文件 1 的 1:CompBalance.sol
pragma solidity ^0.6.0;
pragma experimental ABIEncoderV2;
contract CarefulMath {
enum MathError {
NO_ERROR,
DIVISION_BY_ZERO,
INTEGER_OVERFLOW,
INTEGER_UNDERFLOW
}
function mulUInt(uint a, uint b) internal pure returns (MathError, uint) {
if (a == 0) {
return (MathError.NO_ERROR, 0);
}
uint c = a * b;
if (c / a != b) {
return (MathError.INTEGER_OVERFLOW, 0);
} else {
return (MathError.NO_ERROR, c);
}
}
function divUInt(uint a, uint b) internal pure returns (MathError, uint) {
if (b == 0) {
return (MathError.DIVISION_BY_ZERO, 0);
}
return (MathError.NO_ERROR, a / b);
}
function subUInt(uint a, uint b) internal pure returns (MathError, uint) {
if (b <= a) {
return (MathError.NO_ERROR, a - b);
} else {
return (MathError.INTEGER_UNDERFLOW, 0);
}
}
function addUInt(uint a, uint b) internal pure returns (MathError, uint) {
uint c = a + b;
if (c >= a) {
return (MathError.NO_ERROR, c);
} else {
return (MathError.INTEGER_OVERFLOW, 0);
}
}
function addThenSubUInt(uint a, uint b, uint c) internal pure returns (MathError, uint) {
(MathError err0, uint sum) = addUInt(a, b);
if (err0 != MathError.NO_ERROR) {
return (err0, 0);
}
return subUInt(sum, c);
}
} contract Exponential is CarefulMath {
uint constant expScale = 1e18;
uint constant doubleScale = 1e36;
uint constant halfExpScale = expScale/2;
uint constant mantissaOne = expScale;
struct Exp {
uint mantissa;
}
struct Double {
uint mantissa;
}
function getExp(uint num, uint denom) pure internal returns (MathError, Exp memory) {
(MathError err0, uint scaledNumerator) = mulUInt(num, expScale);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
(MathError err1, uint rational) = divUInt(scaledNumerator, denom);
if (err1 != MathError.NO_ERROR) {
return (err1, Exp({mantissa: 0}));
}
return (MathError.NO_ERROR, Exp({mantissa: rational}));
}
function addExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
(MathError error, uint result) = addUInt(a.mantissa, b.mantissa);
return (error, Exp({mantissa: result}));
}
function subExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
(MathError error, uint result) = subUInt(a.mantissa, b.mantissa);
return (error, Exp({mantissa: result}));
}
function mulScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) {
(MathError err0, uint scaledMantissa) = mulUInt(a.mantissa, scalar);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
return (MathError.NO_ERROR, Exp({mantissa: scaledMantissa}));
}
function mulScalarTruncate(Exp memory a, uint scalar) pure internal returns (MathError, uint) {
(MathError err, Exp memory product) = mulScalar(a, scalar);
if (err != MathError.NO_ERROR) {
return (err, 0);
}
return (MathError.NO_ERROR, truncate(product));
}
function mulScalarTruncateAddUInt(Exp memory a, uint scalar, uint addend) pure internal returns (MathError, uint) {
(MathError err, Exp memory product) = mulScalar(a, scalar);
if (err != MathError.NO_ERROR) {
return (err, 0);
}
return addUInt(truncate(product), addend);
}
function divScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) {
(MathError err0, uint descaledMantissa) = divUInt(a.mantissa, scalar);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
return (MathError.NO_ERROR, Exp({mantissa: descaledMantissa}));
}
function divScalarByExp(uint scalar, Exp memory divisor) pure internal returns (MathError, Exp memory) {
(MathError err0, uint numerator) = mulUInt(expScale, scalar);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
return getExp(numerator, divisor.mantissa);
}
function divScalarByExpTruncate(uint scalar, Exp memory divisor) pure internal returns (MathError, uint) {
(MathError err, Exp memory fraction) = divScalarByExp(scalar, divisor);
if (err != MathError.NO_ERROR) {
return (err, 0);
}
return (MathError.NO_ERROR, truncate(fraction));
}
function mulExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
(MathError err0, uint doubleScaledProduct) = mulUInt(a.mantissa, b.mantissa);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
(MathError err1, uint doubleScaledProductWithHalfScale) = addUInt(halfExpScale, doubleScaledProduct);
if (err1 != MathError.NO_ERROR) {
return (err1, Exp({mantissa: 0}));
}
(MathError err2, uint product) = divUInt(doubleScaledProductWithHalfScale, expScale);
assert(err2 == MathError.NO_ERROR);
return (MathError.NO_ERROR, Exp({mantissa: product}));
}
function mulExp(uint a, uint b) pure internal returns (MathError, Exp memory) {
return mulExp(Exp({mantissa: a}), Exp({mantissa: b}));
}
function mulExp3(Exp memory a, Exp memory b, Exp memory c) pure internal returns (MathError, Exp memory) {
(MathError err, Exp memory ab) = mulExp(a, b);
if (err != MathError.NO_ERROR) {
return (err, ab);
}
return mulExp(ab, c);
}
function divExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
return getExp(a.mantissa, b.mantissa);
}
function truncate(Exp memory exp) pure internal returns (uint) {
return exp.mantissa / expScale;
}
function lessThanExp(Exp memory left, Exp memory right) pure internal returns (bool) {
return left.mantissa < right.mantissa;
}
function lessThanOrEqualExp(Exp memory left, Exp memory right) pure internal returns (bool) {
return left.mantissa <= right.mantissa;
}
function greaterThanExp(Exp memory left, Exp memory right) pure internal returns (bool) {
return left.mantissa > right.mantissa;
}
function isZeroExp(Exp memory value) pure internal returns (bool) {
return value.mantissa == 0;
}
function sub_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
return Exp({mantissa: sub_(a.mantissa, b.mantissa)});
}
function sub_(Double memory a, Double memory b) pure internal returns (Double memory) {
return Double({mantissa: sub_(a.mantissa, b.mantissa)});
}
function sub_(uint a, uint b) pure internal returns (uint) {
return sub_(a, b, "subtraction underflow");
}
function sub_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
require(b <= a, errorMessage);
return a - b;
}
function mul_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
return Exp({mantissa: mul_(a.mantissa, b.mantissa) / expScale});
}
function mul_(Exp memory a, uint b) pure internal returns (Exp memory) {
return Exp({mantissa: mul_(a.mantissa, b)});
}
function mul_(uint a, Exp memory b) pure internal returns (uint) {
return mul_(a, b.mantissa) / expScale;
}
function mul_(Double memory a, Double memory b) pure internal returns (Double memory) {
return Double({mantissa: mul_(a.mantissa, b.mantissa) / doubleScale});
}
function mul_(Double memory a, uint b) pure internal returns (Double memory) {
return Double({mantissa: mul_(a.mantissa, b)});
}
function mul_(uint a, Double memory b) pure internal returns (uint) {
return mul_(a, b.mantissa) / doubleScale;
}
function mul_(uint a, uint b) pure internal returns (uint) {
return mul_(a, b, "multiplication overflow");
}
function mul_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
if (a == 0 || b == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, errorMessage);
return c;
}
function div_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
return Exp({mantissa: div_(mul_(a.mantissa, expScale), b.mantissa)});
}
function div_(Exp memory a, uint b) pure internal returns (Exp memory) {
return Exp({mantissa: div_(a.mantissa, b)});
}
function div_(uint a, Exp memory b) pure internal returns (uint) {
return div_(mul_(a, expScale), b.mantissa);
}
function div_(Double memory a, Double memory b) pure internal returns (Double memory) {
return Double({mantissa: div_(mul_(a.mantissa, doubleScale), b.mantissa)});
}
function div_(Double memory a, uint b) pure internal returns (Double memory) {
return Double({mantissa: div_(a.mantissa, b)});
}
function div_(uint a, Double memory b) pure internal returns (uint) {
return div_(mul_(a, doubleScale), b.mantissa);
}
function div_(uint a, uint b) pure internal returns (uint) {
return div_(a, b, "divide by zero");
}
function div_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
require(b > 0, errorMessage);
return a / b;
}
function add_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
return Exp({mantissa: add_(a.mantissa, b.mantissa)});
}
function add_(Double memory a, Double memory b) pure internal returns (Double memory) {
return Double({mantissa: add_(a.mantissa, b.mantissa)});
}
function add_(uint a, uint b) pure internal returns (uint) {
return add_(a, b, "addition overflow");
}
function add_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
uint c = a + b;
require(c >= a, errorMessage);
return c;
}
} interface ERC20 {
function totalSupply() external view returns (uint256 supply);
function balanceOf(address _owner) external view returns (uint256 balance);
function transfer(address _to, uint256 _value) external returns (bool success);
function transferFrom(address _from, address _to, uint256 _value)
external
returns (bool success);
function approve(address _spender, uint256 _value) external returns (bool success);
function allowance(address _owner, address _spender) external view returns (uint256 remaining);
function decimals() external view returns (uint256 digits);
event Approval(address indexed _owner, address indexed _spender, uint256 _value);
} library Address {
function isContract(address account) internal view returns (bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
if (returndata.length > 0) {
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
} library SafeMath {
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
return c;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
} library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(ERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(ERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(ERC20 token, address spender, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(ERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(ERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function _callOptionalReturn(ERC20 token, bytes memory data) private {
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
} abstract contract GasTokenInterface is ERC20 {
function free(uint256 value) public virtual returns (bool success);
function freeUpTo(uint256 value) public virtual returns (uint256 freed);
function freeFrom(address from, uint256 value) public virtual returns (bool success);
function freeFromUpTo(address from, uint256 value) public virtual returns (uint256 freed);
} contract GasBurner {
GasTokenInterface public constant gasToken = GasTokenInterface(0x0000000000b3F879cb30FE243b4Dfee438691c04);
modifier burnGas(uint _amount) {
if (gasToken.balanceOf(address(this)) >= _amount) {
gasToken.free(_amount);
}
_;
}
} abstract contract CTokenInterface is ERC20 {
function mint(uint256 mintAmount) external virtual returns (uint256);
function accrueInterest() public virtual returns (uint);
function redeem(uint256 redeemTokens) external virtual returns (uint256);
function redeemUnderlying(uint256 redeemAmount) external virtual returns (uint256);
function borrow(uint256 borrowAmount) external virtual returns (uint256);
function borrowIndex() public view virtual returns (uint);
function borrowBalanceStored(address) public view virtual returns(uint);
function repayBorrow(uint256 repayAmount) external virtual returns (uint256);
function repayBorrow() external virtual payable;
function repayBorrowBehalf(address borrower, uint256 repayAmount) external virtual returns (uint256);
function repayBorrowBehalf(address borrower) external virtual payable;
function liquidateBorrow(address borrower, uint256 repayAmount, address cTokenCollateral)
external virtual
returns (uint256);
function liquidateBorrow(address borrower, address cTokenCollateral) external virtual payable;
function exchangeRateCurrent() external virtual returns (uint256);
function supplyRatePerBlock() external virtual returns (uint256);
function borrowRatePerBlock() external virtual returns (uint256);
function totalReserves() external virtual returns (uint256);
function reserveFactorMantissa() external virtual returns (uint256);
function borrowBalanceCurrent(address account) external virtual returns (uint256);
function totalBorrowsCurrent() external virtual returns (uint256);
function getCash() external virtual returns (uint256);
function balanceOfUnderlying(address owner) external virtual returns (uint256);
function underlying() external virtual returns (address);
function getAccountSnapshot(address account) external virtual view returns (uint, uint, uint, uint);
}
abstract contract ComptrollerInterface {
struct CompMarketState {
uint224 index;
uint32 block;
}
function claimComp(address holder) public virtual;
function claimComp(address holder, address[] memory cTokens) public virtual;
function claimComp(address[] memory holders, address[] memory cTokens, bool borrowers, bool suppliers) public virtual;
function compSupplyState(address) public view virtual returns (CompMarketState memory);
function compSupplierIndex(address,address) public view virtual returns (uint);
function compAccrued(address) public view virtual returns (uint);
function compBorrowState(address) public view virtual returns (CompMarketState memory);
function compBorrowerIndex(address,address) public view virtual returns (uint);
function enterMarkets(address[] calldata cTokens) external virtual returns (uint256[] memory);
function exitMarket(address cToken) external virtual returns (uint256);
function getAssetsIn(address account) external virtual view returns (address[] memory);
function markets(address account) public virtual view returns (bool, uint256);
function getAccountLiquidity(address account) external virtual view returns (uint256, uint256, uint256);
function oracle() public virtual view returns (address);
}
contract CompBalance is Exponential, GasBurner {
ComptrollerInterface public constant comp = ComptrollerInterface(
0x3d9819210A31b4961b30EF54bE2aeD79B9c9Cd3B
);
address public constant COMP_ADDR = 0xc00e94Cb662C3520282E6f5717214004A7f26888;
uint224 public constant compInitialIndex = 1e36;
function claimComp(
address _user,
address[] memory _cTokensSupply,
address[] memory _cTokensBorrow
) public burnGas(8) {
_claim(_user, _cTokensSupply, _cTokensBorrow);
ERC20(COMP_ADDR).transfer(msg.sender, ERC20(COMP_ADDR).balanceOf(address(this)));
}
function _claim(
address _user,
address[] memory _cTokensSupply,
address[] memory _cTokensBorrow
) internal {
address[] memory u = new address[](1);
u[0] = _user;
comp.claimComp(u, _cTokensSupply, false, true);
comp.claimComp(u, _cTokensBorrow, true, false);
}
function getBalance(address _user, address[] memory _cTokens) public returns (uint256) {
_claim(_user, _cTokens, _cTokens);
return ERC20(COMP_ADDR).balanceOf(_user);
}
}