// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;
import {IStoneVault} from "../interfaces/IStoneVault.sol";
import {TransferHelper} from "@uniswap/v3-periphery/contracts/libraries/TransferHelper.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
contract DepositHelper is ReentrancyGuard {
address public immutable stone;
address payable public immutable vault;
address public immutable wallet;
mapping(address => uint256) public stakingBalance0f;
event DepositTo(
address indexed srcAddr,
address indexed dstAddr,
address indexed wallet,
uint256 etherAmount,
uint256 stoneAmount
);
constructor(address _stone, address payable _vault, address _wallet) {
require(_stone != address(0), "zero address");
require(_vault != address(0), "zero address");
require(_wallet != address(0), "zero address");
stone = _stone;
vault = _vault;
wallet = _wallet;
}
function deposit(
address _dstAddress
) public payable nonReentrant returns (uint256 stoneMinted) {
require(msg.value > 0, "ZERO Amount");
IStoneVault stoneVault = IStoneVault(vault);
stoneMinted = stoneVault.deposit{value: msg.value}();
TransferHelper.safeTransfer(stone, wallet, stoneMinted);
stakingBalance0f[msg.sender] += msg.value;
emit DepositTo(msg.sender, _dstAddress, wallet, msg.value, stoneMinted);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;
interface IStoneVault {
function deposit() external payable returns (uint256 mintAmount);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.6.0;
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
library TransferHelper {
/// @notice Transfers tokens from the targeted address to the given destination
/// @notice Errors with 'STF' if transfer fails
/// @param token The contract address of the token to be transferred
/// @param from The originating address from which the tokens will be transferred
/// @param to The destination address of the transfer
/// @param value The amount to be transferred
function safeTransferFrom(
address token,
address from,
address to,
uint256 value
) internal {
(bool success, bytes memory data) =
token.call(abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'STF');
}
/// @notice Transfers tokens from msg.sender to a recipient
/// @dev Errors with ST if transfer fails
/// @param token The contract address of the token which will be transferred
/// @param to The recipient of the transfer
/// @param value The value of the transfer
function safeTransfer(
address token,
address to,
uint256 value
) internal {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'ST');
}
/// @notice Approves the stipulated contract to spend the given allowance in the given token
/// @dev Errors with 'SA' if transfer fails
/// @param token The contract address of the token to be approved
/// @param to The target of the approval
/// @param value The amount of the given token the target will be allowed to spend
function safeApprove(
address token,
address to,
uint256 value
) internal {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'SA');
}
/// @notice Transfers ETH to the recipient address
/// @dev Fails with `STE`
/// @param to The destination of the transfer
/// @param value The value to be transferred
function safeTransferETH(address to, uint256 value) internal {
(bool success, ) = to.call{value: value}(new bytes(0));
require(success, 'STE');
}
}
{
"compilationTarget": {
"project:/contracts/mining/DepositHelper.sol": "DepositHelper"
},
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 10
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_stone","type":"address"},{"internalType":"address payable","name":"_vault","type":"address"},{"internalType":"address","name":"_wallet","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"srcAddr","type":"address"},{"indexed":true,"internalType":"address","name":"dstAddr","type":"address"},{"indexed":true,"internalType":"address","name":"wallet","type":"address"},{"indexed":false,"internalType":"uint256","name":"etherAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"stoneAmount","type":"uint256"}],"name":"DepositTo","type":"event"},{"inputs":[{"internalType":"address","name":"_dstAddress","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"stoneMinted","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"stakingBalance0f","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stone","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vault","outputs":[{"internalType":"address payable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"wallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]