// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
interface IUniswapV2Router01 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint256 amountADesired,
uint256 amountBDesired,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
)
external
returns (
uint256 amountA,
uint256 amountB,
uint256 liquidity
);
function addLiquidityETH(
address token,
uint256 amountTokenDesired,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
)
external
payable
returns (
uint256 amountToken,
uint256 amountETH,
uint256 liquidity
);
function removeLiquidity(
address tokenA,
address tokenB,
uint256 liquidity,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
) external returns (uint256 amountA, uint256 amountB);
function removeLiquidityETH(
address token,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external returns (uint256 amountToken, uint256 amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint256 liquidity,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline,
bool approveMax,
uint8 v,
bytes32 r,
bytes32 s
) external returns (uint256 amountA, uint256 amountB);
function removeLiquidityETHWithPermit(
address token,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline,
bool approveMax,
uint8 v,
bytes32 r,
bytes32 s
) external returns (uint256 amountToken, uint256 amountETH);
function swapExactTokensForTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapTokensForExactTokens(
uint256 amountOut,
uint256 amountInMax,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapExactETHForTokens(
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external payable returns (uint256[] memory amounts);
function swapTokensForExactETH(
uint256 amountOut,
uint256 amountInMax,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapExactTokensForETH(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapETHForExactTokens(
uint256 amountOut,
address[] calldata path,
address to,
uint256 deadline
) external payable returns (uint256[] memory amounts);
function quote(
uint256 amountA,
uint256 reserveA,
uint256 reserveB
) external pure returns (uint256 amountB);
function getAmountOut(
uint256 amountIn,
uint256 reserveIn,
uint256 reserveOut
) external pure returns (uint256 amountOut);
function getAmountIn(
uint256 amountOut,
uint256 reserveIn,
uint256 reserveOut
) external pure returns (uint256 amountIn);
function getAmountsOut(uint256 amountIn, address[] calldata path)
external
view
returns (uint256[] memory amounts);
function getAmountsIn(uint256 amountOut, address[] calldata path)
external
view
returns (uint256[] memory amounts);
}
interface IUniswapV2Router02 is IUniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external returns (uint256 amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline,
bool approveMax,
uint8 v,
bytes32 r,
bytes32 s
) external returns (uint256 amountETH);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external;
}
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender)
external
view
returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool);
}
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data)
internal
returns (bytes memory)
{
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(
data
);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data)
internal
view
returns (bytes memory)
{
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data)
internal
returns (bytes memory)
{
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata)
internal
pure
returns (bytes memory)
{
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(
address spender,
uint256 currentAllowance,
uint256 requestedDecrease
);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(
token,
abi.encodeCall(token.transferFrom, (from, to, value))
);
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 requestedDecrease
) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(
spender,
currentAllowance,
requestedDecrease
);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(
IERC20 token,
address spender,
uint256 value
) internal {
bytes memory approvalCall = abi.encodeCall(
token.approve,
(spender, value)
);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(
token,
abi.encodeCall(token.approve, (spender, 0))
);
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data)
private
returns (bool)
{
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success &&
(returndata.length == 0 || abi.decode(returndata, (bool))) &&
address(token).code.length > 0;
}
}
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
interface IWETH is IERC20 {
function deposit() external payable;
function transfer(address to, uint256 value) external returns (bool);
function withdraw(uint256) external;
}
contract HavocAggregator is Ownable, ReentrancyGuard {
using SafeERC20 for IERC20;
IWETH public weth;
bool private locked;
uint256 public refFee;
uint256 public platformFee;
address public feeReceiver;
uint256 public constant PERCENT_DIVIDER = 10000;
mapping(address => bool) public allowedRouter;
event Sent(address to, uint256 amount);
constructor() Ownable(msg.sender) {
allowedRouter[0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = true;
weth = IWETH(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2);
refFee = 20; // 0.2%
platformFee = 50; // 0.5%
feeReceiver = msg.sender;
}
modifier basicValidation(
address aggregateRouter,
uint256 amount,
address referralAddress
) {
require(allowedRouter[aggregateRouter], "Router not allowed");
require(amount != 0, "invalid amount");
require(referralAddress != msg.sender, "Invalid Ref Address");
_;
}
receive() external payable {}
function _safeTransferETH(address _to, uint256 _amount) private {
(bool success, ) = _to.call{value: _amount}("");
require(success, "ETH transfer failed");
}
function swapExactETHForTokens(
address aggregateRouter,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline,
address referralAddress,
uint256 bribeAmount,
bool isFeeToken
)
external
payable
nonReentrant
basicValidation(aggregateRouter, msg.value, referralAddress)
{
uint256 swapValue = swapFee(msg.value, referralAddress, bribeAmount);
weth.deposit{value: swapValue}();
require(
weth.approve(aggregateRouter, swapValue),
"WETH approve failed"
);
executeForTokensTrade(
aggregateRouter,
swapValue,
amountOutMin,
path,
to,
deadline,
isFeeToken
);
}
function swapExactTokensForETH(
address aggregateRouter,
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline,
address referralAddress,
uint256 bribeAmount,
bool isFeeToken
)
external
nonReentrant
basicValidation(aggregateRouter, amountIn, referralAddress)
{
IERC20 token = IERC20(path[0]);
require(
token.balanceOf(msg.sender) >= amountIn,
"Swap: Insufficient token balance"
);
token.safeTransferFrom(msg.sender, address(this), amountIn);
require(
token.approve(aggregateRouter, amountIn),
"Swap: Token approval for router failed"
);
uint256 balanceBeforeSwap = address(this).balance;
executeForETHTrade(
aggregateRouter,
amountIn,
amountOutMin,
path,
address(this),
deadline,
isFeeToken
);
uint256 amountETH = address(this).balance - balanceBeforeSwap;
require(
amountETH >= amountOutMin,
"Swap: Swap did not yield enough ETH"
);
uint256 remainingETH = swapFee(amountETH, referralAddress, bribeAmount);
(bool toSuccess, ) = to.call{value: remainingETH}("");
require(toSuccess, "Swap: ETH transfer to recipient failed");
}
function swapExactTokensForTokens(
address aggregateRouter,
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline,
address referralAddress,
bool isFeeToken
)
external
payable
nonReentrant
basicValidation(aggregateRouter, amountIn, referralAddress)
{
IERC20 token = IERC20(path[0]);
require(
token.balanceOf(msg.sender) >= amountIn,
"Swap: Insufficient token balance"
);
token.safeTransferFrom(msg.sender, address(this), amountIn);
uint256 remAmount = swapTokensFee(
token,
amountIn,
referralAddress,
msg.value
);
require(
token.approve(aggregateRouter, amountIn),
"Swap: Token approval for router failed"
);
executeForTokensTrade(
aggregateRouter,
remAmount,
amountOutMin,
path,
to,
deadline,
isFeeToken
);
}
function swapTokensFee(
IERC20 token,
uint256 amount,
address referralAddress,
uint256 bribeAmount
) internal returns (uint256 remValue) {
if (referralAddress == address(0)) {
referralAddress = feeReceiver;
}
remValue = amount;
if (bribeAmount > 0) {
require(bribeAmount > msg.value, "Invalid bribe value");
_safeTransferETH(block.coinbase, bribeAmount);
}
uint256 tRefFee = (amount * refFee) / PERCENT_DIVIDER;
uint256 tPlatformFee = (amount * platformFee) / PERCENT_DIVIDER;
require(tPlatformFee != 0, "Fee calculates to zero");
remValue = amount - (tPlatformFee + tRefFee);
require(remValue > 0, "SWAP_FEE: Insufficient amount");
token.safeTransfer(feeReceiver, tPlatformFee);
if (tRefFee != 0) {
token.safeTransfer(referralAddress, tRefFee);
}
}
function swapFee(
uint256 amount,
address referralAddress,
uint256 bribeAmount
) internal returns (uint256 remValue) {
if (referralAddress == address(0)) {
referralAddress = feeReceiver;
}
uint256 ethAmount = amount;
if (bribeAmount > 0) {
ethAmount -= bribeAmount;
_safeTransferETH(block.coinbase, bribeAmount);
}
uint256 tRefFee = (ethAmount * refFee) / PERCENT_DIVIDER;
uint256 tPlatformFee = (ethAmount * platformFee) / PERCENT_DIVIDER;
require(tPlatformFee != 0, "Fee calculates to zero");
remValue = ethAmount - (tPlatformFee + tRefFee);
require(remValue > 0, "SWAP_FEE: Insufficient amount");
_safeTransferETH(feeReceiver, tPlatformFee);
if (tRefFee != 0) {
_safeTransferETH(referralAddress, tRefFee);
}
}
function executeForTokensTrade(
address router,
uint256 amountIn,
uint256 minAmountOut,
address[] memory path,
address to,
uint256 deadline,
bool withFee
) private {
if (withFee) {
IUniswapV2Router02(router)
.swapExactTokensForTokensSupportingFeeOnTransferTokens(
amountIn,
minAmountOut,
path,
to,
deadline
);
} else {
IUniswapV2Router02(router).swapExactTokensForTokens(
amountIn,
minAmountOut,
path,
to,
deadline
);
}
}
function executeForETHTrade(
address router,
uint256 amountIn,
uint256 minAmountOut,
address[] memory path,
address to,
uint256 deadline,
bool withFee
) internal {
if (withFee) {
IUniswapV2Router02(router)
.swapExactTokensForETHSupportingFeeOnTransferTokens(
amountIn,
minAmountOut,
path,
to,
deadline
);
} else {
IUniswapV2Router02(router).swapExactTokensForETH(
amountIn,
minAmountOut,
path,
to,
deadline
);
}
}
function sendETH(address payable _to, uint256 _amount) external onlyOwner {
require(_amount <= address(this).balance, "Insufficient Balance");
_to.transfer(_amount);
emit Sent(_to, _amount);
}
function setDEXStatus(address router, bool status) external onlyOwner {
allowedRouter[router] = status;
}
function setRefFee(uint256 _refFee) external onlyOwner {
refFee = _refFee;
}
function setPlatformFee(uint256 _platformFee) external onlyOwner {
platformFee = _platformFee;
}
function setFeeAddress(address _feeAddress) external onlyOwner {
feeReceiver = _feeAddress;
}
function updateWETH(address _token) external onlyOwner {
weth = IWETH(_token);
}
function withdrawETH() external onlyOwner {
payable(owner()).transfer(address(this).balance);
}
function withdrawTokens(address token, uint256 amount) external onlyOwner {
IERC20(token).transfer(owner(), amount);
}
}
{
"compilationTarget": {
"HavocAggregator.sol": "HavocAggregator"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Sent","type":"event"},{"inputs":[],"name":"PERCENT_DIVIDER","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"allowedRouter","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeReceiver","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"platformFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"refFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"sendETH","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"router","type":"address"},{"internalType":"bool","name":"status","type":"bool"}],"name":"setDEXStatus","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_feeAddress","type":"address"}],"name":"setFeeAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_platformFee","type":"uint256"}],"name":"setPlatformFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_refFee","type":"uint256"}],"name":"setRefFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"aggregateRouter","type":"address"},{"internalType":"uint256","name":"amountOutMin","type":"uint256"},{"internalType":"address[]","name":"path","type":"address[]"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"address","name":"referralAddress","type":"address"},{"internalType":"uint256","name":"bribeAmount","type":"uint256"},{"internalType":"bool","name":"isFeeToken","type":"bool"}],"name":"swapExactETHForTokens","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"aggregateRouter","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"amountOutMin","type":"uint256"},{"internalType":"address[]","name":"path","type":"address[]"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"address","name":"referralAddress","type":"address"},{"internalType":"uint256","name":"bribeAmount","type":"uint256"},{"internalType":"bool","name":"isFeeToken","type":"bool"}],"name":"swapExactTokensForETH","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"aggregateRouter","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"amountOutMin","type":"uint256"},{"internalType":"address[]","name":"path","type":"address[]"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"address","name":"referralAddress","type":"address"},{"internalType":"bool","name":"isFeeToken","type":"bool"}],"name":"swapExactTokensForTokens","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"updateWETH","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"weth","outputs":[{"internalType":"contract IWETH","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdrawETH","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]