InvalidDates();
}
}
/**
* Helper to set top level properties for a physical claim
*/
function _setParameters(IPhysicalClaimCore.PhysicalClaim storage physicalClaimInstance, IPhysicalClaimCore.PhysicalClaimParameters calldata physicalClaimParameters) private {
physicalClaimInstance.startDate = physicalClaimParameters.startDate;
physicalClaimInstance.endDate = physicalClaimParameters.endDate;
physicalClaimInstance.totalSupply = physicalClaimParameters.totalSupply;
physicalClaimInstance.paymentReceiver = physicalClaimParameters.paymentReceiver;
physicalClaimInstance.signer = physicalClaimParameters.signer;
uint8[] memory currentVariationIds = physicalClaimInstance.variationIds;
for (uint256 i; i < currentVariationIds.length;) {
physicalClaimInstance.variations[currentVariationIds[i]].active = false;
unchecked { ++i; }
}
physicalClaimInstance.variationIds = new uint8[](physicalClaimParameters.variationLimits.length);
for (uint256 i; i < physicalClaimParameters.variationLimits.length;) {
IPhysicalClaimCore.VariationLimit memory variationLimit = physicalClaimParameters.variationLimits[i];
IPhysicalClaimCore.VariationState storage variationState = physicalClaimInstance.variations[variationLimit.id];
variationState.active = true;
physicalClaimInstance.variationIds[i] = variationLimit.id;
// Set the totalSupply. If params specify 0, we use 0, otherwise it's the max of the current redeemCount and the param's totalSupply
variationState.totalSupply = variationLimit.totalSupply == 0 ? 0 : (variationState.redeemedCount > variationLimit.totalSupply ? variationState.redeemedCount : variationLimit.totalSupply);
unchecked { ++i; }
}
}
/**
* Helper to set the burn groups for a physical claim
*/
function _setBurnGroups(IPhysicalClaimCore.PhysicalClaim storage physicalClaimInstance, IPhysicalClaimCore.BurnGroup[] calldata burnGroups) private {
delete physicalClaimInstance.burnSet;
for (uint256 i; i < burnGroups.length;) {
physicalClaimInstance.burnSet.push();
IPhysicalClaimCore.BurnGroup storage burnGroup = physicalClaimInstance.burnSet[i];
if (burnGroups[i].requiredCount == 0 || burnGroups[i].requiredCount > burnGroups[i].items.length) {
revert InvalidInput();
}
burnGroup.requiredCount = burnGroups[i].requiredCount;
for (uint256 j; j < burnGroups[i].items.length;) {
// IPhysicalClaimCore.BurnItem memory burnItem = burnGroups[i].items[j];
// uint256 amount = burnItem.amount;
burnGroup.items.push(burnGroups[i].items[j]);
unchecked { ++j; }
}
unchecked { ++i; }
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
{
"compilationTarget": {
"contracts/physicalclaim/PhysicalClaim.sol": "PhysicalClaim"
},
"evmVersion": "london",
"libraries": {
"contracts/physicalclaim/PhysicalClaimLib.sol:PhysicalClaimLib": "0xc5bf0d8fd1e86d05b35a8f76c7ec8dd24c651251"
},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 1000
},
"remappings": [
":@ensdomains/=node_modules/@ensdomains/",
":@manifoldxyz/=node_modules/@manifoldxyz/",
":@openzeppelin/=node_modules/@openzeppelin/",
":create2-helpers/=lib/create2-helpers/src/",
":create2-scripts/=lib/create2-helpers/script/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/operator-filter-registry/lib/openzeppelin-contracts/lib/erc4626-tests/",
":eth-gas-reporter/=node_modules/eth-gas-reporter/",
":forge-std/=lib/forge-std/src/",
":hardhat/=node_modules/hardhat/",
":murky/=lib/murky/src/",
":openzeppelin-contracts-upgradeable/=lib/operator-filter-registry/lib/openzeppelin-contracts-upgradeable/",
":openzeppelin-contracts/=lib/murky/lib/openzeppelin-contracts/",
":operator-filter-registry/=node_modules/operator-filter-registry/",
":truffle/=node_modules/truffle/",
"lib/forge-std:ds-test/=lib/forge-std/lib/ds-test/src/",
"lib/murky:ds-test/=lib/murky/lib/forge-std/lib/ds-test/src/",
"lib/murky:forge-std/=lib/murky/lib/forge-std/src/",
"lib/murky:openzeppelin-contracts/=lib/murky/lib/openzeppelin-contracts/",
"lib/operator-filter-registry:ds-test/=lib/operator-filter-registry/lib/forge-std/lib/ds-test/src/",
"lib/operator-filter-registry:erc4626-tests/=lib/operator-filter-registry/lib/openzeppelin-contracts/lib/erc4626-tests/",
"lib/operator-filter-registry:forge-std/=lib/operator-filter-registry/lib/forge-std/src/",
"lib/operator-filter-registry:openzeppelin-contracts-upgradeable/=lib/operator-filter-registry/lib/openzeppelin-contracts-upgradeable/contracts/",
"lib/operator-filter-registry:openzeppelin-contracts/=lib/operator-filter-registry/lib/openzeppelin-contracts/contracts/"
]
}
[{"inputs":[{"internalType":"address","name":"initialOwner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ContractDeprecated","type":"error"},{"inputs":[],"name":"InvalidBurnAmount","type":"error"},{"inputs":[],"name":"InvalidBurnFunctionSpec","type":"error"},{"inputs":[],"name":"InvalidBurnTokenSpec","type":"error"},{"inputs":[],"name":"InvalidData","type":"error"},{"inputs":[],"name":"InvalidInput","type":"error"},{"inputs":[],"name":"InvalidInstance","type":"error"},{"inputs":[],"name":"InvalidPaymentAmount","type":"error"},{"inputs":[],"name":"InvalidRedeemAmount","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"InvalidToken","type":"error"},{"inputs":[],"name":"InvalidVariation","type":"error"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"PhysicalClaimDoesNotExist","type":"error"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"PhysicalClaimInactive","type":"error"},{"inputs":[],"name":"TransferFailure","type":"error"},{"inputs":[],"name":"UnsupportedContractVersion","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"AdminApproved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"AdminRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[{"internalType":"address","name":"admin","type":"address"}],"name":"approveAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint56","name":"instanceId","type":"uint56"},{"internalType":"uint16","name":"count","type":"uint16"},{"internalType":"uint16","name":"currentClaimCount","type":"uint16"},{"internalType":"uint8","name":"variation","type":"uint8"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"bytes32","name":"message","type":"bytes32"},{"internalType":"bytes32","name":"nonce","type":"bytes32"},{"internalType":"uint256","name":"totalCost","type":"uint256"},{"components":[{"internalType":"uint48","name":"groupIndex","type":"uint48"},{"internalType":"uint48","name":"itemIndex","type":"uint48"},{"internalType":"address","name":"contractAddress","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"internalType":"struct IPhysicalClaimCore.BurnToken[]","name":"burnTokens","type":"tuple[]"}],"internalType":"struct IPhysicalClaimCore.PhysicalClaimSubmission[]","name":"submissions","type":"tuple[]"}],"name":"burnRedeem","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bool","name":"_deprecated","type":"bool"}],"name":"deprecate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"deprecated","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAdmins","outputs":[{"internalType":"address[]","name":"admins","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"instanceId","type":"uint256"},{"internalType":"address[]","name":"contractAddresses","type":"address[]"},{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"}],"internalType":"struct IPhysicalClaimCore.TokensUsedQuery","name":"tokensUsedQuery","type":"tuple"}],"name":"getAreTokensUsed","outputs":[{"internalType":"bool[]","name":"results","type":"bool[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"instanceId","type":"uint256"}],"name":"getPhysicalClaim","outputs":[{"components":[{"internalType":"address payable","name":"paymentReceiver","type":"address"},{"internalType":"uint16","name":"redeemedCount","type":"uint16"},{"internalType":"uint16","name":"totalSupply","type":"uint16"},{"internalType":"uint48","name":"startDate","type":"uint48"},{"internalType":"uint48","name":"endDate","type":"uint48"},{"internalType":"address","name":"signer","type":"address"},{"components":[{"internalType":"uint256","name":"requiredCount","type":"uint256"},{"components":[{"internalType":"enum IPhysicalClaimCore.ValidationType","name":"validationType","type":"uint8"},{"internalType":"address","name":"contractAddress","type":"address"},{"internalType":"enum IPhysicalClaimCore.BurnTokenSpec","name":"burnTokenSpec","type":"uint8"},{"internalType":"enum IPhysicalClaimCore.BurnFunctionSpec","name":"burnFunctionSpec","type":"uint8"},{"internalType":"uint72","name":"amount","type":"uint72"},{"internalType":"uint256","name":"minTokenId","type":"uint256"},{"internalType":"uint256","name":"maxTokenId","type":"uint256"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"internalType":"struct IPhysicalClaimCore.BurnItem[]","name":"items","type":"tuple[]"}],"internalType":"struct IPhysicalClaimCore.BurnGroup[]","name":"burnSet","type":"tuple[]"},{"components":[{"internalType":"uint16","name":"totalSupply","type":"uint16"},{"internalType":"uint16","name":"redeemedCount","type":"uint16"},{"internalType":"bool","name":"active","type":"bool"}],"internalType":"struct IPhysicalClaimCore.VariationState[]","name":"variationStates","type":"tuple[]"}],"internalType":"struct IPhysicalClaimCore.PhysicalClaimView","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"instanceId","type":"uint256"},{"internalType":"address","name":"redeemer","type":"address"}],"name":"getRedemptions","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"instanceId","type":"uint256"},{"internalType":"uint8","name":"variation","type":"uint8"}],"name":"getVariationState","outputs":[{"components":[{"internalType":"uint16","name":"totalSupply","type":"uint16"},{"internalType":"uint16","name":"redeemedCount","type":"uint16"},{"internalType":"bool","name":"active","type":"bool"}],"internalType":"struct IPhysicalClaimCore.VariationState","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"instanceId","type":"uint256"},{"components":[{"internalType":"address payable","name":"paymentReceiver","type":"address"},{"internalType":"uint16","name":"totalSupply","type":"uint16"},{"internalType":"uint48","name":"startDate","type":"uint48"},{"internalType":"uint48","name":"endDate","type":"uint48"},{"internalType":"address","name":"signer","type":"address"},{"components":[{"internalType":"uint256","name":"requiredCount","type":"uint256"},{"components":[{"internalType":"enum IPhysicalClaimCore.ValidationType","name":"validationType","type":"uint8"},{"internalType":"address","name":"contractAddress","type":"address"},{"internalType":"enum IPhysicalClaimCore.BurnTokenSpec","name":"burnTokenSpec","type":"uint8"},{"internalType":"enum IPhysicalClaimCore.BurnFunctionSpec","name":"burnFunctionSpec","type":"uint8"},{"internalType":"uint72","name":"amount","type":"uint72"},{"internalType":"uint256","name":"minTokenId","type":"uint256"},{"internalType":"uint256","name":"maxTokenId","type":"uint256"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"internalType":"struct IPhysicalClaimCore.BurnItem[]","name":"items","type":"tuple[]"}],"internalType":"struct IPhysicalClaimCore.BurnGroup[]","name":"burnSet","type":"tuple[]"},{"components":[{"internalType":"uint8","name":"id","type":"uint8"},{"internalType":"uint16","name":"totalSupply","type":"uint16"}],"internalType":"struct IPhysicalClaimCore.VariationLimit[]","name":"variationLimits","type":"tuple[]"}],"internalType":"struct IPhysicalClaimCore.PhysicalClaimParameters","name":"physicalClaimParameters","type":"tuple"}],"name":"initializePhysicalClaim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"admin","type":"address"}],"name":"isAdmin","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"onERC1155BatchReceived","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"onERC1155Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"destination","type":"address"}],"name":"recover","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"admin","type":"address"}],"name":"revokeAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"instanceId","type":"uint256"},{"components":[{"internalType":"address payable","name":"paymentReceiver","type":"address"},{"internalType":"uint16","name":"totalSupply","type":"uint16"},{"internalType":"uint48","name":"startDate","type":"uint48"},{"internalType":"uint48","name":"endDate","type":"uint48"},{"internalType":"address","name":"signer","type":"address"},{"components":[{"internalType":"uint256","name":"requiredCount","type":"uint256"},{"components":[{"internalType":"enum IPhysicalClaimCore.ValidationType","name":"validationType","type":"uint8"},{"internalType":"address","name":"contractAddress","type":"address"},{"internalType":"enum IPhysicalClaimCore.BurnTokenSpec","name":"burnTokenSpec","type":"uint8"},{"internalType":"enum IPhysicalClaimCore.BurnFunctionSpec","name":"burnFunctionSpec","type":"uint8"},{"internalType":"uint72","name":"amount","type":"uint72"},{"internalType":"uint256","name":"minTokenId","type":"uint256"},{"internalType":"uint256","name":"maxTokenId","type":"uint256"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"internalType":"struct IPhysicalClaimCore.BurnItem[]","name":"items","type":"tuple[]"}],"internalType":"struct IPhysicalClaimCore.BurnGroup[]","name":"burnSet","type":"tuple[]"},{"components":[{"internalType":"uint8","name":"id","type":"uint8"},{"internalType":"uint16","name":"totalSupply","type":"uint16"}],"internalType":"struct IPhysicalClaimCore.VariationLimit[]","name":"variationLimits","type":"tuple[]"}],"internalType":"struct IPhysicalClaimCore.PhysicalClaimParameters","name":"physicalClaimParameters","type":"tuple"}],"name":"updatePhysicalClaim","outputs":[],"stateMutability":"nonpayable","type":"function"}]