// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
mapping(bytes32 role => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual returns (bool) {
return _roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessControlBadConfirmation();
}
_revokeRole(role, callerConfirmation);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
if (!hasRole(role, account)) {
_roles[role].hasRole[account] = true;
emit RoleGranted(role, account, _msgSender());
return true;
} else {
return false;
}
}
/**
* @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
if (hasRole(role, account)) {
_roles[role].hasRole[account] = false;
emit RoleRevoked(role, account, _msgSender());
return true;
} else {
return false;
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {ConfirmedOwnerWithProposal} from "./ConfirmedOwnerWithProposal.sol";
/// @title The ConfirmedOwner contract
/// @notice A contract with helpers for basic contract ownership.
contract ConfirmedOwner is ConfirmedOwnerWithProposal {
constructor(address newOwner) ConfirmedOwnerWithProposal(newOwner, address(0)) {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IOwnable} from "../interfaces/IOwnable.sol";
/// @title The ConfirmedOwner contract
/// @notice A contract with helpers for basic contract ownership.
contract ConfirmedOwnerWithProposal is IOwnable {
address private s_owner;
address private s_pendingOwner;
event OwnershipTransferRequested(address indexed from, address indexed to);
event OwnershipTransferred(address indexed from, address indexed to);
constructor(address newOwner, address pendingOwner) {
// solhint-disable-next-line gas-custom-errors
require(newOwner != address(0), "Cannot set owner to zero");
s_owner = newOwner;
if (pendingOwner != address(0)) {
_transferOwnership(pendingOwner);
}
}
/// @notice Allows an owner to begin transferring ownership to a new address.
function transferOwnership(address to) public override onlyOwner {
_transferOwnership(to);
}
/// @notice Allows an ownership transfer to be completed by the recipient.
function acceptOwnership() external override {
// solhint-disable-next-line gas-custom-errors
require(msg.sender == s_pendingOwner, "Must be proposed owner");
address oldOwner = s_owner;
s_owner = msg.sender;
s_pendingOwner = address(0);
emit OwnershipTransferred(oldOwner, msg.sender);
}
/// @notice Get the current owner
function owner() public view override returns (address) {
return s_owner;
}
/// @notice validate, transfer ownership, and emit relevant events
function _transferOwnership(address to) private {
// solhint-disable-next-line gas-custom-errors
require(to != msg.sender, "Cannot transfer to self");
s_pendingOwner = to;
emit OwnershipTransferRequested(s_owner, to);
}
/// @notice validate access
function _validateOwnership() internal view {
// solhint-disable-next-line gas-custom-errors
require(msg.sender == s_owner, "Only callable by owner");
}
/// @notice Reverts if called by anyone other than the contract owner.
modifier onlyOwner() {
_validateOwnership();
_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/utils/ERC721Holder.sol)
pragma solidity ^0.8.20;
import {IERC721Receiver} from "../IERC721Receiver.sol";
/**
* @dev Implementation of the {IERC721Receiver} interface.
*
* Accepts all token transfers.
* Make sure the contract is able to use its token with {IERC721-safeTransferFrom}, {IERC721-approve} or
* {IERC721-setApprovalForAll}.
*/
abstract contract ERC721Holder is IERC721Receiver {
/**
* @dev See {IERC721Receiver-onERC721Received}.
*
* Always returns `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(address, address, uint256, bytes memory) public virtual returns (bytes4) {
return this.onERC721Received.selector;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)
pragma solidity ^0.8.20;
/**
* @dev External interface of AccessControl declared to support ERC-165 detection.
*/
interface IAccessControl {
/**
* @dev The `account` is missing a role.
*/
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
/**
* @dev The caller of a function is not the expected one.
*
* NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
*/
error AccessControlBadConfirmation();
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
* Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*/
function renounceRole(bytes32 role, address callerConfirmation) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC-721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.20;
/**
* @title ERC-721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC-721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be
* reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IOwnable {
function owner() external returns (address);
function transferOwnership(address recipient) external;
function acceptOwnership() external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
// ███╗ ███╗███████╗████████╗ █████╗ ██╗ ██╗██╗███╗ ██╗
// ████╗ ████║╚══════╝╚══██╔══╝██╔══██╗██║ ██║██║████╗ ██║
// ██╔████╔██║ █████╗ ██║ ███████║██║ █╗ ██║██║██╔██╗ ██║
// ██║╚██╔╝██║ ╚════╝ ██║ ██╔══██║██║███╗██║██║██║╚██╗██║
// ██║ ╚═╝ ██║███████╗ ██║ ██║ ██║╚███╔███╔╝██║██║ ╚████║
// ╚═╝ ╚═╝╚══════╝ ╚═╝ ╚═╝ ╚═╝ ╚══╝╚══╝ ╚═╝╚═╝ ╚═══╝
/// @notice Simple interface for checking if an account is blacklisted on the USDC contract.
interface IUSDC {
/**
* @notice Checks if account is blacklisted.
* @param _account The address to check.
* @return bool true if the account is blacklisted, false if the account is not blacklisted.
*/
function isBlacklisted(address _account) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {VRFV2PlusClient} from "../libraries/VRFV2PlusClient.sol";
import {IVRFSubscriptionV2Plus} from "./IVRFSubscriptionV2Plus.sol";
// Interface that enables consumers of VRFCoordinatorV2Plus to be future-proof for upgrades
// This interface is supported by subsequent versions of VRFCoordinatorV2Plus
interface IVRFCoordinatorV2Plus is IVRFSubscriptionV2Plus {
/**
* @notice Request a set of random words.
* @param req - a struct containing following fields for randomness request:
* keyHash - Corresponds to a particular oracle job which uses
* that key for generating the VRF proof. Different keyHash's have different gas price
* ceilings, so you can select a specific one to bound your maximum per request cost.
* subId - The ID of the VRF subscription. Must be funded
* with the minimum subscription balance required for the selected keyHash.
* requestConfirmations - How many blocks you'd like the
* oracle to wait before responding to the request. See SECURITY CONSIDERATIONS
* for why you may want to request more. The acceptable range is
* [minimumRequestBlockConfirmations, 200].
* callbackGasLimit - How much gas you'd like to receive in your
* fulfillRandomWords callback. Note that gasleft() inside fulfillRandomWords
* may be slightly less than this amount because of gas used calling the function
* (argument decoding etc.), so you may need to request slightly more than you expect
* to have inside fulfillRandomWords. The acceptable range is
* [0, maxGasLimit]
* numWords - The number of uint256 random values you'd like to receive
* in your fulfillRandomWords callback. Note these numbers are expanded in a
* secure way by the VRFCoordinator from a single random value supplied by the oracle.
* extraArgs - abi-encoded extra args
* @return requestId - A unique identifier of the request. Can be used to match
* a request to a response in fulfillRandomWords.
*/
function requestRandomWords(VRFV2PlusClient.RandomWordsRequest calldata req) external returns (uint256 requestId);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @notice The IVRFMigratableConsumerV2Plus interface defines the
/// @notice method required to be implemented by all V2Plus consumers.
/// @dev This interface is designed to be used in VRFConsumerBaseV2Plus.
interface IVRFMigratableConsumerV2Plus {
event CoordinatorSet(address vrfCoordinator);
/// @notice Sets the VRF Coordinator address
/// @notice This method should only be callable by the coordinator or contract owner
function setCoordinator(address vrfCoordinator) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @notice The IVRFSubscriptionV2Plus interface defines the subscription
/// @notice related methods implemented by the V2Plus coordinator.
interface IVRFSubscriptionV2Plus {
/**
* @notice Add a consumer to a VRF subscription.
* @param subId - ID of the subscription
* @param consumer - New consumer which can use the subscription
*/
function addConsumer(uint256 subId, address consumer) external;
/**
* @notice Remove a consumer from a VRF subscription.
* @param subId - ID of the subscription
* @param consumer - Consumer to remove from the subscription
*/
function removeConsumer(uint256 subId, address consumer) external;
/**
* @notice Cancel a subscription
* @param subId - ID of the subscription
* @param to - Where to send the remaining LINK to
*/
function cancelSubscription(uint256 subId, address to) external;
/**
* @notice Accept subscription owner transfer.
* @param subId - ID of the subscription
* @dev will revert if original owner of subId has
* not requested that msg.sender become the new owner.
*/
function acceptSubscriptionOwnerTransfer(uint256 subId) external;
/**
* @notice Request subscription owner transfer.
* @param subId - ID of the subscription
* @param newOwner - proposed new owner of the subscription
*/
function requestSubscriptionOwnerTransfer(uint256 subId, address newOwner) external;
/**
* @notice Create a VRF subscription.
* @return subId - A unique subscription id.
* @dev You can manage the consumer set dynamically with addConsumer/removeConsumer.
* @dev Note to fund the subscription with LINK, use transferAndCall. For example
* @dev LINKTOKEN.transferAndCall(
* @dev address(COORDINATOR),
* @dev amount,
* @dev abi.encode(subId));
* @dev Note to fund the subscription with Native, use fundSubscriptionWithNative. Be sure
* @dev to send Native with the call, for example:
* @dev COORDINATOR.fundSubscriptionWithNative{value: amount}(subId);
*/
function createSubscription() external returns (uint256 subId);
/**
* @notice Get a VRF subscription.
* @param subId - ID of the subscription
* @return balance - LINK balance of the subscription in juels.
* @return nativeBalance - native balance of the subscription in wei.
* @return reqCount - Requests count of subscription.
* @return owner - owner of the subscription.
* @return consumers - list of consumer address which are able to use this subscription.
*/
function getSubscription(
uint256 subId
)
external
view
returns (uint96 balance, uint96 nativeBalance, uint64 reqCount, address owner, address[] memory consumers);
/*
* @notice Check to see if there exists a request commitment consumers
* for all consumers and keyhashes for a given sub.
* @param subId - ID of the subscription
* @return true if there exists at least one unfulfilled request for the subscription, false
* otherwise.
*/
function pendingRequestExists(uint256 subId) external view returns (bool);
/**
* @notice Paginate through all active VRF subscriptions.
* @param startIndex index of the subscription to start from
* @param maxCount maximum number of subscriptions to return, 0 to return all
* @dev the order of IDs in the list is **not guaranteed**, therefore, if making successive calls, one
* @dev should consider keeping the blockheight constant to ensure a holistic picture of the contract state
*/
function getActiveSubscriptionIds(uint256 startIndex, uint256 maxCount) external view returns (uint256[] memory);
/**
* @notice Fund a subscription with native.
* @param subId - ID of the subscription
* @notice This method expects msg.value to be greater than or equal to 0.
*/
function fundSubscriptionWithNative(uint256 subId) external payable;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {AccessControl} from "openzeppelin-contracts/contracts/access/AccessControl.sol";
import {IERC20} from "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import {IERC721} from "openzeppelin-contracts/contracts/token/ERC721/IERC721.sol";
import {ERC721Holder} from "openzeppelin-contracts/contracts/token/ERC721/utils/ERC721Holder.sol";
import {ReentrancyGuard} from "openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol";
import {Math} from "openzeppelin-contracts/contracts/utils/math/Math.sol";
import {VRFConsumerBaseV2Plus} from "chainlink/contracts/src/v0.8/vrf/dev/VRFConsumerBaseV2Plus.sol";
import {VRFV2PlusClient} from "chainlink/contracts/src/v0.8/vrf/dev/libraries/VRFV2PlusClient.sol";
import {IUSDC} from "./interfaces/IUSDC.sol";
/// @title RaffleV3
/// @notice Host raffles for various tokens in a trustless manner, with a VRF used to select the winner(s).
/// @notice Inspired by LooksRare Raffle V2.
/// @author @pdito - Metawin protocol team (🎰,🎲)
/// ███╗ ███╗███████╗████████╗ █████╗ ██╗ ██╗██╗███╗ ██╗
/// ████╗ ████║╚══════╝╚══██╔══╝██╔══██╗██║ ██║██║████╗ ██║
/// ██╔████╔██║ █████╗ ██║ ███████║██║ █╗ ██║██║██╔██╗ ██║
/// ██║╚██╔╝██║ ╚════╝ ██║ ██╔══██║██║███╗██║██║██║╚██╗██║
/// ██║ ╚═╝ ██║███████╗ ██║ ██║ ██║╚███╔███╔╝██║██║ ╚████║
/// ╚═╝ ╚═╝╚══════╝ ╚═╝ ╚═╝ ╚═╝ ╚══╝╚══╝ ╚═╝╚═╝ ╚═══╝ ♠♡♣♢
contract RaffleV3 is
AccessControl,
ReentrancyGuard,
VRFConsumerBaseV2Plus,
ERC721Holder
{
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* TYPES */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
struct Raffle {
// holds raffle data
address owner; // raffle prize staker
RaffleStatus status; // current status of the raffle
uint48 entryCount; // current entry count
uint16 platformPercentage; // percentage of the fees that go to the platform wallet
bool feesClaimed; // whether the fees have been claimed
bool isGated; // whether the raffle has gated entry
uint128 fees; // current fees generated from entry sales
uint128 minimumFees; // minimum amount of fees required before the raffle can be drawn
PriceTier[] priceTiers; // price tiers for the raffle
Prize[] prizes; // prizes for the raffle
Entry[] entries; // entries to the raffle
Winner[] winners; // winners of the raffle
}
struct PriceTier {
// holds raffle entry price data for a given tier. Raffles can have multiple tiers.
uint48 tierId; // index of the price tier
uint48 numEntries; // number of entries allocated by purchasing the tier
uint160 price; // price of the tier in wei
}
struct Prize {
// holds prize data for each prize. Raffles can have multiple prizes.
uint8 prizeId; // index of the prize
bool failed; // if the transfer of the prize failed
TokenType prizeType; // type of the prize
address prizeAddress; // address of the prize (address(0) for ETH)
uint256 prizeNumber; // number of the prize (tokenId for ERC721, size in wei for ETH and ERC20s)
}
struct Winner {
// holds winner data for each winner.
uint8 prizeId; // index of the prize
address player; // address of the winner
uint256 randomNumber; // random number used to select the winner
}
struct Entry {
// holds entry data for each entry.
uint48 currentEntriesLength; // cumulative number of entries in the raffle at the point of purchase (inclusive of the entry itself)
address player; // address of the entry
}
struct TokenConfig {
// holds token data for gating
TokenType tokenType; // type of the token
address tokenAddress; // address of the token
uint88 tokenAmount; // amount of tokens - uint88 to pack into a single slot
}
struct RandomnessRequest {
// holds randomness request data.
bool exists; // whether the request exists, reset to false when a request reset is submitted
bool manual; // whether the request will automatically draw the raffle
bool fulfilled; // whether the request has been fulfilled
uint48 requestTime; // time the request was made
uint80 raffleId; // id of the raffle the request is for
uint256 randomWord; // random number returned by Chainlink
}
struct CreateRaffleCallData {
// parameters required for creating a raffle
uint16 commissionInBasisPoints; // percentage of the funds raised that goes to the platform, in basis points (1% = 100)
uint128 minimumFees; // minimum amount of fees required before the raffle can be drawn
PriceTierCallData[] priceTiers; // price tiers for the raffle
PrizeCallData[] prizes; // prizes for the raffle
}
struct PriceTierCallData {
// parameters required for creating a PriceTier as part of a Raffle
uint48 numEntries; // number of entries allocated by purchasing the tier
uint160 price; // price of the tier in wei
}
struct PrizeCallData {
// parameters required for creating a Prize as part of a Raffle
TokenType prizeType; // type of the prize
address prizeAddress; // address of the prize (address(0) for ETH)
uint256 prizeNumber; // number of the prize (tokenId for ERC721, size in wei for ETH and ERC20s)
}
enum RaffleStatus {
NULL, // null state, to avoid CREATED being default state
CREATED, // the operator creates the raffle
OPEN, // the owner stakes the token for the raffle
RANDOMNESS_REQUESTED, // the operator requests randomness to select the winners
RANDOMNESS_FULFILLED, // the randomness request was fulfilled
DRAWN, // the winners were calculated, prizes can be distributed
PRIZES_DISTRIBUTED, // the prices were distributed to the winners
CLOSED, // the raffle has finished and prizes have been distributed
CANCELLED // the operator has cancelled the raffle
}
enum TokenType {
ETH, // network native token
ERC20, // ERC20 token
ERC721 // ERC721 token
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STATE VARIABLES */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// Config
uint16 constant ONE_HUNDRED_PERCENT_IN_BASIS_POINTS = 10_000; // 100% in basis points
uint32 constant MAXIMUM_NUMBER_PRIZES_PER_RAFFLE = 10; // max number of prizes per raffle
bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR"); // role for the operator (platform)
address payable public platformWallet; // address of the wallet controlled by the platform that will receive the platform fee
bool public paused = false; // pause for contract
uint48 public randomnessRequestResetTime = uint48(5 minutes); // time after which a randomness request can be reset if not fulfilled
// Chainlink VRF Config
uint256 s_subscriptionId;
address vrfCoordinator;
bytes32 s_keyHash;
uint32 callbackGasLimit = 2500000;
uint16 requestConfirmations = 3;
uint32 numWords = 1;
// Chainlink Data
mapping(uint256 => RandomnessRequest) public randomnessRequests; // maps Chainlink requestId to it's data
mapping(uint256 => uint256) public randomnessLookup; // maps raffleId to it's Chainlink requestId
// USDC Data
IUSDC public immutable usdc; // USDC contract, used to check if a user is blacklisted
// Raffles Data
uint256 public rafflesCount; // number of raffles created
mapping(uint256 => Raffle) public raffles; // maps a raffleId to it's data
mapping(bytes32 => bool) public freeEntryUsed; // maps hash (raffleId, address) => bool to denote free entry usage
mapping(uint256 => TokenConfig) public tokenGates; // maps a raffleId to it's token gate
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EVENTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// Config
event PauseToggled(bool paused);
// Chainlink Events
event RandomnessRequested(uint256 raffleId, uint256 requestId);
event RandomnessReceived(
uint256 raffleId,
uint256 requestId,
uint256[] randomness
);
// Raffle Events
event RaffleCreated(
uint256 indexed raffleId,
uint256 priceTierCount,
uint256 prizeCount
);
event RaffleStarted(
uint256 indexed raffleId,
address indexed owner,
uint256 timestamp
);
event RaffleDrawn(
uint256 indexed raffleId,
address[] winners,
uint256 timestamp
);
event RaffleClosed(
uint256 indexed raffleId,
uint256 amountRaised,
uint48 entries,
uint256 timestamp
);
event RaffleCancelled(
uint256 indexed raffleId,
uint256 amountRaised,
uint256 timestamp
);
event FeesTransferred(
uint256 raffleId,
uint256 platformFees,
uint256 ownerFees
);
event PrizeTransferred(uint256 raffleId, uint8 prizeId, address winner);
event PrizeTransferFailed(uint256 raffleId, uint8 prizeId, address winner);
// Player Events
event EntrySold(
uint256 indexed raffleId,
address indexed buyer,
uint48 entriesCount,
uint256 priceTierId,
uint8 brandId
);
event FreeEntry(
uint256 indexed raffleId,
address[] buyer,
uint256 amount,
uint48 entriesCount,
uint8 brandId
);
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
error EmergencyWithdrawalError();
error FeesAlreadyClaimed();
error GatingTokenBalanceTooLow();
error InvalidCommissionPercentage();
error InvalidFeeSupplied();
error InvalidFreeEntry();
error InvalidGatingToken();
error InvalidNativeTokenAmountStaked();
error InvalidPriceTier();
error InvalidPriceTiersCount();
error InvalidPrize();
error InvalidPrizesCount();
error InvalidStatus();
error NativeTokenTransferFailed();
error NotEnoughFeesRaised();
error Paused();
error RandomnessRequestAlreadyFulfilled();
error RandomnessRequestDoesNotExist();
error RandomnessRequestResetTooEarly();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTRUCTOR */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @notice the contract constructor
/// @param _platformWallet address of the wallet controlled by the platform that will receive the platform fee
/// @param _usdc address of the USDC contract
/// @param _subscriptionId subscription id for the Chainlink VRF
/// @param _vrfCoordinator address of the Chainlink VRF coordinator
/// @param _keyHash key hash for the Chainlink VRF
constructor(
address _platformWallet,
address _usdc,
uint256 _subscriptionId,
address _vrfCoordinator,
bytes32 _keyHash
) VRFConsumerBaseV2Plus(_vrfCoordinator) {
platformWallet = payable(_platformWallet);
usdc = IUSDC(_usdc);
s_subscriptionId = _subscriptionId;
vrfCoordinator = _vrfCoordinator;
s_keyHash = _keyHash;
_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
_grantRole(OPERATOR_ROLE, msg.sender);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* MODIFIERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @notice modifier to check if the contract is not paused
modifier whenNotPaused() {
if (paused) revert Paused();
_;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EXTERNAL */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @notice creates a raffle. A raffle can have multiple prizes, across the native token (ETH), ERC20s & ERC721s.
/// @dev if the raffle has gated entry, the setRaffleGate must be called.
/// @param _params parameters required for creating a raffle
/// @return raffleId the id of the raffle created
function createRaffle(
CreateRaffleCallData calldata _params
) external onlyRole(OPERATOR_ROLE) nonReentrant returns (uint256) {
uint256 priceTiersCount = _params.priceTiers.length;
uint256 prizesCount = _params.prizes.length;
if (priceTiersCount == 0) {
revert InvalidPriceTiersCount();
}
if (
prizesCount == 0 || prizesCount > MAXIMUM_NUMBER_PRIZES_PER_RAFFLE
) {
revert InvalidPrizesCount();
}
if (_params.commissionInBasisPoints > 10000) {
revert InvalidCommissionPercentage();
}
uint256 raffleId = ++rafflesCount;
Raffle storage raffle = raffles[raffleId];
raffle.status = RaffleStatus.CREATED;
raffle.platformPercentage = _params.commissionInBasisPoints;
raffle.minimumFees = _params.minimumFees;
for (uint256 i; i < prizesCount; ++i) {
PrizeCallData memory prize = _params.prizes[i];
if (
prize.prizeType > TokenType.ERC721 ||
(prize.prizeNumber == 0 &&
prize.prizeType != TokenType.ERC721) ||
(prize.prizeType != TokenType.ETH &&
prize.prizeAddress == address(0))
) revert InvalidPrize();
Prize storage newPrize = raffle.prizes.push();
newPrize.prizeId = uint8(i);
newPrize.prizeType = prize.prizeType;
newPrize.prizeAddress = prize.prizeAddress;
newPrize.prizeNumber = prize.prizeNumber;
}
for (uint256 j; j < priceTiersCount; ++j) {
PriceTierCallData memory priceTier = _params.priceTiers[j];
if (priceTier.numEntries == 0 || (priceTier.price == 0 && j != 0))
revert InvalidPriceTier();
if (j > 0 && (priceTier.price <= raffle.priceTiers[j - 1].price))
revert InvalidPriceTier();
PriceTier storage newPriceTier = raffle.priceTiers.push();
newPriceTier.tierId = uint48(j);
newPriceTier.numEntries = priceTier.numEntries;
newPriceTier.price = priceTier.price;
}
// prime the entries array to reduce excessive gas that would typically apply for the first entrant
Entry memory entry = Entry({
player: address(0),
currentEntriesLength: 0
});
raffle.entries.push(entry);
delete raffle.entries[0];
emit RaffleCreated(raffleId, priceTiersCount, prizesCount);
return raffleId;
}
/// @notice everyone can call this method and will receive all fees ex-platform fees
/// @param _raffleId the id of the raffle
/// @dev the caller must have approved the raffle contract to spend any ERC tokens
function stake(uint256 _raffleId) external payable nonReentrant {
Raffle storage raffle = raffles[_raffleId];
uint256 numOfPrizes = raffle.prizes.length;
if (raffle.status != RaffleStatus.CREATED) revert InvalidStatus();
if (numOfPrizes == 0) revert InvalidPrizesCount();
raffle.owner = msg.sender;
uint256 counterETH = 0;
for (uint256 i; i < numOfPrizes; ++i) {
Prize memory prize = raffle.prizes[i];
if (prize.prizeType == TokenType.ETH) {
counterETH += prize.prizeNumber;
} else if (prize.prizeType == TokenType.ERC20) {
IERC20(prize.prizeAddress).transferFrom(
msg.sender,
address(this),
prize.prizeNumber
);
} else if (prize.prizeType == TokenType.ERC721) {
IERC721(prize.prizeAddress).safeTransferFrom(
msg.sender,
address(this),
prize.prizeNumber
);
} else {
revert InvalidPrize();
}
}
raffle.status = RaffleStatus.OPEN;
if (counterETH != msg.value) revert InvalidNativeTokenAmountStaked();
emit RaffleStarted(_raffleId, msg.sender, block.timestamp);
}
/// @notice adds a token gate to the raffle
/// @param _raffleId the id of the raffle
/// @param _tokenType the type of token
/// @param _tokenAddress the address of the token
/// @param _tokenAmount the amount of tokens than must be held
function setTokenGate(
uint256 _raffleId,
TokenType _tokenType,
address _tokenAddress,
uint88 _tokenAmount
) external onlyRole(OPERATOR_ROLE) {
Raffle storage raffle = raffles[_raffleId];
raffle.isGated = true;
if (_tokenAddress == address(0) || _tokenAmount == 0)
revert InvalidGatingToken();
TokenConfig storage tokenGate = tokenGates[_raffleId];
tokenGate.tokenType = _tokenType;
tokenGate.tokenAddress = _tokenAddress;
tokenGate.tokenAmount = _tokenAmount;
}
/// @notice removes a token gate from the raffle
/// @param _raffleId the id of the raffle
function removeTokenGate(
uint256 _raffleId
) external onlyRole(OPERATOR_ROLE) {
Raffle storage raffle = raffles[_raffleId];
raffle.isGated = false;
delete tokenGates[_raffleId];
}
/// @notice buy an entry in the raffle
/// @param _raffleId the id of the raffle
/// @param _priceTierIndex the index of the price tier in the price tiers array
/// @param _brandId the brand id of source site
function buyEntry(
uint256 _raffleId,
uint256 _priceTierIndex,
uint8 _brandId
) external payable whenNotPaused nonReentrant {
Raffle storage raffle = raffles[_raffleId];
if (raffle.status != RaffleStatus.OPEN) revert InvalidStatus();
if (raffle.isGated) _validateTokenConfig(_raffleId, msg.sender);
uint256 priceTierCount = raffle.priceTiers.length;
if (_priceTierIndex >= priceTierCount) revert InvalidPriceTier();
PriceTier memory priceTier = raffle.priceTiers[_priceTierIndex];
if (msg.value != priceTier.price) revert InvalidFeeSupplied();
if (priceTier.price == 0) {
bytes32 key = keccak256(abi.encode(msg.sender, _raffleId));
if (freeEntryUsed[key]) revert InvalidFreeEntry();
freeEntryUsed[key] = true;
}
// if it's the first entry, overwrite placeholder - avoids first entrant paying excessive gas
if (raffle.entryCount == 0) {
raffle.entries[0].player = msg.sender;
raffle.entries[0].currentEntriesLength = priceTier.numEntries;
} else {
Entry memory entryBought = Entry({
player: msg.sender,
currentEntriesLength: raffle.entryCount + priceTier.numEntries
});
raffle.entries.push(entryBought);
}
raffle.fees += uint128(msg.value);
raffle.entryCount += priceTier.numEntries;
emit EntrySold(
_raffleId,
msg.sender,
raffle.entryCount,
_priceTierIndex,
_brandId
);
}
/// @notice allows the operator to distribute free entries to users
/// @param _raffleId the id of the raffle
/// @param _addresses array of addresses receiving a free entry
/// @param _brandId the brand id of source site
function giveBatchEntriesForFree(
uint256 _raffleId,
address[] memory _addresses,
uint8 _brandId
) external onlyRole(OPERATOR_ROLE) whenNotPaused nonReentrant {
Raffle storage raffle = raffles[_raffleId];
if (raffle.status != RaffleStatus.OPEN) revert InvalidStatus();
uint256 addressesLength = _addresses.length;
uint48 validPlayersCount = 0;
for (uint256 i; i < addressesLength; ++i) {
address player = _addresses[i];
Entry memory entry = Entry({
player: player,
currentEntriesLength: uint48(raffle.entryCount + i + 1)
});
// First entry replaces placeholder
if (raffle.entryCount == 0 && i == 0) {
raffle.entries[0] = entry;
} else {
raffle.entries.push(entry);
}
unchecked {
++validPlayersCount;
}
}
raffle.entryCount += validPlayersCount;
emit FreeEntry(
_raffleId,
_addresses,
addressesLength,
raffle.entryCount,
_brandId
);
}
/// @notice enables the operator to end the raffle and submit a randomness request to draw winners
/// @param _raffleId id of the raffle
/// @param _manual if the post randomness draw and prize distribution should be manual instead of automatic
function setWinners(
uint256 _raffleId,
bool _manual
) external onlyRole(OPERATOR_ROLE) whenNotPaused nonReentrant {
Raffle storage raffle = raffles[_raffleId];
if (raffle.status != RaffleStatus.OPEN) revert InvalidStatus();
if (raffle.fees < raffle.minimumFees) revert NotEnoughFeesRaised();
_requestRandomness(_raffleId, _manual);
}
/// @notice enables the operator to draw winners for a raffle after the randomness request has been fulfilled
/// @param _raffleId id of the raffle
function drawWinners(
uint256 _raffleId
) external onlyRole(OPERATOR_ROLE) whenNotPaused nonReentrant {
Raffle storage raffle = raffles[_raffleId];
if (raffle.status != RaffleStatus.RANDOMNESS_FULFILLED)
revert InvalidStatus();
_drawWinners(_raffleId);
}
/// @notice enables the operator to transfer prizes and fees after winners have been drawn
/// @param _raffleId id of the raffle
function transferPrizes(
uint256 _raffleId
) external onlyRole(OPERATOR_ROLE) whenNotPaused nonReentrant {
Raffle storage raffle = raffles[_raffleId];
if (raffle.status != RaffleStatus.DRAWN) revert InvalidStatus();
_transferPrizes(_raffleId);
}
/// @notice recover prizes where transfers failed
/// @param _raffleId id of the raffle
/// @param _prizeId id of the prize
function recoverPrize(
uint256 _raffleId,
uint8 _prizeId
) external onlyRole(OPERATOR_ROLE) whenNotPaused nonReentrant {
Raffle storage raffle = raffles[_raffleId];
Prize memory prize = raffle.prizes[_prizeId];
if (prize.failed) {
_transferPrize(_raffleId, prize, raffle.owner);
}
}
/// @notice enables the operator to transfer fees after winners have been drawn
/// @param _raffleId id of the raffle
function transferFees(
uint256 _raffleId
) external onlyRole(OPERATOR_ROLE) whenNotPaused nonReentrant {
Raffle storage raffle = raffles[_raffleId];
if (raffle.status != RaffleStatus.PRIZES_DISTRIBUTED)
revert InvalidStatus();
_transferFees(_raffleId);
}
/// @notice If a randomness request fails to be fulfilled, the operator can reset the raffle after a set time
/// @param _raffleId id of the raffle
function resetRandomnessRequest(
uint256 _raffleId
) external onlyRole(OPERATOR_ROLE) nonReentrant {
Raffle storage raffle = raffles[_raffleId];
RandomnessRequest storage request = randomnessRequests[
randomnessLookup[_raffleId]
];
if (!request.exists) revert RandomnessRequestDoesNotExist();
if (request.fulfilled) revert RandomnessRequestAlreadyFulfilled();
if (raffle.status != RaffleStatus.RANDOMNESS_REQUESTED)
revert InvalidStatus();
if (request.requestTime + randomnessRequestResetTime > block.timestamp)
revert RandomnessRequestResetTooEarly();
request.exists = false;
raffle.status = RaffleStatus.OPEN;
}
/// @notice the operator can cancel the raffle, the prizes are sent back to the owner
/// @notice fees are sent to the platform wallet for redistribution to the players
/// @dev for fairness, raffles cannot be cancelled once winners have been drawn
/// @param _raffleId Id of the raffle
function cancelRaffle(
uint256 _raffleId
) external onlyRole(OPERATOR_ROLE) nonReentrant {
Raffle storage raffle = raffles[_raffleId];
if (
raffle.status == RaffleStatus.DRAWN ||
raffle.status == RaffleStatus.PRIZES_DISTRIBUTED ||
raffle.status == RaffleStatus.CLOSED ||
raffle.status == RaffleStatus.CANCELLED
) revert InvalidStatus();
// only transfer prizes and fees if the raffle was opened at any point
if (
raffle.status == RaffleStatus.OPEN ||
raffle.status == RaffleStatus.RANDOMNESS_REQUESTED
) {
for (uint256 i; i < raffle.prizes.length; ++i) {
Prize memory prize = raffle.prizes[i];
_transferPrize(_raffleId, prize, raffle.owner);
}
(bool sentPlatform, ) = platformWallet.call{value: raffle.fees}("");
if (!sentPlatform) revert NativeTokenTransferFailed();
raffle.feesClaimed = true;
}
raffle.status = RaffleStatus.CANCELLED;
emit RaffleCancelled(_raffleId, raffle.fees, block.timestamp);
}
/// @notice change the subscription id for Chainlink
/// @param _id the new id
function setSubscriptionId(
uint256 _id
) external onlyRole(DEFAULT_ADMIN_ROLE) {
s_subscriptionId = _id;
}
/// @notice change the address of the platform wallet, the wallet that will receive platform fees when the raffle is closed
/// @notice this wallet also receives the fees if the raffle is cancelled
/// @param _newAddress new address of the platform
function setPlatformAddress(
address payable _newAddress
) external onlyRole(DEFAULT_ADMIN_ROLE) {
platformWallet = _newAddress;
}
/// @notice toggles contract pause
/// @notice when paused entries cannot be bought, raffles cannot be drawn and prizes cannot be transferred
function togglePaused() external onlyRole(OPERATOR_ROLE) {
paused = !paused;
emit PauseToggled(paused);
}
/// @notice change the time after which a randomness request can be reset if it is not fulfilled
/// @param _time new time in seconds
function setRandomnessRequestResetTime(
uint48 _time
) external onlyRole(DEFAULT_ADMIN_ROLE) {
randomnessRequestResetTime = _time;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @notice validates if the sender has the required balance of the gating token
/// @param _raffleId id of the raffle
function _validateTokenConfig(
uint256 _raffleId,
address _player
) internal view {
TokenConfig memory tokenGate = tokenGates[_raffleId];
if (tokenGate.tokenType == TokenType.ERC20) {
IERC20 token = IERC20(tokenGate.tokenAddress);
if (token.balanceOf(_player) < tokenGate.tokenAmount)
revert GatingTokenBalanceTooLow();
} else if (tokenGate.tokenType == TokenType.ERC721) {
IERC721 token = IERC721(tokenGate.tokenAddress);
if (token.balanceOf(_player) < tokenGate.tokenAmount)
revert GatingTokenBalanceTooLow();
}
}
/// @notice requests randomness from the Chainlink VRF2 consumer
/// @param _raffleId id of the raffle
/// @param _manual if the post randomness draw and prize distribution should be manual instead of automatic
function _requestRandomness(uint256 _raffleId, bool _manual) internal {
Raffle storage raffle = raffles[_raffleId];
raffle.status = RaffleStatus.RANDOMNESS_REQUESTED;
uint256 requestId = s_vrfCoordinator.requestRandomWords(
VRFV2PlusClient.RandomWordsRequest({
keyHash: s_keyHash,
subId: s_subscriptionId,
requestConfirmations: requestConfirmations,
callbackGasLimit: callbackGasLimit,
numWords: numWords,
// Set nativePayment to true to pay for VRF requests with Sepolia ETH instead of LINK
extraArgs: VRFV2PlusClient._argsToBytes(
VRFV2PlusClient.ExtraArgsV1({nativePayment: true})
)
})
);
randomnessRequests[requestId].exists = true;
randomnessRequests[requestId].manual = _manual;
randomnessRequests[requestId].requestTime = uint48(block.timestamp);
randomnessRequests[requestId].raffleId = uint80(_raffleId);
randomnessLookup[_raffleId] = requestId;
emit RandomnessRequested(_raffleId, requestId);
}
/// @notice called by the Chainlink VRF2 consumer when a randomness request is fulfilled
/// @param _requestId id of the randomness request
/// @param _randomWords array of random words
function fulfillRandomWords(
uint256 _requestId,
uint256[] calldata _randomWords
) internal override {
RandomnessRequest storage request = randomnessRequests[_requestId];
if (request.exists) {
uint256 raffleId = request.raffleId;
Raffle storage raffle = raffles[raffleId];
emit RandomnessReceived(raffleId, _requestId, _randomWords);
if (raffle.status == RaffleStatus.RANDOMNESS_REQUESTED) {
request.fulfilled = true;
request.randomWord = _randomWords[0];
raffle.status = RaffleStatus.RANDOMNESS_FULFILLED;
if (!request.manual && !paused) {
_drawWinners(raffleId);
_transferPrizes(raffleId);
_transferFees(raffleId);
}
}
}
}
/// @notice draws winners for a raffle from the randomness received
/// @notice we use resampling via a bitmap to ensure that no duplicate winners are drawn
/// @notice each prize is drawn from randomness based on the hash of the previous random number
/// @param _raffleId id of the raffle
function _drawWinners(uint256 _raffleId) internal {
uint256 requestId = randomnessLookup[_raffleId];
RandomnessRequest memory randomnessRequest = randomnessRequests[
requestId
];
if (!randomnessRequest.exists) {
revert RandomnessRequestDoesNotExist();
}
Raffle storage raffle = raffles[_raffleId];
if (raffle.status != RaffleStatus.RANDOMNESS_FULFILLED) {
revert InvalidStatus();
}
uint256 prizesCount = raffle.prizes.length;
uint256 entriesCount = raffle.entries.length;
uint256 currentEntryIndex = uint256(
raffle.entries[entriesCount - 1].currentEntriesLength
);
uint256[] memory winningEntriesBitmap = new uint256[](
(currentEntryIndex >> 8) + 1
);
uint256 randomWord = randomnessRequest.randomWord;
uint256 winningEntry;
address[] memory winners = new address[](prizesCount);
uint256 winnerSelectionAttempts = 0;
for (uint256 i; i < prizesCount; ) {
Prize memory prize = raffle.prizes[i];
if (winnerSelectionAttempts >= currentEntryIndex) {
winners[i] = raffle.owner;
raffle.winners.push(
Winner({
player: raffle.owner,
randomNumber: randomWord,
prizeId: prize.prizeId
})
);
unchecked {
++i;
}
randomWord = uint256(keccak256(abi.encodePacked(randomWord)));
continue;
}
(
randomWord,
winningEntry,
winningEntriesBitmap
) = _searchForWinningEntryUntilThereIsNotADuplicate(
randomWord,
currentEntryIndex,
winningEntriesBitmap
);
winnerSelectionAttempts++;
address winner = raffle
.entries[_findUpperBound(raffle.entries, winningEntry)]
.player;
// Prevent USDC winners from being blacklisted
if (
prize.prizeType == TokenType.ERC20 &&
prize.prizeAddress == address(usdc) &&
usdc.isBlacklisted(winner)
) {
while (usdc.isBlacklisted(winner)) {
if (winnerSelectionAttempts >= currentEntryIndex) {
winner = raffle.owner;
break;
}
randomWord = uint256(
keccak256(abi.encodePacked(randomWord))
);
(
randomWord,
winningEntry,
winningEntriesBitmap
) = _searchForWinningEntryUntilThereIsNotADuplicate(
randomWord,
currentEntryIndex,
winningEntriesBitmap
);
winnerSelectionAttempts++;
winner = raffle
.entries[_findUpperBound(raffle.entries, winningEntry)]
.player;
}
}
winners[i] = winner;
raffle.winners.push(
Winner({
player: winner,
randomNumber: randomWord,
prizeId: prize.prizeId
})
);
randomWord = uint256(keccak256(abi.encodePacked(randomWord)));
unchecked {
++i;
}
}
raffle.status = RaffleStatus.DRAWN;
emit RaffleDrawn(_raffleId, winners, block.timestamp);
}
/// @notice transfers prizes and fees to the winners, the owner and the platform
/// @param _raffleId id of the raffle
function _transferPrizes(uint256 _raffleId) internal {
Raffle storage raffle = raffles[_raffleId];
if (raffle.status != RaffleStatus.DRAWN) {
revert InvalidStatus();
}
for (uint256 i; i < raffle.winners.length; i++) {
Winner memory winner = raffle.winners[i];
if (winner.player == address(0)) {
_transferPrize(
_raffleId,
raffle.prizes[winner.prizeId],
raffle.owner
);
} else {
_transferPrize(
_raffleId,
raffle.prizes[winner.prizeId],
winner.player
);
}
}
raffle.status = RaffleStatus.PRIZES_DISTRIBUTED;
}
/// @notice transfers fees to the platform and owner
/// @param _raffleId id of the raffle
function _transferFees(uint256 _raffleId) internal {
Raffle storage raffle = raffles[_raffleId];
if (raffle.feesClaimed) revert FeesAlreadyClaimed();
uint256 platformFees = (raffle.fees * raffle.platformPercentage) /
ONE_HUNDRED_PERCENT_IN_BASIS_POINTS;
uint256 ownerFees = raffle.fees - platformFees;
(bool sentPlatform, ) = platformWallet.call{value: platformFees}("");
(bool sentOwner, ) = raffle.owner.call{value: ownerFees}("");
if (!sentPlatform || !sentOwner) revert NativeTokenTransferFailed();
raffle.feesClaimed = true;
raffle.status = RaffleStatus.CLOSED;
emit FeesTransferred(_raffleId, platformFees, ownerFees);
}
/// @notice transfers a prize to a winner
/// @param _prize prize to transfer
/// @param _winner address of the winner
function _transferPrize(
uint256 _raffleId,
Prize memory _prize,
address _winner
) internal {
bool success = false;
if (_prize.prizeType == TokenType.ETH && _prize.prizeNumber > 0) {
(success, ) = _winner.call{value: _prize.prizeNumber}("");
if (!success) {
Raffle storage raffle = raffles[_raffleId];
raffle.prizes[_prize.prizeId].failed = true;
}
} else if (_prize.prizeType == TokenType.ERC20) {
try
IERC20(_prize.prizeAddress).transfer(
_winner,
_prize.prizeNumber
)
{
success = true;
} catch {
Raffle storage raffle = raffles[_raffleId];
raffle.prizes[_prize.prizeId].failed = true;
}
} else if (_prize.prizeType == TokenType.ERC721) {
try
IERC721(_prize.prizeAddress).safeTransferFrom(
address(this),
_winner,
_prize.prizeNumber
)
{
success = true;
} catch {
Raffle storage raffle = raffles[_raffleId];
raffle.prizes[_prize.prizeId].failed = true;
}
}
if (success) {
emit PrizeTransferred(_raffleId, _prize.prizeId, _winner);
} else {
emit PrizeTransferFailed(_raffleId, _prize.prizeId, _winner);
}
}
/// @notice searches for a winning entry until there is not a duplicate
/// @param randomWord current random word
/// @param totalEntries total entries
/// @param winningEntriesBitmap bitmap of winning entries
/// @return winningEntry winning entry
/// @return randomWord updated random word
/// @return winningEntriesBitmap updated bitmap of winning entries
function _searchForWinningEntryUntilThereIsNotADuplicate(
uint256 randomWord,
uint256 totalEntries,
uint256[] memory winningEntriesBitmap
) internal pure returns (uint256, uint256, uint256[] memory) {
uint256 winningEntry = (randomWord % totalEntries) + 1;
uint256 bucket = winningEntry >> 8;
uint256 mask = 1 << (winningEntry & 0xff);
while (winningEntriesBitmap[bucket] & mask != 0) {
randomWord = uint256(keccak256(abi.encodePacked(randomWord)));
winningEntry = (randomWord % totalEntries) + 1;
bucket = winningEntry >> 8;
mask = 1 << (winningEntry & 0xff);
}
winningEntriesBitmap[bucket] |= mask;
return (randomWord, winningEntry, winningEntriesBitmap);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PRIVATE */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @notice adds two numbers without checking for overflow
/// @param a first number
/// @param b second number
/// @return uint256 sum of the two numbers
function _unsafeAdd(uint256 a, uint256 b) private pure returns (uint256) {
unchecked {
return a + b;
}
}
/// @notice subtracts two numbers without checking for underflow
/// @param a first number
/// @param b second number
/// @return uint256 difference of the two numbers
function _unsafeSubtract(
uint256 a,
uint256 b
) private pure returns (uint256) {
unchecked {
return a - b;
}
}
/**
* @notice Searches a sorted `array` and returns the first index that contains
* a value greater or equal to the element.
* @dev If no such index exists (i.e. all values in the array are strictly less than `element`),
* the array length is returned.
* Time complexity O(log n).
*
* `array` is expected to be sorted in ascending order, and to contain no
* repeated elements.
*/
/// @notice From OpenZeppelin, modified to take a memory array instead of a storage array
/// @dev Deprecated in favour of lowerBound, which supports duplicate elements. Not relevant for this project.
/// @param array the sorted array to search
/// @param element the element to search for
/// @return index index of the first element greater than or equal to the element
function _findUpperBound(
Entry[] storage array,
uint256 element
) private view returns (uint256) {
if (array.length == 0) {
return 0;
}
uint256 low = 0;
uint256 high = array.length;
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds down (it does integer division with truncation).
if (array[mid].currentEntriesLength > element) {
high = mid;
} else {
unchecked {
low = mid + 1;
}
}
}
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
if (low > 0 && array[low - 1].currentEntriesLength == element) {
unchecked {
return low - 1;
}
} else {
return low;
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* VIEW */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @notice Gets a raffle with all its data
/// @param _raffleId id of the raffle
/// @return raffle Raffle struct
function getRaffle(
uint256 _raffleId
) external view returns (Raffle memory raffle) {
raffle = raffles[_raffleId];
}
/// @notice Gets winners of a raffle
/// @param _raffleId id of the raffle
/// @return winners array of winners
function getWinners(
uint256 _raffleId
) external view returns (Winner[] memory) {
return raffles[_raffleId].winners;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {IVRFCoordinatorV2Plus} from "./interfaces/IVRFCoordinatorV2Plus.sol";
import {IVRFMigratableConsumerV2Plus} from "./interfaces/IVRFMigratableConsumerV2Plus.sol";
import {ConfirmedOwner} from "../../shared/access/ConfirmedOwner.sol";
/** ****************************************************************************
* @notice Interface for contracts using VRF randomness
* *****************************************************************************
* @dev PURPOSE
*
* @dev Reggie the Random Oracle (not his real job) wants to provide randomness
* @dev to Vera the verifier in such a way that Vera can be sure he's not
* @dev making his output up to suit himself. Reggie provides Vera a public key
* @dev to which he knows the secret key. Each time Vera provides a seed to
* @dev Reggie, he gives back a value which is computed completely
* @dev deterministically from the seed and the secret key.
*
* @dev Reggie provides a proof by which Vera can verify that the output was
* @dev correctly computed once Reggie tells it to her, but without that proof,
* @dev the output is indistinguishable to her from a uniform random sample
* @dev from the output space.
*
* @dev The purpose of this contract is to make it easy for unrelated contracts
* @dev to talk to Vera the verifier about the work Reggie is doing, to provide
* @dev simple access to a verifiable source of randomness. It ensures 2 things:
* @dev 1. The fulfillment came from the VRFCoordinatorV2Plus.
* @dev 2. The consumer contract implements fulfillRandomWords.
* *****************************************************************************
* @dev USAGE
*
* @dev Calling contracts must inherit from VRFConsumerBaseV2Plus, and can
* @dev initialize VRFConsumerBaseV2Plus's attributes in their constructor as
* @dev shown:
*
* @dev contract VRFConsumerV2Plus is VRFConsumerBaseV2Plus {
* @dev constructor(<other arguments>, address _vrfCoordinator, address _subOwner)
* @dev VRFConsumerBaseV2Plus(_vrfCoordinator, _subOwner) public {
* @dev <initialization with other arguments goes here>
* @dev }
* @dev }
*
* @dev The oracle will have given you an ID for the VRF keypair they have
* @dev committed to (let's call it keyHash). Create a subscription, fund it
* @dev and your consumer contract as a consumer of it (see VRFCoordinatorInterface
* @dev subscription management functions).
* @dev Call requestRandomWords(keyHash, subId, minimumRequestConfirmations,
* @dev callbackGasLimit, numWords, extraArgs),
* @dev see (IVRFCoordinatorV2Plus for a description of the arguments).
*
* @dev Once the VRFCoordinatorV2Plus has received and validated the oracle's response
* @dev to your request, it will call your contract's fulfillRandomWords method.
*
* @dev The randomness argument to fulfillRandomWords is a set of random words
* @dev generated from your requestId and the blockHash of the request.
*
* @dev If your contract could have concurrent requests open, you can use the
* @dev requestId returned from requestRandomWords to track which response is associated
* @dev with which randomness request.
* @dev See "SECURITY CONSIDERATIONS" for principles to keep in mind,
* @dev if your contract could have multiple requests in flight simultaneously.
*
* @dev Colliding `requestId`s are cryptographically impossible as long as seeds
* @dev differ.
*
* *****************************************************************************
* @dev SECURITY CONSIDERATIONS
*
* @dev A method with the ability to call your fulfillRandomness method directly
* @dev could spoof a VRF response with any random value, so it's critical that
* @dev it cannot be directly called by anything other than this base contract
* @dev (specifically, by the VRFConsumerBaseV2Plus.rawFulfillRandomness method).
*
* @dev For your users to trust that your contract's random behavior is free
* @dev from malicious interference, it's best if you can write it so that all
* @dev behaviors implied by a VRF response are executed *during* your
* @dev fulfillRandomness method. If your contract must store the response (or
* @dev anything derived from it) and use it later, you must ensure that any
* @dev user-significant behavior which depends on that stored value cannot be
* @dev manipulated by a subsequent VRF request.
*
* @dev Similarly, both miners and the VRF oracle itself have some influence
* @dev over the order in which VRF responses appear on the blockchain, so if
* @dev your contract could have multiple VRF requests in flight simultaneously,
* @dev you must ensure that the order in which the VRF responses arrive cannot
* @dev be used to manipulate your contract's user-significant behavior.
*
* @dev Since the block hash of the block which contains the requestRandomness
* @dev call is mixed into the input to the VRF *last*, a sufficiently powerful
* @dev miner could, in principle, fork the blockchain to evict the block
* @dev containing the request, forcing the request to be included in a
* @dev different block with a different hash, and therefore a different input
* @dev to the VRF. However, such an attack would incur a substantial economic
* @dev cost. This cost scales with the number of blocks the VRF oracle waits
* @dev until it calls responds to a request. It is for this reason that
* @dev that you can signal to an oracle you'd like them to wait longer before
* @dev responding to the request (however this is not enforced in the contract
* @dev and so remains effective only in the case of unmodified oracle software).
*/
abstract contract VRFConsumerBaseV2Plus is IVRFMigratableConsumerV2Plus, ConfirmedOwner {
error OnlyCoordinatorCanFulfill(address have, address want);
error OnlyOwnerOrCoordinator(address have, address owner, address coordinator);
error ZeroAddress();
// s_vrfCoordinator should be used by consumers to make requests to vrfCoordinator
// so that coordinator reference is updated after migration
IVRFCoordinatorV2Plus public s_vrfCoordinator;
/**
* @param _vrfCoordinator address of VRFCoordinator contract
*/
constructor(address _vrfCoordinator) ConfirmedOwner(msg.sender) {
if (_vrfCoordinator == address(0)) {
revert ZeroAddress();
}
s_vrfCoordinator = IVRFCoordinatorV2Plus(_vrfCoordinator);
}
/**
* @notice fulfillRandomness handles the VRF response. Your contract must
* @notice implement it. See "SECURITY CONSIDERATIONS" above for important
* @notice principles to keep in mind when implementing your fulfillRandomness
* @notice method.
*
* @dev VRFConsumerBaseV2Plus expects its subcontracts to have a method with this
* @dev signature, and will call it once it has verified the proof
* @dev associated with the randomness. (It is triggered via a call to
* @dev rawFulfillRandomness, below.)
*
* @param requestId The Id initially returned by requestRandomness
* @param randomWords the VRF output expanded to the requested number of words
*/
// solhint-disable-next-line chainlink-solidity/prefix-internal-functions-with-underscore
function fulfillRandomWords(uint256 requestId, uint256[] calldata randomWords) internal virtual;
// rawFulfillRandomness is called by VRFCoordinator when it receives a valid VRF
// proof. rawFulfillRandomness then calls fulfillRandomness, after validating
// the origin of the call
function rawFulfillRandomWords(uint256 requestId, uint256[] calldata randomWords) external {
if (msg.sender != address(s_vrfCoordinator)) {
revert OnlyCoordinatorCanFulfill(msg.sender, address(s_vrfCoordinator));
}
fulfillRandomWords(requestId, randomWords);
}
/**
* @inheritdoc IVRFMigratableConsumerV2Plus
*/
function setCoordinator(address _vrfCoordinator) external override onlyOwnerOrCoordinator {
if (_vrfCoordinator == address(0)) {
revert ZeroAddress();
}
s_vrfCoordinator = IVRFCoordinatorV2Plus(_vrfCoordinator);
emit CoordinatorSet(_vrfCoordinator);
}
modifier onlyOwnerOrCoordinator() {
if (msg.sender != owner() && msg.sender != address(s_vrfCoordinator)) {
revert OnlyOwnerOrCoordinator(msg.sender, owner(), address(s_vrfCoordinator));
}
_;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
// End consumer library.
library VRFV2PlusClient {
// extraArgs will evolve to support new features
bytes4 public constant EXTRA_ARGS_V1_TAG = bytes4(keccak256("VRF ExtraArgsV1"));
struct ExtraArgsV1 {
bool nativePayment;
}
struct RandomWordsRequest {
bytes32 keyHash;
uint256 subId;
uint16 requestConfirmations;
uint32 callbackGasLimit;
uint32 numWords;
bytes extraArgs;
}
function _argsToBytes(ExtraArgsV1 memory extraArgs) internal pure returns (bytes memory bts) {
return abi.encodeWithSelector(EXTRA_ARGS_V1_TAG, extraArgs);
}
}
{
"compilationTarget": {
"src/RaffleV3.sol": "RaffleV3"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 10000
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_platformWallet","type":"address"},{"internalType":"address","name":"_usdc","type":"address"},{"internalType":"uint256","name":"_subscriptionId","type":"uint256"},{"internalType":"address","name":"_vrfCoordinator","type":"address"},{"internalType":"bytes32","name":"_keyHash","type":"bytes32"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[],"name":"EmergencyWithdrawalError","type":"error"},{"inputs":[],"name":"FeesAlreadyClaimed","type":"error"},{"inputs":[],"name":"GatingTokenBalanceTooLow","type":"error"},{"inputs":[],"name":"InvalidCommissionPercentage","type":"error"},{"inputs":[],"name":"InvalidFeeSupplied","type":"error"},{"inputs":[],"name":"InvalidFreeEntry","type":"error"},{"inputs":[],"name":"InvalidGatingToken","type":"error"},{"inputs":[],"name":"InvalidNativeTokenAmountStaked","type":"error"},{"inputs":[],"name":"InvalidPriceTier","type":"error"},{"inputs":[],"name":"InvalidPriceTiersCount","type":"error"},{"inputs":[],"name":"InvalidPrize","type":"error"},{"inputs":[],"name":"InvalidPrizesCount","type":"error"},{"inputs":[],"name":"InvalidStatus","type":"error"},{"inputs":[],"name":"NativeTokenTransferFailed","type":"error"},{"inputs":[],"name":"NotEnoughFeesRaised","type":"error"},{"inputs":[{"internalType":"address","name":"have","type":"address"},{"internalType":"address","name":"want","type":"address"}],"name":"OnlyCoordinatorCanFulfill","type":"error"},{"inputs":[{"internalType":"address","name":"have","type":"address"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"coordinator","type":"address"}],"name":"OnlyOwnerOrCoordinator","type":"error"},{"inputs":[],"name":"Paused","type":"error"},{"inputs":[],"name":"RandomnessRequestAlreadyFulfilled","type":"error"},{"inputs":[],"name":"RandomnessRequestDoesNotExist","type":"error"},{"inputs":[],"name":"RandomnessRequestResetTooEarly","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"vrfCoordinator","type":"address"}],"name":"CoordinatorSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":false,"internalType":"uint48","name":"entriesCount","type":"uint48"},{"indexed":false,"internalType":"uint256","name":"priceTierId","type":"uint256"},{"indexed":false,"internalType":"uint8","name":"brandId","type":"uint8"}],"name":"EntrySold","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"platformFees","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"ownerFees","type":"uint256"}],"name":"FeesTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"address[]","name":"buyer","type":"address[]"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint48","name":"entriesCount","type":"uint48"},{"indexed":false,"internalType":"uint8","name":"brandId","type":"uint8"}],"name":"FreeEntry","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"OwnershipTransferRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PauseToggled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint8","name":"prizeId","type":"uint8"},{"indexed":false,"internalType":"address","name":"winner","type":"address"}],"name":"PrizeTransferFailed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint8","name":"prizeId","type":"uint8"},{"indexed":false,"internalType":"address","name":"winner","type":"address"}],"name":"PrizeTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountRaised","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"RaffleCancelled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountRaised","type":"uint256"},{"indexed":false,"internalType":"uint48","name":"entries","type":"uint48"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"RaffleClosed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"priceTierCount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"prizeCount","type":"uint256"}],"name":"RaffleCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"address[]","name":"winners","type":"address[]"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"RaffleDrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"RaffleStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"requestId","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"randomness","type":"uint256[]"}],"name":"RandomnessReceived","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"requestId","type":"uint256"}],"name":"RandomnessRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPERATOR_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"},{"internalType":"uint256","name":"_priceTierIndex","type":"uint256"},{"internalType":"uint8","name":"_brandId","type":"uint8"}],"name":"buyEntry","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"cancelRaffle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint16","name":"commissionInBasisPoints","type":"uint16"},{"internalType":"uint128","name":"minimumFees","type":"uint128"},{"components":[{"internalType":"uint48","name":"numEntries","type":"uint48"},{"internalType":"uint160","name":"price","type":"uint160"}],"internalType":"struct RaffleV3.PriceTierCallData[]","name":"priceTiers","type":"tuple[]"},{"components":[{"internalType":"enum RaffleV3.TokenType","name":"prizeType","type":"uint8"},{"internalType":"address","name":"prizeAddress","type":"address"},{"internalType":"uint256","name":"prizeNumber","type":"uint256"}],"internalType":"struct RaffleV3.PrizeCallData[]","name":"prizes","type":"tuple[]"}],"internalType":"struct RaffleV3.CreateRaffleCallData","name":"_params","type":"tuple"}],"name":"createRaffle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"drawWinners","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"freeEntryUsed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"getRaffle","outputs":[{"components":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"enum RaffleV3.RaffleStatus","name":"status","type":"uint8"},{"internalType":"uint48","name":"entryCount","type":"uint48"},{"internalType":"uint16","name":"platformPercentage","type":"uint16"},{"internalType":"bool","name":"feesClaimed","type":"bool"},{"internalType":"bool","name":"isGated","type":"bool"},{"internalType":"uint128","name":"fees","type":"uint128"},{"internalType":"uint128","name":"minimumFees","type":"uint128"},{"components":[{"internalType":"uint48","name":"tierId","type":"uint48"},{"internalType":"uint48","name":"numEntries","type":"uint48"},{"internalType":"uint160","name":"price","type":"uint160"}],"internalType":"struct RaffleV3.PriceTier[]","name":"priceTiers","type":"tuple[]"},{"components":[{"internalType":"uint8","name":"prizeId","type":"uint8"},{"internalType":"bool","name":"failed","type":"bool"},{"internalType":"enum RaffleV3.TokenType","name":"prizeType","type":"uint8"},{"internalType":"address","name":"prizeAddress","type":"address"},{"internalType":"uint256","name":"prizeNumber","type":"uint256"}],"internalType":"struct RaffleV3.Prize[]","name":"prizes","type":"tuple[]"},{"components":[{"internalType":"uint48","name":"currentEntriesLength","type":"uint48"},{"internalType":"address","name":"player","type":"address"}],"internalType":"struct RaffleV3.Entry[]","name":"entries","type":"tuple[]"},{"components":[{"internalType":"uint8","name":"prizeId","type":"uint8"},{"internalType":"address","name":"player","type":"address"},{"internalType":"uint256","name":"randomNumber","type":"uint256"}],"internalType":"struct RaffleV3.Winner[]","name":"winners","type":"tuple[]"}],"internalType":"struct RaffleV3.Raffle","name":"raffle","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"getWinners","outputs":[{"components":[{"internalType":"uint8","name":"prizeId","type":"uint8"},{"internalType":"address","name":"player","type":"address"},{"internalType":"uint256","name":"randomNumber","type":"uint256"}],"internalType":"struct RaffleV3.Winner[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"},{"internalType":"address[]","name":"_addresses","type":"address[]"},{"internalType":"uint8","name":"_brandId","type":"uint8"}],"name":"giveBatchEntriesForFree","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"platformWallet","outputs":[{"internalType":"address payable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"raffles","outputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"enum RaffleV3.RaffleStatus","name":"status","type":"uint8"},{"internalType":"uint48","name":"entryCount","type":"uint48"},{"internalType":"uint16","name":"platformPercentage","type":"uint16"},{"internalType":"bool","name":"feesClaimed","type":"bool"},{"internalType":"bool","name":"isGated","type":"bool"},{"internalType":"uint128","name":"fees","type":"uint128"},{"internalType":"uint128","name":"minimumFees","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rafflesCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"randomnessLookup","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"randomnessRequestResetTime","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"randomnessRequests","outputs":[{"internalType":"bool","name":"exists","type":"bool"},{"internalType":"bool","name":"manual","type":"bool"},{"internalType":"bool","name":"fulfilled","type":"bool"},{"internalType":"uint48","name":"requestTime","type":"uint48"},{"internalType":"uint80","name":"raffleId","type":"uint80"},{"internalType":"uint256","name":"randomWord","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"requestId","type":"uint256"},{"internalType":"uint256[]","name":"randomWords","type":"uint256[]"}],"name":"rawFulfillRandomWords","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"},{"internalType":"uint8","name":"_prizeId","type":"uint8"}],"name":"recoverPrize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"removeTokenGate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"resetRandomnessRequest","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"s_vrfCoordinator","outputs":[{"internalType":"contract IVRFCoordinatorV2Plus","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_vrfCoordinator","type":"address"}],"name":"setCoordinator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"_newAddress","type":"address"}],"name":"setPlatformAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint48","name":"_time","type":"uint48"}],"name":"setRandomnessRequestResetTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_id","type":"uint256"}],"name":"setSubscriptionId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"},{"internalType":"enum RaffleV3.TokenType","name":"_tokenType","type":"uint8"},{"internalType":"address","name":"_tokenAddress","type":"address"},{"internalType":"uint88","name":"_tokenAmount","type":"uint88"}],"name":"setTokenGate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"},{"internalType":"bool","name":"_manual","type":"bool"}],"name":"setWinners","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"togglePaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokenGates","outputs":[{"internalType":"enum RaffleV3.TokenType","name":"tokenType","type":"uint8"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint88","name":"tokenAmount","type":"uint88"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"transferFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"transferPrizes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"usdc","outputs":[{"internalType":"contract IUSDC","name":"","type":"address"}],"stateMutability":"view","type":"function"}]