// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;
import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
import { IBondController } from "../_interfaces/buttonwood/IBondController.sol";
import { ITranche } from "../_interfaces/buttonwood/ITranche.sol";
import { TokenAmount } from "../_interfaces/CommonTypes.sol";
import { UnacceptableDeposit, UnacceptableTrancheLength } from "../_interfaces/ProtocolErrors.sol";
import { SafeCastUpgradeable } from "@openzeppelin/contracts-upgradeable/utils/math/SafeCastUpgradeable.sol";
import { MathUpgradeable } from "@openzeppelin/contracts-upgradeable/utils/math/MathUpgradeable.sol";
import { BondTranches } from "./BondTranchesHelpers.sol";
/**
* @title BondHelpers
*
* @notice Library with helper functions for ButtonWood's Bond contract.
*
*/
library BondHelpers {
using SafeCastUpgradeable for uint256;
using MathUpgradeable for uint256;
// Replicating value used here:
// https://github.com/buttonwood-protocol/tranche/blob/main/contracts/BondController.sol
uint256 private constant TRANCHE_RATIO_GRANULARITY = 1000;
/// @notice Given a bond, calculates the time remaining to maturity.
/// @param b The address of the bond contract.
/// @return The number of seconds before the bond reaches maturity.
function secondsToMaturity(IBondController b) internal view returns (uint256) {
uint256 maturityDate = b.maturityDate();
return maturityDate > block.timestamp ? maturityDate - block.timestamp : 0;
}
/// @notice Given a bond, retrieves all of the bond's tranches.
/// @param b The address of the bond contract.
/// @return bt The bond's tranche data.
function getTranches(IBondController b) internal view returns (BondTranches memory bt) {
if (b.trancheCount() != 2) {
revert UnacceptableTrancheLength();
}
(bt.tranches[0], bt.trancheRatios[0]) = b.tranches(0);
(bt.tranches[1], bt.trancheRatios[1]) = b.tranches(1);
}
/// @notice Given a bond, returns the tranche at the specified index.
/// @param b The address of the bond contract.
/// @param i Index of the tranche.
/// @return t The tranche address.
function trancheAt(IBondController b, uint8 i) internal view returns (ITranche t) {
(t, ) = b.tranches(i);
}
/// @notice Given a bond, returns the address of the most senior tranche.
/// @param b The address of the bond contract.
/// @return t The senior tranche address.
function getSeniorTranche(IBondController b) internal view returns (ITranche t) {
(t, ) = b.tranches(0);
}
/// @notice Given a bond, returns the tranche ratio of the most senior tranche.
/// @param b The address of the bond contract.
/// @return r The tranche ratio of the senior most tranche.
function getSeniorTrancheRatio(IBondController b) internal view returns (uint256 r) {
(, r) = b.tranches(0);
}
/// @notice Helper function to estimate the amount of tranches minted when a given amount of collateral
/// is deposited into the bond.
/// @dev This function is used off-chain services (using callStatic) to preview tranches minted.
/// This function assumes that the no fees are withheld for tranching.
/// @param b The address of the bond contract.
/// @return The tranche data, an array of tranche amounts.
function previewDeposit(IBondController b, uint256 collateralAmount) internal view returns (TokenAmount[] memory) {
if (b.isMature()) {
revert UnacceptableDeposit();
}
BondTranches memory bt = getTranches(b);
TokenAmount[] memory tranchesOut = new TokenAmount[](2);
uint256 totalDebt = b.totalDebt();
uint256 collateralBalance = IERC20Upgradeable(b.collateralToken()).balanceOf(address(b));
uint256 seniorAmt = collateralAmount.mulDiv(bt.trancheRatios[0], TRANCHE_RATIO_GRANULARITY);
if (collateralBalance > 0) {
seniorAmt = seniorAmt.mulDiv(totalDebt, collateralBalance);
}
tranchesOut[0] = TokenAmount({ token: bt.tranches[0], amount: seniorAmt });
uint256 juniorAmt = collateralAmount.mulDiv(bt.trancheRatios[1], TRANCHE_RATIO_GRANULARITY);
if (collateralBalance > 0) {
juniorAmt = juniorAmt.mulDiv(totalDebt, collateralBalance);
}
tranchesOut[1] = TokenAmount({ token: bt.tranches[1], amount: juniorAmt });
return tranchesOut;
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;
import { ITranche } from "../_interfaces/buttonwood/ITranche.sol";
import { MathUpgradeable } from "@openzeppelin/contracts-upgradeable/utils/math/MathUpgradeable.sol";
// @dev We assume that all bonds in the system just have 2 tranches, i.e) one senior and one junior.
struct BondTranches {
ITranche[2] tranches;
uint256[2] trancheRatios;
}
/**
* @title BondTranchesHelpers
*
* @notice Library with helper functions for the bond's retrieved tranche data.
*
*/
library BondTranchesHelpers {
using MathUpgradeable for uint256;
/// @notice For a given bond's tranche data and user address, computes the maximum number of each of the bond's tranches
/// the user is able to redeem before the bond's maturity. These tranche amounts necessarily match the bond's tranche ratios.
/// @param bt The bond's tranche data.
/// @param u The address to check balance for.
/// @return An array of tranche token balances.
function computeRedeemableTrancheAmounts(
BondTranches memory bt,
address u
) internal view returns (uint256[] memory) {
uint256[] memory trancheBalsAvailable = new uint256[](2);
trancheBalsAvailable[0] = bt.tranches[0].balanceOf(u);
trancheBalsAvailable[1] = bt.tranches[1].balanceOf(u);
return computeRedeemableTrancheAmounts(bt, trancheBalsAvailable);
}
/// @notice For a given bond's tranche data and tranche balances available, computes the maximum number of each of the bond's tranches
/// the user is able to redeem before the bond's maturity.
/// The returned tranche amounts necessarily match the bond's tranche ratios.
/// @param bt The bond's tranche data.
/// @param trancheBalsAvailable The tranche balance of each bond tranche available to be used for redemption.
/// @return An array of tranche token balances.
function computeRedeemableTrancheAmounts(
BondTranches memory bt,
uint256[] memory trancheBalsAvailable
) internal pure returns (uint256[] memory) {
uint256[] memory trancheAmtsReq = new uint256[](2);
// We compute the amount of seniors required using all the juniors
trancheAmtsReq[1] = trancheBalsAvailable[1] - (trancheBalsAvailable[1] % bt.trancheRatios[1]);
trancheAmtsReq[0] = (trancheAmtsReq[1] * bt.trancheRatios[0]) / bt.trancheRatios[1];
// If enough seniors aren't available, we compute the amount of juniors required using all the seniors
if (trancheAmtsReq[0] > trancheBalsAvailable[0]) {
trancheAmtsReq[0] = trancheBalsAvailable[0] - (trancheBalsAvailable[0] % bt.trancheRatios[0]);
trancheAmtsReq[1] = (trancheAmtsReq[0] * bt.trancheRatios[1]) / bt.trancheRatios[0];
}
return trancheAmtsReq;
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
struct TokenAmount {
/// @notice The asset token redeemed.
IERC20Upgradeable token;
/// @notice The amount redeemed.
uint256 amount;
}
/// @notice The system subscription parameters.
struct SubscriptionParams {
/// @notice The current TVL of perp denominated in the underlying.
uint256 perpTVL;
/// @notice The current TVL of the vault denominated in the underlying.
uint256 vaultTVL;
/// @notice The tranche ratio of seniors accepted by perp.
uint256 seniorTR;
}
struct RolloverData {
/// @notice The amount of tokens rolled out.
uint256 tokenOutAmt;
/// @notice The amount of trancheIn tokens rolled in.
uint256 trancheInAmt;
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import { ITranche } from "./ITranche.sol";
interface IBondController {
function collateralToken() external view returns (address);
function maturityDate() external view returns (uint256);
function creationDate() external view returns (uint256);
function totalDebt() external view returns (uint256);
function feeBps() external view returns (uint256);
function isMature() external view returns (bool);
function tranches(uint256 i) external view returns (ITranche token, uint256 ratio);
function trancheCount() external view returns (uint256 count);
function trancheTokenAddresses(ITranche token) external view returns (bool);
function deposit(uint256 amount) external;
function redeem(uint256[] memory amounts) external;
function mature() external;
function redeemMature(address tranche, uint256 amount) external;
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import { IBondController } from "./buttonwood/IBondController.sol";
interface IBondIssuer {
/// @notice Event emitted when a new bond is issued by the issuer.
/// @param bond The newly issued bond.
event BondIssued(IBondController bond);
/// @notice Event emitted when a bond has matured.
/// @param bond The matured bond.
event BondMature(IBondController bond);
/// @notice The address of the underlying collateral token to be used for issued bonds.
/// @return Address of the collateral token.
function collateral() external view returns (address);
/// @notice Invokes `mature` on issued active bonds.
function matureActive() external;
/// @notice Issues a new bond if sufficient time has elapsed since the last issue.
function issue() external;
/// @notice Checks if a given bond has been issued by the issuer.
/// @param bond Address of the bond to check.
/// @return if the bond has been issued by the issuer.
function isInstance(IBondController bond) external view returns (bool);
/// @notice Fetches the most recently issued bond.
/// @return Address of the most recent bond.
function getLatestBond() external returns (IBondController);
/// @notice Returns the total number of bonds issued by this issuer.
/// @return Number of bonds.
function issuedCount() external view returns (uint256);
/// @notice The bond address from the issued list by index.
/// @param index The index of the bond in the issued list.
/// @return Address of the bond.
function issuedBondAt(uint256 index) external view returns (IBondController);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20PermitUpgradeable {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20Upgradeable {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import { SubscriptionParams } from "./CommonTypes.sol";
interface IFeePolicy {
/// @return The percentage of the mint perp tokens to be charged as fees,
/// as a fixed-point number with {DECIMALS} decimal places.
function computePerpMintFeePerc() external view returns (uint256);
/// @return The percentage of the burnt perp tokens to be charged as fees,
/// as a fixed-point number with {DECIMALS} decimal places.
function computePerpBurnFeePerc() external view returns (uint256);
/// @param dr The current system deviation ratio.
/// @return The applied exchange rate adjustment between tranches into perp and
/// tokens out of perp during a rollover,
/// as a fixed-point number with {DECIMALS} decimal places.
/// @dev - A fee of 0%, implies the rollover exchange rate is unaltered.
/// example) 100 tranchesIn for 100 tranchesOut
/// - A fee of 1%, implies the exchange rate is adjusted in favor of tranchesIn.
/// example) 100 tranchesIn for 99 tranchesOut; i.e) perp enrichment
/// - A fee of -1%, implies the exchange rate is adjusted in favor of tranchesOut.
/// example) 99 tranchesIn for 100 tranchesOut
function computePerpRolloverFeePerc(uint256 dr) external view returns (int256);
/// @return The percentage of the mint vault note amount to be charged as fees,
/// as a fixed-point number with {DECIMALS} decimal places.
function computeVaultMintFeePerc() external view returns (uint256);
/// @return The percentage of the burnt vault note amount to be charged as fees,
/// as a fixed-point number with {DECIMALS} decimal places.
function computeVaultBurnFeePerc() external view returns (uint256);
/// @param dr The current system deviation ratio.
/// @param dr_ The deviation ratio of the system after the operation is complete.
/// @return The percentage of perp tokens out to be charged as swap fees by the vault,
/// as a fixed-point numbers with {DECIMALS} decimal places.
function computeUnderlyingToPerpVaultSwapFeePerc(uint256 dr, uint256 dr_) external view returns (uint256);
/// @param dr The current system deviation ratio.
/// @param dr_ The deviation ratio of the system after the operation is complete.
/// @return The percentage of underlying tokens out to be charged as swap fees by the vault,
/// as a fixed-point numbers with {DECIMALS} decimal places.
function computePerpToUnderlyingVaultSwapFeePerc(uint256 dr, uint256 dr_) external view returns (uint256);
/// @return Number of decimals representing a multiplier of 1.0. So, 100% = 1*10**decimals.
function decimals() external view returns (uint8);
/// @param s The subscription parameters of both the perp and vault systems.
/// @return The deviation ratio given the system subscription parameters.
function computeDeviationRatio(SubscriptionParams memory s) external view returns (uint256);
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
import { IBondIssuer } from "./IBondIssuer.sol";
import { IFeePolicy } from "./IFeePolicy.sol";
import { IBondController } from "./buttonwood/IBondController.sol";
import { ITranche } from "./buttonwood/ITranche.sol";
import { IRolloverVault } from "./IRolloverVault.sol";
import { TokenAmount, RolloverData } from "./CommonTypes.sol";
interface IPerpetualTranche is IERC20Upgradeable {
//--------------------------------------------------------------------------
// Events
/// @notice Event emitted the reserve's current token balance is recorded after change.
/// @param token Address of token.
/// @param balance The recorded ERC-20 balance of the token held by the reserve.
event ReserveSynced(IERC20Upgradeable token, uint256 balance);
/// @notice Event emitted when the active deposit bond is updated.
/// @param bond Address of the new deposit bond.
event UpdatedDepositBond(IBondController bond);
//--------------------------------------------------------------------------
// Methods
/// @notice Deposits tranche tokens into the system and mint perp tokens.
/// @param trancheIn The address of the tranche token to be deposited.
/// @param trancheInAmt The amount of tranche tokens deposited.
/// @return The amount of perp tokens minted.
function deposit(ITranche trancheIn, uint256 trancheInAmt) external returns (uint256);
/// @notice Burn perp tokens and redeem the share of reserve assets.
/// @param perpAmtBurnt The amount of perp tokens burnt from the caller.
/// @return tokensOut The list of reserve tokens and amounts redeemed.
function redeem(uint256 perpAmtBurnt) external returns (TokenAmount[] memory tokensOut);
/// @notice Rotates newer tranches in for reserve tokens.
/// @param trancheIn The tranche token deposited.
/// @param tokenOut The reserve token to be redeemed.
/// @param trancheInAmt The amount of trancheIn tokens deposited.
/// @return r The rollover amounts in various denominations.
function rollover(
ITranche trancheIn,
IERC20Upgradeable tokenOut,
uint256 trancheInAmt
) external returns (RolloverData memory r);
/// @notice External contract that stores a predefined bond config and frequency,
/// and issues new bonds when poked.
/// @return The address of the bond issuer.
function bondIssuer() external view returns (IBondIssuer);
/// @notice Reference to the address that has the ability to pause/unpause operations.
/// @return The address of the keeper.
function keeper() external view returns (address);
/// @notice The address of the underlying rebasing ERC-20 collateral token backing the tranches.
/// @return Address of the underlying collateral token.
function underlying() external view returns (IERC20Upgradeable);
/// @return Address of perp's rollover vault.
function vault() external view returns (IRolloverVault);
/// @notice The parent bond whose tranches are currently accepted to mint perp tokens.
/// @return Address of the deposit bond.
function getDepositBond() external returns (IBondController);
/// @notice The tranche token contract currently accepted to mint perp tokens.
/// @return Address of the deposit tranche ERC-20 token.
function getDepositTranche() external returns (ITranche);
/// @return The tranche ratio of the current deposit tranche.
function getDepositTrancheRatio() external returns (uint256);
/// @notice The policy contract with the fee computation logic for the perp and vault systems.
/// @return Address of the policy contract.
function feePolicy() external view returns (IFeePolicy);
/// @notice Total count of tokens held in the reserve.
/// @return The reserve token count.
function getReserveCount() external returns (uint256);
/// @notice The token address from the reserve list by index.
/// @param index The index of a token.
/// @return The reserve token address.
function getReserveAt(uint256 index) external returns (IERC20Upgradeable);
/// @notice Checks if the given token is part of the reserve.
/// @param token The address of a token to check.
/// @return If the token is part of the reserve.
function inReserve(IERC20Upgradeable token) external returns (bool);
/// @notice Fetches the reserve's token balance.
/// @param token The address of the tranche token held by the reserve.
/// @return The ERC-20 balance of the reserve token.
function getReserveTokenBalance(IERC20Upgradeable token) external returns (uint256);
/// @notice Calculates the reserve's token value,
/// in a standard denomination as defined by the implementation.
/// @param token The address of the tranche token held by the reserve.
/// @return The value of the reserve token balance held by the reserve, in a standard denomination.
function getReserveTokenValue(IERC20Upgradeable token) external returns (uint256);
/// @notice Computes the total value of assets currently held in the reserve.
/// @return The total value of the perp system, in a standard denomination.
function getTVL() external returns (uint256);
/// @notice Fetches the list of reserve tokens which are up for rollover.
/// @return The list of reserve tokens up for rollover.
function getReserveTokensUpForRollover() external returns (IERC20Upgradeable[] memory);
/// @notice Computes the amount of perp tokens minted when `trancheInAmt` `trancheIn` tokens
/// are deposited into the system.
/// @param trancheIn The tranche token deposited.
/// @param trancheInAmt The amount of tranche tokens deposited.
/// @return The amount of perp tokens to be minted.
function computeMintAmt(ITranche trancheIn, uint256 trancheInAmt) external returns (uint256);
/// @notice Computes the amount reserve tokens redeemed when burning given number of perp tokens.
/// @param perpAmtBurnt The amount of perp tokens to be burnt.
/// @return tokensOut The list of reserve tokens and amounts redeemed.
function computeRedemptionAmts(uint256 perpAmtBurnt) external returns (TokenAmount[] memory tokensOut);
/// @notice Computes the amount reserve tokens that are rolled out for the given number
/// of `trancheIn` tokens rolled in.
/// @param trancheIn The tranche token rolled in.
/// @param tokenOut The reserve token to be rolled out.
/// @param trancheInAmtAvailable The amount of trancheIn tokens rolled in.
/// @return r The rollover amounts in various denominations.
function computeRolloverAmt(
ITranche trancheIn,
IERC20Upgradeable tokenOut,
uint256 trancheInAmtAvailable
) external returns (RolloverData memory r);
/// @notice Updates time dependent storage state.
function updateState() external;
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import { IVault } from "./IVault.sol";
import { SubscriptionParams } from "./CommonTypes.sol";
interface IRolloverVault is IVault {
/// @notice Allows users to swap their underlying tokens for perps held by the vault.
/// @param underlyingAmtIn The amount of underlying tokens swapped in.
/// @return The amount of perp tokens swapped out.
function swapUnderlyingForPerps(uint256 underlyingAmtIn) external returns (uint256);
/// @notice Allows users to swap their perp tokens for underlying tokens held by the vault.
/// @param perpAmtIn The amount of perp tokens swapped in.
/// @return The amount of underlying tokens swapped out.
function swapPerpsForUnderlying(uint256 perpAmtIn) external returns (uint256);
/// @notice Computes the amount of perp tokens that are returned when user swaps a given number of underlying tokens.
/// @param underlyingAmtIn The number of underlying tokens the user swaps in.
/// @return perpAmtOut The number of perp tokens returned to the user.
/// @return perpFeeAmtToBurn The amount of perp tokens to be paid to the perp contract as mint fees.
/// @return s The pre-swap perp and vault subscription state.
function computeUnderlyingToPerpSwapAmt(
uint256 underlyingAmtIn
) external returns (uint256, uint256, SubscriptionParams memory);
/// @notice Computes the amount of underlying tokens that are returned when user swaps a given number of perp tokens.
/// @param perpAmtIn The number of perp tokens the user swaps in.
/// @return underlyingAmtOut The number of underlying tokens returned to the user.
/// @return perpFeeAmtToBurn The amount of perp tokens to be paid to the perp contract as burn fees.
/// @return s The pre-swap perp and vault subscription state.
function computePerpToUnderlyingSwapAmt(
uint256 perpAmtIn
) external returns (uint256, uint256, SubscriptionParams memory);
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
interface ITranche is IERC20Upgradeable {
function bond() external view returns (address);
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
import { TokenAmount } from "./CommonTypes.sol";
/*
* @title IVault
*
* @notice The standard interface for a generic vault as described by the "Vault Framework".
* http://thinking.farm/essays/2022-10-05-mechanical-finance/
*
* Users deposit a "underlying" asset and mint "notes" (or vault shares).
* The vault "deploys" underlying asset in a rules-based fashion (through a hard-coded strategy).
* It "recovers" deployed assets once the investment matures.
*
* The vault operates through two external poke functions which off-chain keepers can execute.
* 1) `deploy`: When executed, the vault "puts to work" the underlying assets it holds. The vault
* usually returns other ERC-20 tokens which act as receipts of the deployment.
* 2) `recover`: When executed, the vault turns in the receipts and retrieves the underlying asset and
* usually collects some yield for this work.
*
* The rules of the deployment and recovery are specific to the vault strategy.
*
* At any time the vault will hold multiple ERC20 tokens, together referred to as the vault's "assets".
* They can be a combination of the underlying asset and the deployed assets (receipts).
*
* On redemption users burn their "notes" to receive a proportional slice of all the vault's assets.
*
*/
interface IVault is IERC20Upgradeable {
/// @notice Recovers deployed funds and redeploys them.
function recoverAndRedeploy() external;
/// @notice Deploys deposited funds.
function deploy() external;
/// @notice Recovers deployed funds.
function recover() external;
/// @notice Recovers a given deployed asset.
/// @param token The ERC-20 token address of the deployed asset.
function recover(IERC20Upgradeable token) external;
/// @notice Deposits the underlying asset from {msg.sender} into the vault and mints notes.
/// @param amount The amount tokens to be deposited into the vault.
/// @return The amount of notes.
function deposit(uint256 amount) external returns (uint256);
/// @notice Burns notes and sends a proportional share of vault's assets back to {msg.sender}.
/// @param notes The amount of notes to be burnt.
/// @return The list of asset tokens and amounts redeemed.
function redeem(uint256 notes) external returns (TokenAmount[] memory);
/// @notice Batches the recover and redeem functions.
/// @param notes The amount of notes to be burnt.
/// @return The list of asset tokens and amounts redeemed.
function recoverAndRedeem(uint256 notes) external returns (TokenAmount[] memory);
/// @return The total value of assets currently held by the vault, denominated in a standard unit of account.
function getTVL() external view returns (uint256);
/// @param token The address of the asset ERC-20 token held by the vault.
/// @return The vault's asset token value, denominated in a standard unit of account.
function getVaultAssetValue(IERC20Upgradeable token) external view returns (uint256);
/// @notice The ERC20 token that can be deposited into this vault.
function underlying() external view returns (IERC20Upgradeable);
/// @return Total count of ERC-20 tokens held by the vault.
function assetCount() external view returns (uint256);
/// @param i The index of a token.
/// @return The vault's asset token address by index.
function assetAt(uint256 i) external view returns (IERC20Upgradeable);
/// @param token The address of the asset ERC-20 token held by the vault.
/// @return The vault's asset token balance.
function vaultAssetBalance(IERC20Upgradeable token) external view returns (uint256);
/// @param token The address of a token to check.
/// @return If the given token is held by the vault.
function isVaultAsset(IERC20Upgradeable token) external view returns (bool);
/// @notice Computes the amount of notes minted when given amount of underlying asset tokens
/// are deposited into the system.
/// @param amount The amount tokens to be deposited into the vault.
/// @return The amount of notes to be minted.
function computeMintAmt(uint256 amount) external returns (uint256);
/// @notice Computes the amount of asset tokens redeemed when burning given number of vault notes.
/// @param notes The amount of notes to be burnt.
/// @return The list of asset tokens and amounts redeemed.
function computeRedemptionAmts(uint256 notes) external returns (TokenAmount[] memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library MathUpgradeable {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;
//-------------------------------------------------------------------------
// Generic
/// @notice Expected contract call to be triggered by authorized caller.
error UnauthorizedCall();
/// @notice Expected transfer out asset to not be a reserve asset.
error UnauthorizedTransferOut();
/// @notice Expected contract reference to not be `address(0)`.
error UnacceptableReference();
/// @notice Expected interface contract to return a fixed point with a different number of decimals.
error UnexpectedDecimals();
/// @notice Expected asset to be a valid reserve/vault asset.
error UnexpectedAsset();
/// @notice Expected to mint a non-zero amount of notes.
error UnacceptableDeposit();
/// @notice Expected to redeem a non-zero amount of notes.
error UnacceptableRedemption();
/// @notice Updated parameters violate defined constraints.
error UnacceptableParams();
/// @notice Storage array access out of bounds.
error OutOfBounds();
/// @notice Expected the number of reserve assets to be under the limit.
error ReserveCountOverLimit();
//-------------------------------------------------------------------------
// Perp
/// @notice Expected rollover to be acceptable.
error UnacceptableRollover();
/// @notice Expected supply to be lower than the defined max supply.
error ExceededMaxSupply();
/// @notice Expected the total mint amount per tranche to be lower than the limit.
error ExceededMaxMintPerTranche();
//-------------------------------------------------------------------------
// Vault
/// @notice Expected more underlying token liquidity to perform operation.
error InsufficientLiquidity();
/// @notice Expected to swap non-zero assets.
error UnacceptableSwap();
/// @notice Expected more assets to be deployed.
error InsufficientDeployment();
/// @notice Expected the number of vault assets deployed to be under the limit.
error DeployedCountOverLimit();
/// @notice Expected parent bond to have only 2 children tranches.
error UnacceptableTrancheLength();
//-------------------------------------------------------------------------
// Fee Policy
/// @notice Expected perc value to be at most (1 * 10**DECIMALS), i.e) 1.0 or 100%.
error InvalidPerc();
/// @notice Expected target subscription ratio to be within defined bounds.
error InvalidTargetSRBounds();
/// @notice Expected deviation ratio bounds to be valid.
error InvalidDRBounds();
/// @notice Expected sigmoid asymptotes to be within defined bounds.
error InvalidSigmoidAsymptotes();
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;
import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
import { ITranche } from "./_interfaces/buttonwood/ITranche.sol";
import { IBondController } from "./_interfaces/buttonwood/IBondController.sol";
import { IPerpetualTranche } from "./_interfaces/IPerpetualTranche.sol";
import { TokenAmount } from "./_interfaces/CommonTypes.sol";
import { SafeERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import { SafeCastUpgradeable } from "@openzeppelin/contracts-upgradeable/utils/math/SafeCastUpgradeable.sol";
import { BondTranches, BondTranchesHelpers } from "./_utils/BondTranchesHelpers.sol";
import { BondHelpers } from "./_utils/BondHelpers.sol";
/**
* @title RouterV2
*
* @notice Contract to dry-run and batch multiple operations.
*
*/
contract RouterV2 {
// math
using SafeCastUpgradeable for uint256;
// data handling
using BondHelpers for IBondController;
using BondTranchesHelpers for BondTranches;
// ERC20 operations
using SafeERC20Upgradeable for IERC20Upgradeable;
using SafeERC20Upgradeable for ITranche;
using SafeERC20Upgradeable for IPerpetualTranche;
/// @notice Calculates the amount of tranche tokens minted after depositing into the deposit bond.
/// @dev Used by off-chain services to preview a tranche operation.
/// @param perp Address of the perp contract.
/// @param collateralAmount The amount of collateral the user wants to tranche.
/// @return bond The address of the current deposit bond.
/// @return trancheAmts The tranche tokens and amounts minted.
function previewTranche(
IPerpetualTranche perp,
uint256 collateralAmount
) external returns (IBondController, TokenAmount[] memory) {
IBondController bond = perp.getDepositBond();
return (bond, bond.previewDeposit(collateralAmount));
}
/// @notice Tranches the collateral using the current deposit bond and then deposits individual tranches
/// to mint perp tokens. It transfers the perp tokens back to the
/// transaction sender along with any unused tranches and fees.
/// @param perp Address of the perp contract.
/// @param bond Address of the deposit bond.
/// @param collateralAmount The amount of collateral the user wants to tranche.
function trancheAndDeposit(IPerpetualTranche perp, IBondController bond, uint256 collateralAmount) external {
// If deposit bond does not exist, we first issue it.
if (address(bond).code.length <= 0) {
perp.updateState();
}
BondTranches memory bt = bond.getTranches();
IERC20Upgradeable collateralToken = IERC20Upgradeable(bond.collateralToken());
// transfers collateral & fees to router
collateralToken.safeTransferFrom(msg.sender, address(this), collateralAmount);
// approves collateral to be tranched
_checkAndApproveMax(collateralToken, address(bond), collateralAmount);
// tranches collateral
bond.deposit(collateralAmount);
// uses senior tranches to mint perps
uint256 trancheAmt = bt.tranches[0].balanceOf(address(this));
_checkAndApproveMax(bt.tranches[0], address(perp), trancheAmt);
perp.deposit(bt.tranches[0], trancheAmt);
// transfers remaining junior tranches back
bt.tranches[1].safeTransfer(msg.sender, bt.tranches[1].balanceOf(address(this)));
// transfers any remaining collateral tokens back
uint256 collateralBalance = collateralToken.balanceOf(address(this));
if (collateralBalance > 0) {
collateralToken.safeTransfer(msg.sender, collateralBalance);
}
// transfers perp tokens back
perp.safeTransfer(msg.sender, perp.balanceOf(address(this)));
}
/// @dev Checks if the spender has sufficient allowance. If not, approves the maximum possible amount.
function _checkAndApproveMax(IERC20Upgradeable token, address spender, uint256 amount) private {
uint256 allowance = token.allowance(address(this), spender);
if (allowance < amount) {
token.safeApprove(spender, type(uint256).max);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.0;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*
* Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
* all math on `uint256` and `int256` and then downcasting.
*/
library SafeCastUpgradeable {
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*
* _Available since v4.7._
*/
function toUint248(uint256 value) internal pure returns (uint248) {
require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*
* _Available since v4.7._
*/
function toUint240(uint256 value) internal pure returns (uint240) {
require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*
* _Available since v4.7._
*/
function toUint232(uint256 value) internal pure returns (uint232) {
require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*
* _Available since v4.2._
*/
function toUint224(uint256 value) internal pure returns (uint224) {
require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*
* _Available since v4.7._
*/
function toUint216(uint256 value) internal pure returns (uint216) {
require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*
* _Available since v4.7._
*/
function toUint208(uint256 value) internal pure returns (uint208) {
require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*
* _Available since v4.7._
*/
function toUint200(uint256 value) internal pure returns (uint200) {
require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*
* _Available since v4.7._
*/
function toUint192(uint256 value) internal pure returns (uint192) {
require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*
* _Available since v4.7._
*/
function toUint184(uint256 value) internal pure returns (uint184) {
require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*
* _Available since v4.7._
*/
function toUint176(uint256 value) internal pure returns (uint176) {
require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*
* _Available since v4.7._
*/
function toUint168(uint256 value) internal pure returns (uint168) {
require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*
* _Available since v4.7._
*/
function toUint160(uint256 value) internal pure returns (uint160) {
require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*
* _Available since v4.7._
*/
function toUint152(uint256 value) internal pure returns (uint152) {
require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*
* _Available since v4.7._
*/
function toUint144(uint256 value) internal pure returns (uint144) {
require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*
* _Available since v4.7._
*/
function toUint136(uint256 value) internal pure returns (uint136) {
require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v2.5._
*/
function toUint128(uint256 value) internal pure returns (uint128) {
require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*
* _Available since v4.7._
*/
function toUint120(uint256 value) internal pure returns (uint120) {
require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*
* _Available since v4.7._
*/
function toUint112(uint256 value) internal pure returns (uint112) {
require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*
* _Available since v4.7._
*/
function toUint104(uint256 value) internal pure returns (uint104) {
require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*
* _Available since v4.2._
*/
function toUint96(uint256 value) internal pure returns (uint96) {
require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*
* _Available since v4.7._
*/
function toUint88(uint256 value) internal pure returns (uint88) {
require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*
* _Available since v4.7._
*/
function toUint80(uint256 value) internal pure returns (uint80) {
require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*
* _Available since v4.7._
*/
function toUint72(uint256 value) internal pure returns (uint72) {
require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v2.5._
*/
function toUint64(uint256 value) internal pure returns (uint64) {
require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*
* _Available since v4.7._
*/
function toUint56(uint256 value) internal pure returns (uint56) {
require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*
* _Available since v4.7._
*/
function toUint48(uint256 value) internal pure returns (uint48) {
require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*
* _Available since v4.7._
*/
function toUint40(uint256 value) internal pure returns (uint40) {
require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v2.5._
*/
function toUint32(uint256 value) internal pure returns (uint32) {
require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*
* _Available since v4.7._
*/
function toUint24(uint256 value) internal pure returns (uint24) {
require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v2.5._
*/
function toUint16(uint256 value) internal pure returns (uint16) {
require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*
* _Available since v2.5._
*/
function toUint8(uint256 value) internal pure returns (uint8) {
require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*
* _Available since v3.0._
*/
function toUint256(int256 value) internal pure returns (uint256) {
require(value >= 0, "SafeCast: value must be positive");
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*
* _Available since v4.7._
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
require(downcasted == value, "SafeCast: value doesn't fit in 248 bits");
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*
* _Available since v4.7._
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
require(downcasted == value, "SafeCast: value doesn't fit in 240 bits");
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*
* _Available since v4.7._
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
require(downcasted == value, "SafeCast: value doesn't fit in 232 bits");
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*
* _Available since v4.7._
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
require(downcasted == value, "SafeCast: value doesn't fit in 224 bits");
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*
* _Available since v4.7._
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
require(downcasted == value, "SafeCast: value doesn't fit in 216 bits");
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*
* _Available since v4.7._
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
require(downcasted == value, "SafeCast: value doesn't fit in 208 bits");
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*
* _Available since v4.7._
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
require(downcasted == value, "SafeCast: value doesn't fit in 200 bits");
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*
* _Available since v4.7._
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
require(downcasted == value, "SafeCast: value doesn't fit in 192 bits");
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*
* _Available since v4.7._
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
require(downcasted == value, "SafeCast: value doesn't fit in 184 bits");
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*
* _Available since v4.7._
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
require(downcasted == value, "SafeCast: value doesn't fit in 176 bits");
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*
* _Available since v4.7._
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
require(downcasted == value, "SafeCast: value doesn't fit in 168 bits");
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*
* _Available since v4.7._
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
require(downcasted == value, "SafeCast: value doesn't fit in 160 bits");
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*
* _Available since v4.7._
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
require(downcasted == value, "SafeCast: value doesn't fit in 152 bits");
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*
* _Available since v4.7._
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
require(downcasted == value, "SafeCast: value doesn't fit in 144 bits");
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*
* _Available since v4.7._
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
require(downcasted == value, "SafeCast: value doesn't fit in 136 bits");
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v3.1._
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
require(downcasted == value, "SafeCast: value doesn't fit in 128 bits");
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*
* _Available since v4.7._
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
require(downcasted == value, "SafeCast: value doesn't fit in 120 bits");
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*
* _Available since v4.7._
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
require(downcasted == value, "SafeCast: value doesn't fit in 112 bits");
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*
* _Available since v4.7._
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
require(downcasted == value, "SafeCast: value doesn't fit in 104 bits");
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*
* _Available since v4.7._
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
require(downcasted == value, "SafeCast: value doesn't fit in 96 bits");
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*
* _Available since v4.7._
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
require(downcasted == value, "SafeCast: value doesn't fit in 88 bits");
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*
* _Available since v4.7._
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
require(downcasted == value, "SafeCast: value doesn't fit in 80 bits");
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*
* _Available since v4.7._
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
require(downcasted == value, "SafeCast: value doesn't fit in 72 bits");
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v3.1._
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
require(downcasted == value, "SafeCast: value doesn't fit in 64 bits");
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*
* _Available since v4.7._
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
require(downcasted == value, "SafeCast: value doesn't fit in 56 bits");
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*
* _Available since v4.7._
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
require(downcasted == value, "SafeCast: value doesn't fit in 48 bits");
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*
* _Available since v4.7._
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
require(downcasted == value, "SafeCast: value doesn't fit in 40 bits");
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v3.1._
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
require(downcasted == value, "SafeCast: value doesn't fit in 32 bits");
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*
* _Available since v4.7._
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
require(downcasted == value, "SafeCast: value doesn't fit in 24 bits");
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v3.1._
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
require(downcasted == value, "SafeCast: value doesn't fit in 16 bits");
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*
* _Available since v3.1._
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
require(downcasted == value, "SafeCast: value doesn't fit in 8 bits");
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*
* _Available since v3.0._
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
return int256(value);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20Upgradeable.sol";
import "../extensions/IERC20PermitUpgradeable.sol";
import "../../../utils/AddressUpgradeable.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20Upgradeable {
using AddressUpgradeable for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20Upgradeable token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20PermitUpgradeable token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20Upgradeable token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && AddressUpgradeable.isContract(address(token));
}
}
{
"compilationTarget": {
"contracts/RouterV2.sol": "RouterV2"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 750
},
"remappings": []
}
[{"inputs":[],"name":"UnacceptableDeposit","type":"error"},{"inputs":[],"name":"UnacceptableTrancheLength","type":"error"},{"inputs":[{"internalType":"contract IPerpetualTranche","name":"perp","type":"address"},{"internalType":"uint256","name":"collateralAmount","type":"uint256"}],"name":"previewTranche","outputs":[{"internalType":"contract IBondController","name":"","type":"address"},{"components":[{"internalType":"contract IERC20Upgradeable","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct TokenAmount[]","name":"","type":"tuple[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IPerpetualTranche","name":"perp","type":"address"},{"internalType":"contract IBondController","name":"bond","type":"address"},{"internalType":"uint256","name":"collateralAmount","type":"uint256"}],"name":"trancheAndDeposit","outputs":[],"stateMutability":"nonpayable","type":"function"}]