// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
pragma solidity ^0.6.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: @openzeppelin/contracts/math/SafeMath.sol
pragma solidity ^0.6.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File: @openzeppelin/contracts/utils/Address.sol
pragma solidity ^0.6.2;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol
pragma solidity ^0.6.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// File: @openzeppelin/contracts/utils/EnumerableSet.sol
pragma solidity ^0.6.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256`
* (`UintSet`) are supported.
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping (bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) { // Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
// When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs
// so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.
bytes32 lastvalue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastvalue;
// Update the index for the moved value
set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
require(set._values.length > index, "EnumerableSet: index out of bounds");
return set._values[index];
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(value)));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(value)));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(value)));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint256(_at(set._inner, index)));
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
}
// File: @openzeppelin/contracts/math/Math.sol
pragma solidity ^0.6.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow, so we distribute
return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
}
}
// File: @openzeppelin/contracts/GSN/Context.sol
pragma solidity ^0.6.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File: @openzeppelin/contracts/access/AccessControl.sol
pragma solidity ^0.6.0;
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it.
*/
abstract contract AccessControl is Context {
using EnumerableSet for EnumerableSet.AddressSet;
using Address for address;
struct RoleData {
EnumerableSet.AddressSet members;
bytes32 adminRole;
}
mapping (bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view returns (bool) {
return _roles[role].members.contains(account);
}
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) public view returns (uint256) {
return _roles[role].members.length();
}
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) public view returns (address) {
return _roles[role].members.at(index);
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) public virtual {
require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant");
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) public virtual {
require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke");
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) public virtual {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
emit RoleAdminChanged(role, _roles[role].adminRole, adminRole);
_roles[role].adminRole = adminRole;
}
function _grantRole(bytes32 role, address account) private {
if (_roles[role].members.add(account)) {
emit RoleGranted(role, account, _msgSender());
}
}
function _revokeRole(bytes32 role, address account) private {
if (_roles[role].members.remove(account)) {
emit RoleRevoked(role, account, _msgSender());
}
}
}
// File: @openzeppelin/contracts/token/ERC20/ERC20.sol
pragma solidity ^0.6.0;
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
using Address for address;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name, string memory symbol) public {
_name = name;
_symbol = symbol;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
*
* This is internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}
// File: @openzeppelin/contracts/token/ERC20/ERC20Capped.sol
pragma solidity ^0.6.0;
/**
* @dev Extension of {ERC20} that adds a cap to the supply of tokens.
*/
abstract contract ERC20Capped is ERC20 {
uint256 private _cap;
/**
* @dev Sets the value of the `cap`. This value is immutable, it can only be
* set once during construction.
*/
constructor (uint256 cap) public {
require(cap > 0, "ERC20Capped: cap is 0");
_cap = cap;
}
/**
* @dev Returns the cap on the token's total supply.
*/
function cap() public view returns (uint256) {
return _cap;
}
/**
* @dev See {ERC20-_beforeTokenTransfer}.
*
* Requirements:
*
* - minted tokens must not cause the total supply to go over the cap.
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override {
super._beforeTokenTransfer(from, to, amount);
if (from == address(0)) { // When minting tokens
require(totalSupply().add(amount) <= _cap, "ERC20Capped: cap exceeded");
}
}
}
// File: @openzeppelin/contracts/access/Ownable.sol
pragma solidity ^0.6.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// File: contracts/ChickenToken.sol
pragma solidity 0.6.12;
// ChickenToken with Governance. Capped at 580,000,000 supply.
contract ChickenToken is ERC20Capped, Ownable {
constructor() public ERC20("ChickenToken", "CHKN") ERC20Capped(580000000000000000000000000) { }
/// @notice Creates `_amount` token to `_to`. Must only be called by the owner (FryCook).
function mint(address _to, uint256 _amount) public onlyOwner {
_mint(_to, _amount);
_moveDelegates(address(0), _delegates[_to], _amount);
}
// Copied and modified from YAM code:
// https://github.com/yam-finance/yam-protocol/blob/master/contracts/token/YAMGovernanceStorage.sol
// https://github.com/yam-finance/yam-protocol/blob/master/contracts/token/YAMGovernance.sol
// Which is copied and modified from COMPOUND:
// https://github.com/compound-finance/compound-protocol/blob/master/contracts/Governance/Comp.sol
/// @notice A record of each accounts delegate
mapping (address => address) internal _delegates;
/// @notice A checkpoint for marking number of votes from a given block
struct Checkpoint {
uint32 fromBlock;
uint256 votes;
}
/// @notice A record of votes checkpoints for each account, by index
mapping (address => mapping (uint32 => Checkpoint)) public checkpoints;
/// @notice The number of checkpoints for each account
mapping (address => uint32) public numCheckpoints;
/// @notice The EIP-712 typehash for the contract's domain
bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)");
/// @notice The EIP-712 typehash for the delegation struct used by the contract
bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
/// @notice A record of states for signing / validating signatures
mapping (address => uint) public nonces;
/// @notice An event thats emitted when an account changes its delegate
event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
/// @notice An event thats emitted when a delegate account's vote balance changes
event DelegateVotesChanged(address indexed delegate, uint previousBalance, uint newBalance);
/**
* @notice Delegate votes from `msg.sender` to `delegatee`
* @param delegator The address to get delegatee for
*/
function delegates(address delegator)
external
view
returns (address)
{
return _delegates[delegator];
}
/**
* @notice Delegate votes from `msg.sender` to `delegatee`
* @param delegatee The address to delegate votes to
*/
function delegate(address delegatee) external {
return _delegate(msg.sender, delegatee);
}
/**
* @notice Delegates votes from signatory to `delegatee`
* @param delegatee The address to delegate votes to
* @param nonce The contract state required to match the signature
* @param expiry The time at which to expire the signature
* @param v The recovery byte of the signature
* @param r Half of the ECDSA signature pair
* @param s Half of the ECDSA signature pair
*/
function delegateBySig(
address delegatee,
uint nonce,
uint expiry,
uint8 v,
bytes32 r,
bytes32 s
)
external
{
bytes32 domainSeparator = keccak256(
abi.encode(
DOMAIN_TYPEHASH,
keccak256(bytes(name())),
getChainId(),
address(this)
)
);
bytes32 structHash = keccak256(
abi.encode(
DELEGATION_TYPEHASH,
delegatee,
nonce,
expiry
)
);
bytes32 digest = keccak256(
abi.encodePacked(
"\x19\x01",
domainSeparator,
structHash
)
);
address signatory = ecrecover(digest, v, r, s);
require(signatory != address(0), "CHKN::delegateBySig: invalid signature");
require(nonce == nonces[signatory]++, "CHKN::delegateBySig: invalid nonce");
require(now <= expiry, "CHKN::delegateBySig: signature expired");
return _delegate(signatory, delegatee);
}
/**
* @notice Gets the current votes balance for `account`
* @param account The address to get votes balance
* @return The number of current votes for `account`
*/
function getCurrentVotes(address account)
external
view
returns (uint256)
{
uint32 nCheckpoints = numCheckpoints[account];
return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;
}
/**
* @notice Determine the prior number of votes for an account as of a block number
* @dev Block number must be a finalized block or else this function will revert to prevent misinformation.
* @param account The address of the account to check
* @param blockNumber The block number to get the vote balance at
* @return The number of votes the account had as of the given block
*/
function getPriorVotes(address account, uint blockNumber)
external
view
returns (uint256)
{
require(blockNumber < block.number, "CHKN::getPriorVotes: not yet determined");
uint32 nCheckpoints = numCheckpoints[account];
if (nCheckpoints == 0) {
return 0;
}
// First check most recent balance
if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {
return checkpoints[account][nCheckpoints - 1].votes;
}
// Next check implicit zero balance
if (checkpoints[account][0].fromBlock > blockNumber) {
return 0;
}
uint32 lower = 0;
uint32 upper = nCheckpoints - 1;
while (upper > lower) {
uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow
Checkpoint memory cp = checkpoints[account][center];
if (cp.fromBlock == blockNumber) {
return cp.votes;
} else if (cp.fromBlock < blockNumber) {
lower = center;
} else {
upper = center - 1;
}
}
return checkpoints[account][lower].votes;
}
function _delegate(address delegator, address delegatee)
internal
{
address currentDelegate = _delegates[delegator];
uint256 delegatorBalance = balanceOf(delegator); // balance of underlying CHKNs (not scaled);
_delegates[delegator] = delegatee;
emit DelegateChanged(delegator, currentDelegate, delegatee);
_moveDelegates(currentDelegate, delegatee, delegatorBalance);
}
function _moveDelegates(address srcRep, address dstRep, uint256 amount) internal {
if (srcRep != dstRep && amount > 0) {
if (srcRep != address(0)) {
// decrease old representative
uint32 srcRepNum = numCheckpoints[srcRep];
uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;
uint256 srcRepNew = srcRepOld.sub(amount);
_writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);
}
if (dstRep != address(0)) {
// increase new representative
uint32 dstRepNum = numCheckpoints[dstRep];
uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;
uint256 dstRepNew = dstRepOld.add(amount);
_writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);
}
}
}
function _writeCheckpoint(
address delegatee,
uint32 nCheckpoints,
uint256 oldVotes,
uint256 newVotes
)
internal
{
uint32 blockNumber = safe32(block.number, "CHKN::_writeCheckpoint: block number exceeds 32 bits");
if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) {
checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;
} else {
checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);
numCheckpoints[delegatee] = nCheckpoints + 1;
}
emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
}
function safe32(uint n, string memory errorMessage) internal pure returns (uint32) {
require(n < 2**32, errorMessage);
return uint32(n);
}
function getChainId() internal pure returns (uint) {
uint256 chainId;
assembly { chainId := chainid() }
return chainId;
}
}
// File: contracts/FryCook.sol
pragma solidity 0.6.12;
// An interface for a future component of the CHKN system, allowing migration
// from one type of LP token to another. Migration moves liquidity from an exchange
// contract to another, e.g. for a swap version update. All users keep their
// staked liquidity and can deposit or withdraw the new type of token
// (kept in the same pool / pid) afterwards.
interface ICookMigrator {
// Perform LP token migration from UniswapV2 to ChickenFarm.
// Take the current LP token address and return the new LP token address.
// Migrator should have full access to the caller's LP token.
// Return the new LP token address.
//
// XXX Migrator must have allowance access to UniswapV2 LP tokens.
// ChickenFarm must mint EXACTLY the same amount of ChickenFarm LP tokens or
// else something bad will happen. Traditional UniswapV2 does not
// do that so be careful!
function migrate(IERC20 token) external returns (IERC20);
}
// FryCook works the fryer. They make some good chicken!
//
// Note that there is an EXECUTIVE_ROLE and the executive(s) wields tremendous
// power. The deployer will have executive power until initial setup is complete,
// then renounce that direct power in favor of Timelocked control so the community
// can see incoming executive orders (including role changes). Eventually, this
// setup will be replaced with community governance by CHKN token holders.
//
// Executives determine who holds other roles and set contract references
// (e.g. for migration). The other roles are:
//
// Head Chef: Designs the menu (can add and update lp token pools)
// Sous Chef: Tweaks recipes (can update lp token pool allocation points)
// Waitstaff: Carries orders and payments (can deposit / withdraw on behalf of stakers)
//
// It makes sense for an executive (individual or community) to also operate as the
// head chef, but nothing but a well-tested and audited smart contract should EVER be assigned
// to waitstaff. Waitstaff have full access to all staked tokens.
contract FryCook is AccessControl {
using SafeMath for uint256;
using SafeERC20 for IERC20;
// Info of each pool.
struct PoolInfo {
IERC20 lpToken; // Address of LP token contract.
uint256 allocPoint; // How many allocation points assigned to this pool. CHKNs to distribute per block.
uint256 lastRewardBlock; // Last block number that CHKNs distribution occurs.
uint256 totalScore; // Total score of all investors.
uint256 accChickenPerScore; // Accumulated CHKNs per score, times 1e12. See below.
// early bird point rewards (larger share of CHKN mints w/in the pool)
uint256 earlyBirdMinShares;
uint256 earlyBirdExtra;
uint256 earlyBirdGraceEndBlock;
uint256 earlyBirdHalvingBlocks;
}
// Info of each user.
struct UserInfo {
uint256 amount; // How many LP tokens the user has provided.
uint256 score; // The staked "score" based on LP tokens and early bird bonus
uint256 earlyBirdMult; // Early bird bonus multiplier, scaled by EARLY_BIRD_PRECISION
bool earlyBird; // Does the score include an early bird bonus?
uint256 rewardDebt; // Reward debt. See explanation below.
//
// We do some fancy math here. Basically, any point in time, the amount of CHKNs
// entitled to a user but is pending to be distributed is:
//
// pending reward = (user.score * pool.accChickenPerScore) - user.rewardDebt
//
// Whenever a user deposits or withdraws LP tokens to a pool. Here's what happens:
// 1. The pool's `accChickenPerScore` (and `lastRewardBlock`) gets updated.
// 2. User receives the pending reward sent to his/her address.
// 3. User's `amount` and `score` gets updated.
// 4. User's `rewardDebt` gets updated.
}
// Access Control Roles. This is the FryCook, but there's other jobs in the kitchen.
bytes32 public constant EXECUTIVE_ROLE = keccak256("EXECUTIVE_ROLE"); // aka owner: determines other roles
bytes32 public constant HEAD_CHEF_ROLE = keccak256("HEAD_CHEF_ROLE"); // governance: token pool changes, control over agent list
bytes32 public constant SOUS_CHEF_ROLE = keccak256("SOUS_CHEF_ROLE"); // pool spiciness tweaks: can change allocation points for pools
bytes32 public constant WAITSTAFF_ROLE = keccak256("WAITSTAFF_ROLE"); // token agent(s): can make deposits / withdrawals on behalf of stakers
// The CHKN TOKEN!
ChickenToken public chicken;
uint256 public chickenCap;
// Dev address.
address public devaddr;
// Block number when bonus CHKN stage ends (staged decline to no bonus).
uint256 public bonusStage2Block;
uint256 public bonusStage3Block;
uint256 public bonusStage4Block;
uint256 public bonusEndBlock;
// CHKN tokens created per block.
uint256 public chickenPerBlock;
// Bonus muliplier for early chicken makers.
uint256 public constant BONUS_MULTIPLIER_STAGE_1 = 20;
uint256 public constant BONUS_MULTIPLIER_STAGE_2 = 15;
uint256 public constant BONUS_MULTIPLIER_STAGE_3 = 10;
uint256 public constant BONUS_MULTIPLIER_STAGE_4 = 5;
// Block number when dev share declines (staged decline to lowest share).
uint256 public devBonusStage2Block;
uint256 public devBonusStage3Block;
uint256 public devBonusStage4Block;
uint256 public devBonusEndBlock;
// Dev share divisor for each bonus stage.
uint256 public constant DEV_DIV_STAGE_1 = 10; // 10%
uint256 public constant DEV_DIV_STAGE_2 = 12; // 8.333..%
uint256 public constant DEV_DIV_STAGE_3 = 16; // 6.25%
uint256 public constant DEV_DIV_STAGE_4 = 25; // 4%
uint256 public constant DEV_DIV = 50; // 2%
// Precision values
uint256 public constant EARLY_BIRD_PRECISION = 1e12;
uint256 public constant ACC_CHICKEN_PRECISION = 1e12;
// The migrator contract. It has a lot of power. Can only be set through governance (owner).
ICookMigrator public migrator;
// Info of each pool.
PoolInfo[] public poolInfo;
mapping (address => uint256) public tokenPid;
mapping (address => bool) public hasToken;
// Info of each user that stakes LP tokens.
mapping (uint256 => mapping (address => UserInfo)) public userInfo;
// Total allocation points. Must be the sum of all allocation points in all pools.
uint256 public totalAllocPoint = 0;
// The block number when CHKN mining starts.
uint256 public startBlock;
event Deposit(address indexed staker, address indexed funder, uint256 indexed pid, uint256 amount);
event Withdraw(address indexed staker, address indexed agent, uint256 indexed pid, uint256 amount);
event EmergencyWithdraw(address indexed user, uint256 indexed pid, uint256 amount);
constructor(
ChickenToken _chicken,
address _devaddr,
uint256 _chickenPerBlock,
uint256 _startBlock,
uint256 _bonusEndBlock,
uint256 _devBonusEndBlock
) public {
chicken = _chicken;
devaddr = _devaddr;
chickenPerBlock = _chickenPerBlock;
bonusEndBlock = _bonusEndBlock;
startBlock = _startBlock;
devBonusEndBlock = _devBonusEndBlock;
// calculate mint bonus stage blocks (block-of-transition from 20x to 15x, etc.)
uint256 bonusStep = bonusEndBlock.sub(startBlock).div(4);
bonusStage2Block = bonusStep.add(startBlock);
bonusStage3Block = bonusStep.mul(2).add(startBlock);
bonusStage4Block = bonusStep.mul(3).add(startBlock);
// calculate dev divisor stage blocks
uint256 devBonusStep = devBonusEndBlock.sub(startBlock).div(4);
devBonusStage2Block = devBonusStep.add(startBlock);
devBonusStage3Block = devBonusStep.mul(2).add(startBlock);
devBonusStage4Block = devBonusStep.mul(3).add(startBlock);
// set up initial roles (caller is owner and manager). The caller
// CANNOT act as waitstaff; athough they can add and modify pools,
// they CANNOT touch user deposits. Nothing but another smart contract
// should ever be waitstaff.
_setupRole(EXECUTIVE_ROLE, msg.sender); // can manage other roles and link contracts
_setupRole(HEAD_CHEF_ROLE, msg.sender); // can create and alter pools
// set up executives as role administrators.
// after initial setup, all roles are expected to be served by other contracts
// (e.g. Timelock, GovernorAlpha, etc.)
_setRoleAdmin(EXECUTIVE_ROLE, EXECUTIVE_ROLE);
_setRoleAdmin(HEAD_CHEF_ROLE, EXECUTIVE_ROLE);
_setRoleAdmin(SOUS_CHEF_ROLE, EXECUTIVE_ROLE);
_setRoleAdmin(WAITSTAFF_ROLE, EXECUTIVE_ROLE);
// store so we never have to query again
chickenCap = chicken.cap();
}
function poolLength() external view returns (uint256) {
return poolInfo.length;
}
// Add a new lp to the pool. Can only be called by a manager.
// XXX DO NOT add the same LP token more than once. Rewards will be messed up if you do.
function add(
uint256 _allocPoint,
IERC20 _lpToken,
uint256 _earlyBirdMinShares,
uint256 _earlyBirdInitialBonus,
uint256 _earlyBirdGraceEndBlock,
uint256 _earlyBirdHalvingBlocks,
bool _withUpdate
) public {
require(hasRole(HEAD_CHEF_ROLE, msg.sender), "FryCook::add: not authorized");
require(!hasToken[address(_lpToken)], "FryCook::add: lpToken already added");
if (_withUpdate) {
massUpdatePools();
}
uint256 lastRewardBlock = block.number > startBlock ? block.number : startBlock;
totalAllocPoint = totalAllocPoint.add(_allocPoint);
hasToken[address(_lpToken)] = true;
tokenPid[address(_lpToken)] = poolInfo.length;
poolInfo.push(PoolInfo({
lpToken: _lpToken,
allocPoint: _allocPoint,
earlyBirdMinShares: _earlyBirdMinShares,
earlyBirdExtra: _earlyBirdInitialBonus.sub(1), // provided as multiplier: 100x. Declines to 1x, so "99" extra.
earlyBirdGraceEndBlock: _earlyBirdGraceEndBlock,
earlyBirdHalvingBlocks: _earlyBirdHalvingBlocks,
lastRewardBlock: lastRewardBlock,
totalScore: 0,
accChickenPerScore: 0
}));
}
// Update the given pool's CHKN allocation point. Can only be called by a manager.
function set(uint256 _pid, uint256 _allocPoint, bool _withUpdate) public {
require(hasRole(HEAD_CHEF_ROLE, msg.sender) || hasRole(SOUS_CHEF_ROLE, msg.sender), "FryCook::set: not authorized");
if (_withUpdate) {
massUpdatePools();
}
totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
poolInfo[_pid].allocPoint = _allocPoint;
}
// Set the migrator contract. Can only be called by a manager.
function setMigrator(ICookMigrator _migrator) public {
require(hasRole(EXECUTIVE_ROLE, msg.sender), "FryCook::setMigrator: not authorized");
migrator = _migrator;
}
// Migrate lp token to another lp contract. Can be called by anyone. We trust that migrator contract is good.
function migrate(uint256 _pid) public {
require(address(migrator) != address(0), "FryCook::migrate: no migrator");
PoolInfo storage pool = poolInfo[_pid];
IERC20 lpToken = pool.lpToken;
uint256 bal = lpToken.balanceOf(address(this));
lpToken.safeApprove(address(migrator), bal);
IERC20 newLpToken = migrator.migrate(lpToken);
require(bal == newLpToken.balanceOf(address(this)), "FryCook::migrate: bad");
pool.lpToken = newLpToken;
tokenPid[address(newLpToken)] = _pid;
hasToken[address(newLpToken)] = true;
tokenPid[address(lpToken)] = 0;
hasToken[address(lpToken)] = false;
}
// Return the number of blocks intersecting between the two ranges.
// Assumption: _from <= _to, _from2 <= _to2.
function getIntersection(uint256 _from, uint256 _to, uint256 _from2, uint256 _to2) public pure returns (uint256) {
if (_to <= _from2) {
return 0;
} else if (_to2 <= _from) {
return 0;
} else {
return Math.min(_to, _to2).sub(Math.max(_from, _from2));
}
}
// Return CHKN reward (mint) multiplier over the given range, _from to _to block.
// Multiply against chickenPerBlock to determine the total amount minted
// during that time (not including devaddr share). Ignores "startBlock".
// Assumption: _from <= _to. Otherwise get weird results.
function getMintMultiplier(uint256 _from, uint256 _to) public view returns (uint256) {
if (_from >= bonusEndBlock) { // no bonus
return _to.sub(_from);
} else { // potentially intersect four bonus periods and/or "no bonus"
uint256 mult = 0;
mult = mult.add(getIntersection(_from, _to, 0, bonusStage2Block).mul(BONUS_MULTIPLIER_STAGE_1));
mult = mult.add(getIntersection(_from, _to, bonusStage2Block, bonusStage3Block).mul(BONUS_MULTIPLIER_STAGE_2));
mult = mult.add(getIntersection(_from, _to, bonusStage3Block, bonusStage4Block).mul(BONUS_MULTIPLIER_STAGE_3));
mult = mult.add(getIntersection(_from, _to, bonusStage4Block, bonusEndBlock).mul(BONUS_MULTIPLIER_STAGE_4));
mult = mult.add(Math.max(_to, bonusEndBlock).sub(bonusEndBlock)); // known: _from < bonusEndBlock
return mult;
}
}
// Returns the divisor to determine the developer's share of coins at the
// given block. For M coins minted, dev gets M.div(_val_). For a block range,
// undershoot by providing _to block (dev gets up to, not over, the bonus amount).
function getDevDivisor(uint256 _block) public view returns (uint256) {
if (_block >= devBonusEndBlock) {
return DEV_DIV;
} else if (_block >= devBonusStage4Block) {
return DEV_DIV_STAGE_4;
} else if (_block >= devBonusStage3Block) {
return DEV_DIV_STAGE_3;
} else if (_block >= devBonusStage2Block) {
return DEV_DIV_STAGE_2;
} else {
return DEV_DIV_STAGE_1;
}
}
// Returns the score multiplier for an early bird investor who qualifies
// at _block for _pid. The investment quantity and min threshold are not
// checked; qualification is a precondition.
// The output is scaled by EARLY_BIRD_PRECISION; e.g. a return value of
// 1.5 * EARLY_BIRD_PRECISION indicates a multiplier of 1.5x.
function getEarlyBirdMultiplier(uint256 _block, uint256 _pid) public view returns (uint256) {
PoolInfo storage pool = poolInfo[_pid];
uint256 decliningPortion = pool.earlyBirdExtra.mul(EARLY_BIRD_PRECISION);
if (_block <= pool.earlyBirdGraceEndBlock) {
return decliningPortion.add(EARLY_BIRD_PRECISION);
}
uint256 distance = _block.sub(pool.earlyBirdGraceEndBlock);
uint256 halvings = distance.div(pool.earlyBirdHalvingBlocks); // whole number
if (halvings >= 120) { // asymptotic, up to a point
return EARLY_BIRD_PRECISION; // 1x
}
// approximate exponential decay with linear interpolation between integer exponents
uint256 progress = distance.sub(halvings.mul(pool.earlyBirdHalvingBlocks));
uint256 divisor = (2 ** halvings).mul(1e8); // scaled once for precision
uint256 nextDivisor = (2 ** (halvings.add(1))).mul(1e8); // scaled once for precision
uint256 diff = nextDivisor.sub(divisor);
uint256 alpha = progress.mul(1e8).div(pool.earlyBirdHalvingBlocks); // scaled once for precision
divisor = divisor.add(diff.mul(alpha).div(1e8)); // unscale alpha after mult. to keep precision
// divisor is scaled up; scale up declining portion by same amount before division
return decliningPortion.mul(1e8).div(divisor).add(EARLY_BIRD_PRECISION);
}
// View function to see pending CHKNs on frontend.
function pendingChicken(uint256 _pid, address _user) external view returns (uint256) {
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][_user];
uint256 accChickenPerScore = pool.accChickenPerScore;
uint256 totalScore = pool.totalScore;
if (block.number > pool.lastRewardBlock && totalScore != 0) {
uint256 multiplier = getMintMultiplier(pool.lastRewardBlock, block.number);
uint256 chickenReward = multiplier.mul(chickenPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
accChickenPerScore = accChickenPerScore.add(chickenReward.mul(ACC_CHICKEN_PRECISION).div(totalScore));
}
return user.score.mul(accChickenPerScore).div(ACC_CHICKEN_PRECISION).sub(user.rewardDebt);
}
// Update reward vairables for all pools. Be careful of gas spending!
function massUpdatePools() public {
uint256 length = poolInfo.length;
for (uint256 pid = 0; pid < length; ++pid) {
updatePool(pid);
}
}
// Update reward variables of the given pool to be up-to-date.
function updatePool(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
if (block.number <= pool.lastRewardBlock) {
return;
}
uint256 totalScore = pool.totalScore;
if (totalScore == 0) {
pool.lastRewardBlock = block.number;
return;
}
uint256 multiplier = getMintMultiplier(pool.lastRewardBlock, block.number);
uint256 chickenReward = multiplier.mul(chickenPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
uint256 devReward = chickenReward.div(getDevDivisor(block.number));
uint256 supply = chicken.totalSupply();
// safe mint: don't exceed supply
if (supply.add(chickenReward).add(devReward) > chickenCap) {
chickenReward = chickenCap.sub(supply);
devReward = 0;
}
chicken.mint(address(this), chickenReward);
chicken.mint(devaddr, devReward);
pool.accChickenPerScore = pool.accChickenPerScore.add(chickenReward.mul(ACC_CHICKEN_PRECISION).div(totalScore));
pool.lastRewardBlock = block.number;
}
// Deposit LP tokens to FryCook for CHKN allocation. Deposit 0 to bump a pool update.
function deposit(uint256 _pid, uint256 _amount) public {
_deposit(_pid, _amount, msg.sender, msg.sender);
}
// Deposit LP tokens on behalf of another user.
function depositTo(uint256 _pid, uint256 _amount, address _staker) public {
require(hasRole(WAITSTAFF_ROLE, msg.sender), "FryCook::depositTo: not authorized");
_deposit(_pid, _amount, _staker, msg.sender);
}
// Handle deposits, whether agent-driven or user-initiated.
function _deposit(uint256 _pid, uint256 _amount, address _staker, address _funder) internal {
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][_staker];
updatePool(_pid);
if (user.amount > 0) {
uint256 pending = user.score.mul(pool.accChickenPerScore).div(ACC_CHICKEN_PRECISION).sub(user.rewardDebt);
if (pending > 0) {
safeChickenTransfer(_staker, pending);
}
} else {
user.earlyBirdMult = EARLY_BIRD_PRECISION; // equiv. to 1x
}
// transfer LP tokens; update user info
if (_amount > 0) {
pool.lpToken.safeTransferFrom(_funder, address(this), _amount);
uint256 oldScore = user.score;
user.amount = user.amount.add(_amount);
if (!user.earlyBird && user.amount >= pool.earlyBirdMinShares) {
user.earlyBird = true;
user.earlyBirdMult = getEarlyBirdMultiplier(block.number, _pid); // scaled
}
user.score = user.amount.mul(user.earlyBirdMult).div(EARLY_BIRD_PRECISION); // unscale
pool.totalScore = pool.totalScore.add(user.score).sub(oldScore);
}
// update dept regardless of whether score changes or deposit is > 0
user.rewardDebt = user.score.mul(pool.accChickenPerScore).div(ACC_CHICKEN_PRECISION);
emit Deposit(_staker, _funder, _pid, _amount);
}
// Withdraw staked LP tokens from FryCook. Also transfers pending chicken.
function withdraw(uint256 _pid, uint256 _amount) public {
_withdraw(_pid, _amount, address(msg.sender), address(msg.sender));
}
// Withdraw a user's staked LP tokens as an agent. Also transfers pending
// chicken (to the staking user, NOT the agent).
function withdrawFrom(uint256 _pid, uint256 _amount, address _staker) public {
require(hasRole(WAITSTAFF_ROLE, msg.sender), "FryCook::withdrawFrom: not authorized");
_withdraw(_pid, _amount, _staker, address(msg.sender));
}
// Withdraw LP tokens from FryCook to the agent. Staked chicken
// goes to the _staker. We don't support deferred CHKN transfers; every time
// a deposit or withdrawal happens, pending CHKN must be transferred or
// the books aren't kept clean.
function _withdraw(uint256 _pid, uint256 _amount, address _staker, address _agent) public {
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][_staker];
require(user.amount >= _amount, "FryCook::withdraw: not good");
updatePool(_pid);
uint256 pending = user.score.mul(pool.accChickenPerScore).div(ACC_CHICKEN_PRECISION).sub(user.rewardDebt);
if (pending > 0) {
safeChickenTransfer(_staker, pending);
}
// update user info
if (_amount > 0) {
uint256 oldScore = user.score;
user.amount = user.amount.sub(_amount);
if (user.earlyBird && user.amount < pool.earlyBirdMinShares) {
user.earlyBird = false;
user.earlyBirdMult = EARLY_BIRD_PRECISION;
}
user.score = user.amount.mul(user.earlyBirdMult).div(EARLY_BIRD_PRECISION); // unscale
pool.lpToken.safeTransfer(_agent, _amount);
pool.totalScore = pool.totalScore.add(user.score).sub(oldScore);
}
// update reward debt regardless of whether score changed, since debt may have
user.rewardDebt = user.score.mul(pool.accChickenPerScore).div(ACC_CHICKEN_PRECISION);
emit Withdraw(_staker, _agent, _pid, _amount);
}
// Withdraw without caring about rewards. EMERGENCY ONLY.
function emergencyWithdraw(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
pool.lpToken.safeTransfer(address(msg.sender), user.amount);
pool.totalScore = pool.totalScore.sub(user.score);
emit EmergencyWithdraw(msg.sender, _pid, user.amount);
user.amount = 0;
user.earlyBird = false;
user.earlyBirdMult = EARLY_BIRD_PRECISION;
user.score = 0;
user.rewardDebt = 0;
}
// Safe chicken transfer function, just in case if rounding error causes pool to not have enough CHKNs.
function safeChickenTransfer(address _to, uint256 _amount) internal {
uint256 chickenBal = chicken.balanceOf(address(this));
if (_amount > chickenBal) {
chicken.transfer(_to, chickenBal);
} else {
chicken.transfer(_to, _amount);
}
}
// Update dev address by the previous dev.
function dev(address _devaddr) public {
require(msg.sender == devaddr, "FryCook::dev: wut?");
devaddr = _devaddr;
}
}
{
"compilationTarget": {
"FryCook.sol": "FryCook"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"contract ChickenToken","name":"_chicken","type":"address"},{"internalType":"address","name":"_devaddr","type":"address"},{"internalType":"uint256","name":"_chickenPerBlock","type":"uint256"},{"internalType":"uint256","name":"_startBlock","type":"uint256"},{"internalType":"uint256","name":"_bonusEndBlock","type":"uint256"},{"internalType":"uint256","name":"_devBonusEndBlock","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"staker","type":"address"},{"indexed":true,"internalType":"address","name":"funder","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EmergencyWithdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"staker","type":"address"},{"indexed":true,"internalType":"address","name":"agent","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"ACC_CHICKEN_PRECISION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BONUS_MULTIPLIER_STAGE_1","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BONUS_MULTIPLIER_STAGE_2","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BONUS_MULTIPLIER_STAGE_3","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BONUS_MULTIPLIER_STAGE_4","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEV_DIV","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEV_DIV_STAGE_1","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEV_DIV_STAGE_2","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEV_DIV_STAGE_3","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEV_DIV_STAGE_4","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"EARLY_BIRD_PRECISION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"EXECUTIVE_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"HEAD_CHEF_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SOUS_CHEF_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WAITSTAFF_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address","name":"_staker","type":"address"},{"internalType":"address","name":"_agent","type":"address"}],"name":"_withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_allocPoint","type":"uint256"},{"internalType":"contract IERC20","name":"_lpToken","type":"address"},{"internalType":"uint256","name":"_earlyBirdMinShares","type":"uint256"},{"internalType":"uint256","name":"_earlyBirdInitialBonus","type":"uint256"},{"internalType":"uint256","name":"_earlyBirdGraceEndBlock","type":"uint256"},{"internalType":"uint256","name":"_earlyBirdHalvingBlocks","type":"uint256"},{"internalType":"bool","name":"_withUpdate","type":"bool"}],"name":"add","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"bonusEndBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bonusStage2Block","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bonusStage3Block","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bonusStage4Block","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"chicken","outputs":[{"internalType":"contract ChickenToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"chickenCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"chickenPerBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address","name":"_staker","type":"address"}],"name":"depositTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_devaddr","type":"address"}],"name":"dev","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"devBonusEndBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"devBonusStage2Block","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"devBonusStage3Block","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"devBonusStage4Block","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"devaddr","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"emergencyWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_block","type":"uint256"}],"name":"getDevDivisor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_block","type":"uint256"},{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"getEarlyBirdMultiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_from","type":"uint256"},{"internalType":"uint256","name":"_to","type":"uint256"},{"internalType":"uint256","name":"_from2","type":"uint256"},{"internalType":"uint256","name":"_to2","type":"uint256"}],"name":"getIntersection","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"_from","type":"uint256"},{"internalType":"uint256","name":"_to","type":"uint256"}],"name":"getMintMultiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"hasToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"massUpdatePools","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"migrate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"migrator","outputs":[{"internalType":"contract ICookMigrator","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"address","name":"_user","type":"address"}],"name":"pendingChicken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"poolInfo","outputs":[{"internalType":"contract IERC20","name":"lpToken","type":"address"},{"internalType":"uint256","name":"allocPoint","type":"uint256"},{"internalType":"uint256","name":"lastRewardBlock","type":"uint256"},{"internalType":"uint256","name":"totalScore","type":"uint256"},{"internalType":"uint256","name":"accChickenPerScore","type":"uint256"},{"internalType":"uint256","name":"earlyBirdMinShares","type":"uint256"},{"internalType":"uint256","name":"earlyBirdExtra","type":"uint256"},{"internalType":"uint256","name":"earlyBirdGraceEndBlock","type":"uint256"},{"internalType":"uint256","name":"earlyBirdHalvingBlocks","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_allocPoint","type":"uint256"},{"internalType":"bool","name":"_withUpdate","type":"bool"}],"name":"set","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract ICookMigrator","name":"_migrator","type":"address"}],"name":"setMigrator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"tokenPid","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAllocPoint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"updatePool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"userInfo","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"score","type":"uint256"},{"internalType":"uint256","name":"earlyBirdMult","type":"uint256"},{"internalType":"bool","name":"earlyBird","type":"bool"},{"internalType":"uint256","name":"rewardDebt","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address","name":"_staker","type":"address"}],"name":"withdrawFrom","outputs":[],"stateMutability":"nonpayable","type":"function"}]