// SPDX-License-Identifier: MIT
// File: github/bitmark-inc/feralfile-exhibition-smart-contract/contracts/IFeralfileSaleData.sol
pragma solidity ^0.8.13;
interface IFeralfileSaleData {
struct RevenueShare {
address recipient;
uint256 bps;
}
struct SaleData {
uint256 price; // in wei
uint256 cost; // in wei
uint256 expiryTime;
address destination;
uint256[] tokenIds;
RevenueShare[][] revenueShares; // address and royalty bps (500 means 5%)
bool payByVaultContract; // get eth from vault contract, used by credit card pay that proxy by ITX
}
}
// File: @openzeppelin/contracts@4.9.3/utils/Context.sol
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// File: @openzeppelin/contracts@4.9.3/access/Ownable.sol
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File: @openzeppelin/contracts@4.9.3/utils/math/SignedMath.sol
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// File: @openzeppelin/contracts@4.9.3/utils/math/Math.sol
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// File: @openzeppelin/contracts@4.9.3/utils/Strings.sol
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// File: @openzeppelin/contracts@4.9.3/utils/cryptography/ECDSA.sol
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
// File: github/bitmark-inc/feralfile-exhibition-smart-contract/contracts/ECDSASigner.sol
pragma solidity ^0.8.13;
contract ECDSASigner is Ownable {
address private _signer;
constructor(address signer_) {
require(signer_ != address(0), "ECDSASign: signer_ is zero address");
_signer = signer_;
}
/// @notice isValidSignature validates a message by ecrecover to ensure
// it is signed by signer.
/// @param message_ - the raw message for signing
/// @param r_ - part of signature for validating parameters integrity
/// @param s_ - part of signature for validating parameters integrity
/// @param v_ - part of signature for validating parameters integrity
function isValidSignature(
bytes32 message_,
bytes32 r_,
bytes32 s_,
uint8 v_
) internal view returns (bool) {
address reqSigner = ECDSA.recover(
ECDSA.toEthSignedMessageHash(message_),
v_,
r_,
s_
);
return reqSigner == _signer;
}
/// @notice set the signer
/// @param signer_ - the address of signer
function setSigner(address signer_) external onlyOwner {
require(signer_ != address(0), "ECDSASign: signer_ is zero address");
_signer = signer_;
}
function signer() external view returns (address) {
return _signer;
}
}
// File: github/bitmark-inc/feralfile-exhibition-smart-contract/contracts/IFeralfileVault.sol
pragma solidity ^0.8.0;
interface IFeralfileVault is IFeralfileSaleData {
function payForSale(
bytes32 r_,
bytes32 s_,
uint8 v_,
SaleData calldata saleData_
) external;
function withdrawFund(uint256 weiAmount) external;
receive() external payable;
}
// File: github/bitmark-inc/feralfile-exhibition-smart-contract/contracts/FeralfileEnglishAuction.sol
pragma solidity ^0.8.13;
contract IFeralfileExhibitionV4 is IFeralfileSaleData {
function buyArtworks(
bytes32 r_,
bytes32 s_,
uint8 v_,
SaleData calldata saleData_
) external payable {}
}
contract FeralfileEnglishAuction is Ownable, IFeralfileSaleData, ECDSASigner {
struct Auction {
uint256 id;
uint256 startAt;
uint256 endAt;
uint256 extendDuration;
uint256 extendThreshold;
uint256 minIncreaseFactor;
uint256 minIncreaseAmount;
uint256 minPrice;
bool isSettled;
}
struct Bid {
address bidder;
uint256 amount;
bool fromFeralFile;
}
struct AuctionStatus {
Bid highestBid;
uint256 endAt;
bool isSettled;
}
mapping(uint256 => Auction) public auctions;
mapping(uint256 => Bid) public highestBids;
constructor(address signer_) ECDSASigner(signer_) {}
function renounceOwnership() public override onlyOwner {}
function ongoingAuction(uint256 id_) external view returns (bool) {
require(
auctions[id_].id > 0,
"FeralfileEnglishAuction: auction not found"
);
return
auctions[id_].startAt <= block.timestamp &&
auctions[id_].endAt > block.timestamp;
}
function registerAuctions(Auction[] calldata auctions_) external onlyOwner {
for (uint256 i = 0; i < auctions_.length; i++) {
Auction memory auction_ = auctions[auctions_[i].id];
require(
auction_.id == 0,
"FeralfileEnglishAuction: auction already exist"
);
require(
auctions_[i].id > 0,
"FeralfileEnglishAuction: invalid auction id"
);
require(
auctions_[i].startAt >= block.timestamp &&
auctions_[i].endAt > block.timestamp,
"FeralfileEnglishAuction: auction start time and end time should be in the future"
);
require(
auctions_[i].endAt > auctions_[i].startAt,
"FeralfileEnglishAuction: auction end time should be after start time"
);
require(
auctions_[i].minIncreaseFactor > 0,
"FeralfileEnglishAuction: auction min increase factor should be greater than 0"
);
require(
auctions_[i].minIncreaseAmount > 0,
"FeralfileEnglishAuction: auction min increase amount should be greater than 0"
);
require(
auctions_[i].minPrice > 0,
"FeralfileEnglishAuction: auction min price should be greater than 0"
);
auctions[auctions_[i].id] = auctions_[i];
}
}
function listAuctionStatus(
uint256[] memory auctionIDs_
) external view returns (AuctionStatus[] memory) {
AuctionStatus[] memory results = new AuctionStatus[](auctionIDs_.length);
for (uint i = 0; i < auctionIDs_.length; i++) {
Auction memory auction_ = auctions[auctionIDs_[i]];
results[i].highestBid = highestBids[auctionIDs_[i]];
results[i].endAt = auction_.endAt;
results[i].isSettled = auction_.isSettled;
}
return results;
}
function isValidNewBid(
uint256 auctionID_,
uint256 amount_
) external view returns (bool) {
Auction memory auction_ = auctions[auctionID_];
Bid memory highestBid_ = highestBids[auctionID_];
_validateNewBid(auction_, highestBid_, amount_);
return true;
}
function _validateNewBid(
Auction memory auction_,
Bid memory highestBid_,
uint256 amount_
) internal view {
// make sure the auction exist
require(auction_.id > 0, "FeralfileEnglishAuction: auction not found");
// check if auction is on going
require(
auction_.startAt <= block.timestamp &&
block.timestamp < auction_.endAt,
"FeralfileEnglishAuction: auction not started or ended"
);
// check if auction is not settled
require(
!auction_.isSettled,
"FeralfileEnglishAuction: auction already settled"
);
if (highestBid_.amount > 0) {
// check bidding amount follow the minimum increment
uint256 minIncreaseAmount_ = (highestBid_.amount *
auction_.minIncreaseFactor) / 100;
if (minIncreaseAmount_ < auction_.minIncreaseAmount) {
minIncreaseAmount_ = auction_.minIncreaseAmount;
}
require(
amount_ >= highestBid_.amount + minIncreaseAmount_,
"FeralfileEnglishAuction: bid amount should follow the minimum increment"
);
} else {
// check bidding amount follow the minimum price
require(
amount_ >= auction_.minPrice,
"FeralfileEnglishAuction: bid amount should be greater than minimum price"
);
}
}
function _placeBid(
uint256 auctionID_,
address bidder_,
uint256 amount_,
bool fromFeralFile_
) private {
Auction memory auction_ = auctions[auctionID_];
Bid memory highestBid_ = highestBids[auctionID_];
// verify the bid is valid
_validateNewBid(auction_, highestBid_, amount_);
// replace the new bid to bid map
highestBids[auctionID_] = Bid({
bidder: bidder_,
amount: amount_,
fromFeralFile: fromFeralFile_
});
// if the gap to end time is lower than threshold, update the auction end time to block.timestamp + extend duration
if (auction_.endAt - block.timestamp <= auction_.extendThreshold) {
auctions[auctionID_].endAt =
block.timestamp +
auction_.extendDuration;
}
// transfer last winning bid amount to last bidder if fromFeralFile is false
if (!highestBid_.fromFeralFile && highestBid_.amount > 0) {
payable(highestBid_.bidder).transfer(highestBid_.amount);
}
// emit new bid event
emit NewBid(auctionID_, bidder_, amount_, fromFeralFile_);
}
function placeBid(uint256 auctionID_) external payable {
_placeBid(auctionID_, msg.sender, msg.value, false);
}
function placeSignedBid(
uint256 auctionID_,
address bidder_,
uint256 amount_,
uint256 expiryTime_,
bytes32 r_,
bytes32 s_,
uint8 v_
) external {
require(
expiryTime_ > block.timestamp,
"FeralfileEnglishAuction: signature is expired"
);
bytes32 message_ = keccak256(
abi.encode(
block.chainid,
address(this),
auctionID_,
bidder_,
amount_,
expiryTime_
)
);
require(
isValidSignature(message_, r_, s_, v_),
"FeralfileEnglishAuction: invalid signature"
);
_placeBid(auctionID_, bidder_, amount_, true);
}
function settleAuction(
uint256 auctionID_,
address tokenAddr_,
address vaultAddr_,
SaleData memory saleData_,
bytes32 r_,
bytes32 s_,
uint8 v_
) external onlyOwner {
require(
saleData_.payByVaultContract,
"FeralfileEnglishAuction: saleData.payByVaultContract should be true"
);
Bid memory highestBid_ = highestBids[auctionID_];
require(
saleData_.destination == highestBid_.bidder,
"FeralfileEnglishAuction: saleData_.destination is different from highest bid bidder"
);
Auction memory auction_ = auctions[auctionID_];
_settleAuctionFund(auction_, highestBid_, vaultAddr_);
IFeralfileExhibitionV4(tokenAddr_).buyArtworks(r_, s_, v_, saleData_);
emit AuctionSettled(
auctionID_,
tokenAddr_,
highestBid_.bidder,
highestBid_.amount
);
}
function settleAuctionFund(
uint256 auctionID_,
address vaultAddr_
) external onlyOwner {
Auction memory auction_ = auctions[auctionID_];
Bid memory highestBid_ = highestBids[auctionID_];
_settleAuctionFund(auction_, highestBid_, vaultAddr_);
}
function _settleAuctionFund(
Auction memory auction_,
Bid memory highestBid_,
address vaultAddr_
) private {
require(auction_.id != 0, "FeralfileEnglishAuction: auction not found");
require(
auction_.endAt <= block.timestamp,
"FeralfileEnglishAuction: auction not ended"
);
require(
!auction_.isSettled,
"FeralfileEnglishAuction: auction already settled"
);
require(
highestBid_.bidder != address(0),
"FeralfileEnglishAuction: no bid"
);
auctions[auction_.id].isSettled = true;
// transfer winning bid amount to Feral File Vault contract if winning bid is crypto bid
if (!highestBid_.fromFeralFile && highestBid_.amount > 0) {
payable(vaultAddr_).transfer(highestBid_.amount);
}
}
event NewBid(
uint256 indexed auctionId,
address indexed bidder,
uint256 indexed amount,
bool fromFeralFile
);
event AuctionSettled(
uint256 indexed auctionId,
address indexed contractAddress,
address indexed winner,
uint256 amount
);
}
{
"compilationTarget": {
"FeralfileEnglishAuction.sol": "FeralfileEnglishAuction"
},
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"signer_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"auctionId","type":"uint256"},{"indexed":true,"internalType":"address","name":"contractAddress","type":"address"},{"indexed":true,"internalType":"address","name":"winner","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"AuctionSettled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"auctionId","type":"uint256"},{"indexed":true,"internalType":"address","name":"bidder","type":"address"},{"indexed":true,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bool","name":"fromFeralFile","type":"bool"}],"name":"NewBid","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"auctions","outputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"startAt","type":"uint256"},{"internalType":"uint256","name":"endAt","type":"uint256"},{"internalType":"uint256","name":"extendDuration","type":"uint256"},{"internalType":"uint256","name":"extendThreshold","type":"uint256"},{"internalType":"uint256","name":"minIncreaseFactor","type":"uint256"},{"internalType":"uint256","name":"minIncreaseAmount","type":"uint256"},{"internalType":"uint256","name":"minPrice","type":"uint256"},{"internalType":"bool","name":"isSettled","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"highestBids","outputs":[{"internalType":"address","name":"bidder","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bool","name":"fromFeralFile","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"auctionID_","type":"uint256"},{"internalType":"uint256","name":"amount_","type":"uint256"}],"name":"isValidNewBid","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"auctionIDs_","type":"uint256[]"}],"name":"listAuctionStatus","outputs":[{"components":[{"components":[{"internalType":"address","name":"bidder","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bool","name":"fromFeralFile","type":"bool"}],"internalType":"struct FeralfileEnglishAuction.Bid","name":"highestBid","type":"tuple"},{"internalType":"uint256","name":"endAt","type":"uint256"},{"internalType":"bool","name":"isSettled","type":"bool"}],"internalType":"struct FeralfileEnglishAuction.AuctionStatus[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"}],"name":"ongoingAuction","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"auctionID_","type":"uint256"}],"name":"placeBid","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"auctionID_","type":"uint256"},{"internalType":"address","name":"bidder_","type":"address"},{"internalType":"uint256","name":"amount_","type":"uint256"},{"internalType":"uint256","name":"expiryTime_","type":"uint256"},{"internalType":"bytes32","name":"r_","type":"bytes32"},{"internalType":"bytes32","name":"s_","type":"bytes32"},{"internalType":"uint8","name":"v_","type":"uint8"}],"name":"placeSignedBid","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"startAt","type":"uint256"},{"internalType":"uint256","name":"endAt","type":"uint256"},{"internalType":"uint256","name":"extendDuration","type":"uint256"},{"internalType":"uint256","name":"extendThreshold","type":"uint256"},{"internalType":"uint256","name":"minIncreaseFactor","type":"uint256"},{"internalType":"uint256","name":"minIncreaseAmount","type":"uint256"},{"internalType":"uint256","name":"minPrice","type":"uint256"},{"internalType":"bool","name":"isSettled","type":"bool"}],"internalType":"struct FeralfileEnglishAuction.Auction[]","name":"auctions_","type":"tuple[]"}],"name":"registerAuctions","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"signer_","type":"address"}],"name":"setSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"auctionID_","type":"uint256"},{"internalType":"address","name":"tokenAddr_","type":"address"},{"internalType":"address","name":"vaultAddr_","type":"address"},{"components":[{"internalType":"uint256","name":"price","type":"uint256"},{"internalType":"uint256","name":"cost","type":"uint256"},{"internalType":"uint256","name":"expiryTime","type":"uint256"},{"internalType":"address","name":"destination","type":"address"},{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"components":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"bps","type":"uint256"}],"internalType":"struct IFeralfileSaleData.RevenueShare[][]","name":"revenueShares","type":"tuple[][]"},{"internalType":"bool","name":"payByVaultContract","type":"bool"}],"internalType":"struct IFeralfileSaleData.SaleData","name":"saleData_","type":"tuple"},{"internalType":"bytes32","name":"r_","type":"bytes32"},{"internalType":"bytes32","name":"s_","type":"bytes32"},{"internalType":"uint8","name":"v_","type":"uint8"}],"name":"settleAuction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"auctionID_","type":"uint256"},{"internalType":"address","name":"vaultAddr_","type":"address"}],"name":"settleAuctionFund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]