// SPDX-License-Identifier: MIT
// File: @openzeppelin/contracts/GSN/Context.sol
pragma solidity ^0.6.0;
/*
* Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
pragma solidity ^0.6.0;
/**
* Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
function decimals() external view returns (uint8);
/**
* Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: @openzeppelin/contracts/math/SafeMath.sol
pragma solidity ^0.6.0;
/**
* Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File: @openzeppelin/contracts/utils/Address.sol
pragma solidity ^0.6.2;
/**
* Collection of functions related to the address type
*/
library Address {
/**
* Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// File: @openzeppelin/contracts/token/ERC20/ERC20.sol
pragma solidity ^0.6.0;
/**
* Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
using Address for address;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name, string memory symbol) public {
_name = name;
_symbol = symbol;
_decimals = 18;
}
/**
* Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view override returns (uint8) {
return _decimals;
}
/**
* See {IERC20-totalSupply}.
*/
function totalSupply() public view override returns (uint256) {
return _totalSupply;
}
/**
* See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
/**
* See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* Sets `amount` as the allowance of `spender` over the `owner`s tokens.
*
* This is internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal {
_decimals = decimals_;
}
}
// File: @openzeppelin/contracts/access/Ownable.sol
pragma solidity ^0.6.0;
/**
* Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* Returns the address of the current owner.
*/
function governance() public view returns (address) {
return _owner;
}
/**
* Throws if called by any account other than the owner.
*/
modifier onlyGovernance() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferGovernance(address newOwner) internal virtual onlyGovernance {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor () internal {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// File: contracts/zs-BMSGR.sol
// zsTokens are Stabilize proxy tokens that serve as receipts for deposits into Stabilize strategies
// zsTokens should increase in value if the strategy it uses is profitable
// When someone deposits into the zsToken contract, tokens are minted and when they redeem, tokens are burned
interface StabilizeStrategy {
function rewardTokensCount() external view returns (uint256);
function rewardTokenAddress(uint256) external view returns (address);
function withdrawTokenReserves() external view returns (address, uint256);
function balance() external view returns (uint256);
function pricePerToken() external view returns (uint256);
function enter() external;
function exit() external;
function deposit(bool) external;
function withdraw(address, uint256, uint256, bool) external returns (uint256); // Will withdraw to the address specified a percent of total shares
}
pragma solidity ^0.6.6;
contract zsToken is ERC20("Stabilize Strategy BAC-MIC-Seigniorage ", "zs-BMSGR"), Ownable, ReentrancyGuard {
using SafeERC20 for IERC20;
// Variables
uint256 constant divisionFactor = 100000;
// There are no fees to deposit and withdraw from the zs-Tokens
// Info of each user.
struct UserInfo {
uint256 depositTime; // The time the user made the last deposit
uint256 shareEstimate;
}
mapping(address => UserInfo) private userInfo;
// Token information
// This wrapped token accepts multiple sgr coins
// BAC, MIC
struct TokenInfo {
IERC20 token; // Reference of token
uint256 decimals; // Decimals of token
}
TokenInfo[] private tokenList; // An array of tokens accepted as deposits
address private _underlyingPriceAsset; // Token from which the price is derived for STBZ staking
bool public depositsOpen = true; // Governance can open or close deposits without timelock, cannot block withdrawals
// Strategy information
StabilizeStrategy private currentStrategy; // This will be the contract for the strategy
address private _pendingStrategy;
// Events
event Wrapped(address indexed user, uint256 amount);
event Unwrapped(address indexed user, uint256 amount);
constructor (address _priceAsset) public {
_underlyingPriceAsset = _priceAsset;
setupWithdrawTokens();
}
function setupWithdrawTokens() internal {
// Start with BAC
IERC20 _token = IERC20(address(0x3449FC1Cd036255BA1EB19d65fF4BA2b8903A69a));
tokenList.push(
TokenInfo({
token: _token,
decimals: _token.decimals()
})
);
// MIC
_token = IERC20(address(0x368B3a58B5f49392e5C9E4C998cb0bB966752E51));
tokenList.push(
TokenInfo({
token: _token,
decimals: _token.decimals()
})
);
}
function getCurrentStrategy() external view returns (address) {
return address(currentStrategy);
}
function getPendingStrategy() external view returns (address) {
return _pendingStrategy;
}
function underlyingAsset() public view returns (address) {
// Can be used if staking in the STBZ pool
return address(_underlyingPriceAsset);
}
function underlyingDepositAssets() public view returns (address, address, address) {
// Returns all addresses accepted by this token vault
return (address(tokenList[0].token), address(tokenList[1].token), address(tokenList[2].token));
}
function pricePerToken() public view returns (uint256) {
if(totalSupply() == 0){
return 1e18; // Shown in Wei units
}else{
return uint256(1e18).mul(valueOfVaultAndStrategy()).div(totalSupply());
}
}
function getNormalizedTotalBalance(address _address) public view returns (uint256) {
uint256 _balance = 0;
for(uint256 i = 0; i < tokenList.length; i++){
uint256 _bal = tokenList[i].token.balanceOf(_address);
_bal = _bal.mul(1e18).div(10**tokenList[i].decimals);
_balance = _balance.add(_bal); // This has been normalized to 1e18 decimals
}
return _balance;
}
function valueOfVaultAndStrategy() public view returns (uint256) { // The total value of the tokens
uint256 balance = getNormalizedTotalBalance(address(this)); // Get tokens stored in this contract
if(currentStrategy != StabilizeStrategy(address(0))){
balance += currentStrategy.balance(); // And tokens stored at the strategy
}
return balance;
}
function withdrawTokenReserves() public view returns (address, uint256) {
// This function will return the address and amount of the token with the highest balance
if(currentStrategy != StabilizeStrategy(address(0))){
return currentStrategy.withdrawTokenReserves();
}else{
uint256 length = tokenList.length;
uint256 targetID = 0;
uint256 targetNormBalance = 0;
for(uint256 i = 0; i < length; i++){
uint256 _normBal = tokenList[i].token.balanceOf(address(this)).mul(1e18).div(10**tokenList[i].decimals);
if(_normBal > 0){
if(targetNormBalance == 0 || _normBal >= targetNormBalance){
targetNormBalance = _normBal;
targetID = i;
}
}
}
if(targetNormBalance > 0){
return (address(tokenList[targetID].token), tokenList[targetID].token.balanceOf(address(this)));
}else{
return (address(0), 0); // No balance
}
}
}
// Now handle deposits into the strategy
function deposit(uint256 amount, uint256 _tokenID) public nonReentrant {
uint256 total = valueOfVaultAndStrategy(); // Get token equivalent at strategy and here if applicable
require(depositsOpen == true, "Deposits have been suspended, but you can still withdraw");
require(currentStrategy != StabilizeStrategy(address(0)),"No strategy contract has been selected yet");
require(_tokenID < tokenList.length, "Token ID is outside range of tokens in contract");
IERC20 _token = tokenList[_tokenID].token; // Trusted tokens
uint256 _before = _token.balanceOf(address(this));
_token.safeTransferFrom(_msgSender(), address(this), amount); // Transfer token to this address
amount = _token.balanceOf(address(this)).sub(_before); // Some tokens lose amount (transfer fee) upon transfer
require(amount > 0, "Cannot deposit 0");
bool nonContract = false;
if(tx.origin == _msgSender()){
nonContract = true; // The sender is not a contract
}
uint256 _strategyBalance = currentStrategy.balance(); // Will get the balance of the value of the main tokens at the strategy
// Now call the strategy to deposit
pushTokensToStrategy(); // Push any strategy tokens here into the strategy
currentStrategy.deposit(nonContract); // Activate strategy deposit
require(currentStrategy.balance() > _strategyBalance, "No change in strategy balance"); // Balance should increase
uint256 normalizedAmount = amount.mul(1e18).div(10**tokenList[_tokenID].decimals); // Make sure everything is same units
uint256 mintAmount = normalizedAmount;
if(totalSupply() > 0){
// There is already a balance here, calculate our share
mintAmount = normalizedAmount.mul(totalSupply()).div(total); // Our share of the total
}
_mint(_msgSender(),mintAmount); // Now mint new zs-token to the depositor
// Add the user information
userInfo[_msgSender()].depositTime = now;
userInfo[_msgSender()].shareEstimate = userInfo[_msgSender()].shareEstimate.add(mintAmount);
emit Wrapped(_msgSender(), amount);
}
function redeem(uint256 share) public nonReentrant {
// Essentially withdraw our equivalent share of the pool based on share value
// Users cannot choose which token they get. They get the largest quantity coin up to the lowest quantity
require(share > 0, "Cannot withdraw 0");
require(totalSupply() > 0, "No value redeemable");
uint256 tokenTotal = totalSupply();
// Now burn the token
_burn(_msgSender(),share); // Burn the amount, will fail if user doesn't have enough
bool nonContract = false;
if(tx.origin == _msgSender()){
nonContract = true; // The sender is not a contract, we will allow market sells and buys
}else{
// This is a contract redeeming
require(userInfo[_msgSender()].depositTime < now && userInfo[_msgSender()].depositTime > 0, "Contract depositor cannot redeem in same transaction");
}
// Update user information
if(share <= userInfo[_msgSender()].shareEstimate){
userInfo[_msgSender()].shareEstimate = userInfo[_msgSender()].shareEstimate.sub(share);
}else{
// Share is greater than our share estimate, can happen if tokens are transferred
userInfo[_msgSender()].shareEstimate = 0;
require(nonContract == true, "Contract depositors cannot take out more than what they put in");
}
uint256 withdrawAmount = 0;
if(currentStrategy != StabilizeStrategy(address(0))){
withdrawAmount = currentStrategy.withdraw(_msgSender(), share, tokenTotal, nonContract); // Returns the amount of underlying removed
require(withdrawAmount > 0, "Failed to withdraw from the strategy");
}else{
// Pull directly from this contract the token amount in relation to the share if strategy not used
if(share < tokenTotal){
uint256 _balance = getNormalizedTotalBalance(address(this));
uint256 _myBalance = _balance.mul(share).div(tokenTotal);
withdrawPerBalance(_msgSender(), _myBalance, false); // This will withdraw based on token balanace
withdrawAmount = _myBalance;
}else{
// We are all shares, transfer all
uint256 _balance = getNormalizedTotalBalance(address(this));
withdrawPerBalance(_msgSender(), _balance, true);
withdrawAmount = _balance;
}
}
emit Unwrapped(_msgSender(), withdrawAmount);
}
// This will withdraw the tokens from the contract based on their balance, from highest balance to lowest
function withdrawPerBalance(address _receiver, uint256 _withdrawAmount, bool _takeAll) internal {
uint256 length = tokenList.length;
if(_takeAll == true){
// Send the entire balance
for(uint256 i = 0; i < length; i++){
uint256 _bal = tokenList[i].token.balanceOf(address(this));
if(_bal > 0){
tokenList[i].token.safeTransfer(_receiver, _bal);
}
}
return;
}
bool[4] memory done;
uint256 targetID = 0;
uint256 targetNormBalance = 0;
for(uint256 i = 0; i < length; i++){
targetNormBalance = 0; // Reset the target balance
// Find the highest balanced token to withdraw
for(uint256 i2 = 0; i2 < length; i2++){
if(done[i2] == false){
uint256 _normBal = tokenList[i2].token.balanceOf(address(this)).mul(1e18).div(10**tokenList[i2].decimals);
if(targetNormBalance == 0 || _normBal >= targetNormBalance){
targetNormBalance = _normBal;
targetID = i2;
}
}
}
done[targetID] = true;
// Determine the balance left
uint256 _normalizedBalance = tokenList[targetID].token.balanceOf(address(this)).mul(1e18).div(10**tokenList[targetID].decimals);
if(_normalizedBalance <= _withdrawAmount){
// Withdraw the entire balance of this token
if(_normalizedBalance > 0){
_withdrawAmount = _withdrawAmount.sub(_normalizedBalance);
tokenList[targetID].token.safeTransfer(_receiver, tokenList[targetID].token.balanceOf(address(this)));
}
}else{
// Withdraw a partial amount of this token
if(_withdrawAmount > 0){
// Convert the withdraw amount to the token's decimal amount
uint256 _balance = _withdrawAmount.mul(10**tokenList[targetID].decimals).div(1e18);
_withdrawAmount = 0;
tokenList[targetID].token.safeTransfer(_receiver, _balance);
}
break; // Nothing more to withdraw
}
}
}
// Governance functions
// Stop/start all deposits, no timelock required
// --------------------
function stopDeposits() external onlyGovernance {
depositsOpen = false;
}
function startDeposits() external onlyGovernance {
depositsOpen = true;
}
// A function used in case of strategy failure, possibly due to bug in the platform our strategy is using, governance can stop using it quick
function emergencyStopStrategy() external onlyGovernance {
depositsOpen = false;
if(currentStrategy != StabilizeStrategy(address(0)) && totalSupply() > 0){
currentStrategy.exit(); // Pulls all the tokens and accessory tokens from the strategy
}
currentStrategy = StabilizeStrategy(address(0));
_timelockType = 0; // Prevent governance from changing to new strategy without timelock
}
// --------------------
// Timelock variables
uint256 private _timelockStart; // The start of the timelock to change governance variables
uint256 private _timelockType; // The function that needs to be changed
uint256 constant _timelockDuration = 86400; // Timelock is 24 hours
// Reusable timelock variables
address private _timelock_address;
modifier timelockConditionsMet(uint256 _type) {
require(_timelockType == _type, "Timelock not acquired for this function");
_timelockType = 0; // Reset the type once the timelock is used
if(totalSupply() > 0){
// Timelock is only required after tokens exist
require(now >= _timelockStart + _timelockDuration, "Timelock time not met");
}
_;
}
// Change the owner of the token contract
// --------------------
function startGovernanceChange(address _address) external onlyGovernance {
_timelockStart = now;
_timelockType = 1;
_timelock_address = _address;
}
function finishGovernanceChange() external onlyGovernance timelockConditionsMet(1) {
transferGovernance(_timelock_address);
}
// --------------------
// Change the treasury address
// --------------------
function startChangeStrategy(address _address) external onlyGovernance {
_timelockStart = now;
_timelockType = 2;
_timelock_address = _address;
_pendingStrategy = _address;
if(totalSupply() == 0){
// Can change strategy with one call in this case
finishChangeStrategy();
}
}
function finishChangeStrategy() public onlyGovernance timelockConditionsMet(2) {
if(currentStrategy != StabilizeStrategy(address(0)) && totalSupply() > 0){
currentStrategy.exit(); // Pulls all the tokens and accessory tokens from the strategy
}
currentStrategy = StabilizeStrategy(_timelock_address);
if(currentStrategy != StabilizeStrategy(address(0)) && totalSupply() > 0){
pushTokensToStrategy(); // It will push any strategy reward tokens here to the new strategy
currentStrategy.enter(); // Puts all the tokens and accessory tokens into the new strategy
}
_pendingStrategy = address(0);
}
function pushTokensToStrategy() internal {
uint256 tokenCount = currentStrategy.rewardTokensCount();
for(uint256 i = 0; i < tokenCount; i++){
IERC20 _token = IERC20(address(currentStrategy.rewardTokenAddress(i)));
uint256 _balance = _token.balanceOf(address(this));
if(_balance > 0){
_token.safeTransfer(address(currentStrategy), _balance);
}
}
}
// --------------------
}
{
"compilationTarget": {
"zsToken.sol": "zsToken"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_priceAsset","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Unwrapped","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Wrapped","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"_tokenID","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"depositsOpen","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"emergencyStopStrategy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"finishChangeStrategy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"finishGovernanceChange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getCurrentStrategy","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"getNormalizedTotalBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPendingStrategy","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"governance","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pricePerToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"share","type":"uint256"}],"name":"redeem","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"startChangeStrategy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startDeposits","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"startGovernanceChange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stopDeposits","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"underlyingAsset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"underlyingDepositAssets","outputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"valueOfVaultAndStrategy","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdrawTokenReserves","outputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]