账户
0x90...3320
Yellow Duckies

Yellow Duckies

US$0.00
此合同的源代码已经过验证!
合同元数据
编译器
0.8.22+commit.4fc1097e
语言
Solidity
合同源代码
文件 1 的 18:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity 0.8.22;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
	function _msgSender() internal view virtual returns (address) {
		return msg.sender;
	}

	function _msgData() internal view virtual returns (bytes calldata) {
		return msg.data;
	}

	function _contextSuffixLength() internal view virtual returns (uint256) {
		return 0;
	}
}
合同源代码
文件 2 的 18:ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity 0.8.22;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
	enum RecoverError {
		NoError,
		InvalidSignature,
		InvalidSignatureLength,
		InvalidSignatureS
	}

	/**
	 * @dev The signature derives the `address(0)`.
	 */
	error ECDSAInvalidSignature();

	/**
	 * @dev The signature has an invalid length.
	 */
	error ECDSAInvalidSignatureLength(uint256 length);

	/**
	 * @dev The signature has an S value that is in the upper half order.
	 */
	error ECDSAInvalidSignatureS(bytes32 s);

	/**
	 * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
	 * return address(0) without also returning an error description. Errors are documented using an enum (error type)
	 * and a bytes32 providing additional information about the error.
	 *
	 * If no error is returned, then the address can be used for verification purposes.
	 *
	 * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
	 * this function rejects them by requiring the `s` value to be in the lower
	 * half order, and the `v` value to be either 27 or 28.
	 *
	 * IMPORTANT: `hash` _must_ be the result of a hash operation for the
	 * verification to be secure: it is possible to craft signatures that
	 * recover to arbitrary addresses for non-hashed data. A safe way to ensure
	 * this is by receiving a hash of the original message (which may otherwise
	 * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
	 *
	 * Documentation for signature generation:
	 * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
	 * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
	 */
	function tryRecover(
		bytes32 hash,
		bytes memory signature
	) internal pure returns (address, RecoverError, bytes32) {
		if (signature.length == 65) {
			bytes32 r;
			bytes32 s;
			uint8 v;
			// ecrecover takes the signature parameters, and the only way to get them
			// currently is to use assembly.
			/// @solidity memory-safe-assembly
			assembly {
				r := mload(add(signature, 0x20))
				s := mload(add(signature, 0x40))
				v := byte(0, mload(add(signature, 0x60)))
			}
			return tryRecover(hash, v, r, s);
		} else {
			return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
		}
	}

	/**
	 * @dev Returns the address that signed a hashed message (`hash`) with
	 * `signature`. This address can then be used for verification purposes.
	 *
	 * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
	 * this function rejects them by requiring the `s` value to be in the lower
	 * half order, and the `v` value to be either 27 or 28.
	 *
	 * IMPORTANT: `hash` _must_ be the result of a hash operation for the
	 * verification to be secure: it is possible to craft signatures that
	 * recover to arbitrary addresses for non-hashed data. A safe way to ensure
	 * this is by receiving a hash of the original message (which may otherwise
	 * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
	 */
	function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
		(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
		_throwError(error, errorArg);
		return recovered;
	}

	/**
	 * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
	 *
	 * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
	 */
	function tryRecover(
		bytes32 hash,
		bytes32 r,
		bytes32 vs
	) internal pure returns (address, RecoverError, bytes32) {
		unchecked {
			bytes32 s = vs &
				bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
			// We do not check for an overflow here since the shift operation results in 0 or 1.
			uint8 v = uint8((uint256(vs) >> 255) + 27);
			return tryRecover(hash, v, r, s);
		}
	}

	/**
	 * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
	 */
	function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
		(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
		_throwError(error, errorArg);
		return recovered;
	}

	/**
	 * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
	 * `r` and `s` signature fields separately.
	 */
	function tryRecover(
		bytes32 hash,
		uint8 v,
		bytes32 r,
		bytes32 s
	) internal pure returns (address, RecoverError, bytes32) {
		// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
		// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
		// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
		// signatures from current libraries generate a unique signature with an s-value in the lower half order.
		//
		// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
		// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
		// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
		// these malleable signatures as well.
		if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
			return (address(0), RecoverError.InvalidSignatureS, s);
		}

		// If the signature is valid (and not malleable), return the signer address
		address signer = ecrecover(hash, v, r, s);
		if (signer == address(0)) {
			return (address(0), RecoverError.InvalidSignature, bytes32(0));
		}

		return (signer, RecoverError.NoError, bytes32(0));
	}

	/**
	 * @dev Overload of {ECDSA-recover} that receives the `v`,
	 * `r` and `s` signature fields separately.
	 */
	function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
		(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
		_throwError(error, errorArg);
		return recovered;
	}

	/**
	 * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
	 */
	function _throwError(RecoverError error, bytes32 errorArg) private pure {
		if (error == RecoverError.NoError) {
			return; // no error: do nothing
		} else if (error == RecoverError.InvalidSignature) {
			revert ECDSAInvalidSignature();
		} else if (error == RecoverError.InvalidSignatureLength) {
			revert ECDSAInvalidSignatureLength(uint256(errorArg));
		} else if (error == RecoverError.InvalidSignatureS) {
			revert ECDSAInvalidSignatureS(errorArg);
		}
	}
}
合同源代码
文件 3 的 18:EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)

pragma solidity 0.8.22;

import {MessageHashUtils} from './MessageHashUtils.sol';
import {ShortStrings, ShortString} from '../ShortStrings.sol';
import {IERC5267} from '../../interfaces/IERC5267.sol';

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
	using ShortStrings for *;

	bytes32 private constant TYPE_HASH =
		keccak256(
			'EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'
		);

	// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
	// invalidate the cached domain separator if the chain id changes.
	bytes32 private immutable _cachedDomainSeparator;
	uint256 private immutable _cachedChainId;
	address private immutable _cachedThis;

	bytes32 private immutable _hashedName;
	bytes32 private immutable _hashedVersion;

	ShortString private immutable _name;
	ShortString private immutable _version;
	string private _nameFallback;
	string private _versionFallback;

	/**
	 * @dev Initializes the domain separator and parameter caches.
	 *
	 * The meaning of `name` and `version` is specified in
	 * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
	 *
	 * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
	 * - `version`: the current major version of the signing domain.
	 *
	 * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
	 * contract upgrade].
	 */
	constructor(string memory name, string memory version) {
		_name = name.toShortStringWithFallback(_nameFallback);
		_version = version.toShortStringWithFallback(_versionFallback);
		_hashedName = keccak256(bytes(name));
		_hashedVersion = keccak256(bytes(version));

		_cachedChainId = block.chainid;
		_cachedDomainSeparator = _buildDomainSeparator();
		_cachedThis = address(this);
	}

	/**
	 * @dev Returns the domain separator for the current chain.
	 */
	function _domainSeparatorV4() internal view returns (bytes32) {
		if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
			return _cachedDomainSeparator;
		} else {
			return _buildDomainSeparator();
		}
	}

	function _buildDomainSeparator() private view returns (bytes32) {
		return
			keccak256(
				abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))
			);
	}

	/**
	 * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
	 * function returns the hash of the fully encoded EIP712 message for this domain.
	 *
	 * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
	 *
	 * ```solidity
	 * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
	 *     keccak256("Mail(address to,string contents)"),
	 *     mailTo,
	 *     keccak256(bytes(mailContents))
	 * )));
	 * address signer = ECDSA.recover(digest, signature);
	 * ```
	 */
	function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
		return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
	}

	/**
	 * @dev See {IERC-5267}.
	 */
	function eip712Domain()
		public
		view
		virtual
		returns (
			bytes1 fields,
			string memory name,
			string memory version,
			uint256 chainId,
			address verifyingContract,
			bytes32 salt,
			uint256[] memory extensions
		)
	{
		return (
			hex'0f', // 01111
			_EIP712Name(),
			_EIP712Version(),
			block.chainid,
			address(this),
			bytes32(0),
			new uint256[](0)
		);
	}

	/**
	 * @dev The name parameter for the EIP712 domain.
	 *
	 * NOTE: By default this function reads _name which is an immutable value.
	 * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
	 */
	// solhint-disable-next-line func-name-mixedcase
	function _EIP712Name() internal view returns (string memory) {
		return _name.toStringWithFallback(_nameFallback);
	}

	/**
	 * @dev The version parameter for the EIP712 domain.
	 *
	 * NOTE: By default this function reads _version which is an immutable value.
	 * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
	 */
	// solhint-disable-next-line func-name-mixedcase
	function _EIP712Version() internal view returns (string memory) {
		return _version.toStringWithFallback(_versionFallback);
	}
}
合同源代码
文件 4 的 18:ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity 0.8.22;

import {IERC20} from './IERC20.sol';
import {IERC20Metadata} from './extensions/IERC20Metadata.sol';
import {Context} from '../../utils/Context.sol';
import {IERC20Errors} from '../../interfaces/draft-IERC6093.sol';

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
	mapping(address account => uint256) private _balances;

	mapping(address account => mapping(address spender => uint256)) private _allowances;

	uint256 private _totalSupply;

	string private _name;
	string private _symbol;

	/**
	 * @dev Sets the values for {name} and {symbol}.
	 *
	 * All two of these values are immutable: they can only be set once during
	 * construction.
	 */
	constructor(string memory name_, string memory symbol_) {
		_name = name_;
		_symbol = symbol_;
	}

	/**
	 * @dev Returns the name of the token.
	 */
	function name() public view virtual returns (string memory) {
		return _name;
	}

	/**
	 * @dev Returns the symbol of the token, usually a shorter version of the
	 * name.
	 */
	function symbol() public view virtual returns (string memory) {
		return _symbol;
	}

	/**
	 * @dev Returns the number of decimals used to get its user representation.
	 * For example, if `decimals` equals `2`, a balance of `505` tokens should
	 * be displayed to a user as `5.05` (`505 / 10 ** 2`).
	 *
	 * Tokens usually opt for a value of 18, imitating the relationship between
	 * Ether and Wei. This is the default value returned by this function, unless
	 * it's overridden.
	 *
	 * NOTE: This information is only used for _display_ purposes: it in
	 * no way affects any of the arithmetic of the contract, including
	 * {IERC20-balanceOf} and {IERC20-transfer}.
	 */
	function decimals() public view virtual returns (uint8) {
		return 18;
	}

	/**
	 * @dev See {IERC20-totalSupply}.
	 */
	function totalSupply() public view virtual returns (uint256) {
		return _totalSupply;
	}

	/**
	 * @dev See {IERC20-balanceOf}.
	 */
	function balanceOf(address account) public view virtual returns (uint256) {
		return _balances[account];
	}

	/**
	 * @dev See {IERC20-transfer}.
	 *
	 * Requirements:
	 *
	 * - `to` cannot be the zero address.
	 * - the caller must have a balance of at least `value`.
	 */
	function transfer(address to, uint256 value) public virtual returns (bool) {
		address owner = _msgSender();
		_transfer(owner, to, value);
		return true;
	}

	/**
	 * @dev See {IERC20-allowance}.
	 */
	function allowance(address owner, address spender) public view virtual returns (uint256) {
		return _allowances[owner][spender];
	}

	/**
	 * @dev See {IERC20-approve}.
	 *
	 * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
	 * `transferFrom`. This is semantically equivalent to an infinite approval.
	 *
	 * Requirements:
	 *
	 * - `spender` cannot be the zero address.
	 */
	function approve(address spender, uint256 value) public virtual returns (bool) {
		address owner = _msgSender();
		_approve(owner, spender, value);
		return true;
	}

	/**
	 * @dev See {IERC20-transferFrom}.
	 *
	 * Emits an {Approval} event indicating the updated allowance. This is not
	 * required by the EIP. See the note at the beginning of {ERC20}.
	 *
	 * NOTE: Does not update the allowance if the current allowance
	 * is the maximum `uint256`.
	 *
	 * Requirements:
	 *
	 * - `from` and `to` cannot be the zero address.
	 * - `from` must have a balance of at least `value`.
	 * - the caller must have allowance for ``from``'s tokens of at least
	 * `value`.
	 */
	function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
		address spender = _msgSender();
		_spendAllowance(from, spender, value);
		_transfer(from, to, value);
		return true;
	}

	/**
	 * @dev Moves a `value` amount of tokens from `from` to `to`.
	 *
	 * This internal function is equivalent to {transfer}, and can be used to
	 * e.g. implement automatic token fees, slashing mechanisms, etc.
	 *
	 * Emits a {Transfer} event.
	 *
	 * NOTE: This function is not virtual, {_update} should be overridden instead.
	 */
	function _transfer(address from, address to, uint256 value) internal {
		if (from == address(0)) {
			revert ERC20InvalidSender(address(0));
		}
		if (to == address(0)) {
			revert ERC20InvalidReceiver(address(0));
		}
		_update(from, to, value);
	}

	/**
	 * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
	 * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
	 * this function.
	 *
	 * Emits a {Transfer} event.
	 */
	function _update(address from, address to, uint256 value) internal virtual {
		if (from == address(0)) {
			// Overflow check required: The rest of the code assumes that totalSupply never overflows
			_totalSupply += value;
		} else {
			uint256 fromBalance = _balances[from];
			if (fromBalance < value) {
				revert ERC20InsufficientBalance(from, fromBalance, value);
			}
			unchecked {
				// Overflow not possible: value <= fromBalance <= totalSupply.
				_balances[from] = fromBalance - value;
			}
		}

		if (to == address(0)) {
			unchecked {
				// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
				_totalSupply -= value;
			}
		} else {
			unchecked {
				// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
				_balances[to] += value;
			}
		}

		emit Transfer(from, to, value);
	}

	/**
	 * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
	 * Relies on the `_update` mechanism
	 *
	 * Emits a {Transfer} event with `from` set to the zero address.
	 *
	 * NOTE: This function is not virtual, {_update} should be overridden instead.
	 */
	function _mint(address account, uint256 value) internal {
		if (account == address(0)) {
			revert ERC20InvalidReceiver(address(0));
		}
		_update(address(0), account, value);
	}

	/**
	 * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
	 * Relies on the `_update` mechanism.
	 *
	 * Emits a {Transfer} event with `to` set to the zero address.
	 *
	 * NOTE: This function is not virtual, {_update} should be overridden instead
	 */
	function _burn(address account, uint256 value) internal {
		if (account == address(0)) {
			revert ERC20InvalidSender(address(0));
		}
		_update(account, address(0), value);
	}

	/**
	 * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
	 *
	 * This internal function is equivalent to `approve`, and can be used to
	 * e.g. set automatic allowances for certain subsystems, etc.
	 *
	 * Emits an {Approval} event.
	 *
	 * Requirements:
	 *
	 * - `owner` cannot be the zero address.
	 * - `spender` cannot be the zero address.
	 *
	 * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
	 */
	function _approve(address owner, address spender, uint256 value) internal {
		_approve(owner, spender, value, true);
	}

	/**
	 * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
	 *
	 * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
	 * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
	 * `Approval` event during `transferFrom` operations.
	 *
	 * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
	 * true using the following override:
	 * ```
	 * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
	 *     super._approve(owner, spender, value, true);
	 * }
	 * ```
	 *
	 * Requirements are the same as {_approve}.
	 */
	function _approve(
		address owner,
		address spender,
		uint256 value,
		bool emitEvent
	) internal virtual {
		if (owner == address(0)) {
			revert ERC20InvalidApprover(address(0));
		}
		if (spender == address(0)) {
			revert ERC20InvalidSpender(address(0));
		}
		_allowances[owner][spender] = value;
		if (emitEvent) {
			emit Approval(owner, spender, value);
		}
	}

	/**
	 * @dev Updates `owner` s allowance for `spender` based on spent `value`.
	 *
	 * Does not update the allowance value in case of infinite allowance.
	 * Revert if not enough allowance is available.
	 *
	 * Does not emit an {Approval} event.
	 */
	function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
		uint256 currentAllowance = allowance(owner, spender);
		if (currentAllowance != type(uint256).max) {
			if (currentAllowance < value) {
				revert ERC20InsufficientAllowance(spender, currentAllowance, value);
			}
			unchecked {
				_approve(owner, spender, currentAllowance - value, false);
			}
		}
	}
}
合同源代码
文件 5 的 18:ERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity 0.8.22;

import {IERC20Permit} from './IERC20Permit.sol';
import {ERC20} from '../ERC20.sol';
import {ECDSA} from '../../../utils/cryptography/ECDSA.sol';
import {EIP712} from '../../../utils/cryptography/EIP712.sol';
import {Nonces} from '../../../utils/Nonces.sol';

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
	bytes32 private constant PERMIT_TYPEHASH =
		keccak256(
			'Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)'
		);

	/**
	 * @dev Permit deadline has expired.
	 */
	error ERC2612ExpiredSignature(uint256 deadline);

	/**
	 * @dev Mismatched signature.
	 */
	error ERC2612InvalidSigner(address signer, address owner);

	/**
	 * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
	 *
	 * It's a good idea to use the same `name` that is defined as the ERC20 token name.
	 */
	constructor(string memory name) EIP712(name, '1') {}

	/**
	 * @inheritdoc IERC20Permit
	 */
	function permit(
		address owner,
		address spender,
		uint256 value,
		uint256 deadline,
		uint8 v,
		bytes32 r,
		bytes32 s
	) public virtual {
		if (block.timestamp > deadline) {
			revert ERC2612ExpiredSignature(deadline);
		}

		bytes32 structHash = keccak256(
			abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)
		);

		bytes32 hash = _hashTypedDataV4(structHash);

		address signer = ECDSA.recover(hash, v, r, s);
		if (signer != owner) {
			revert ERC2612InvalidSigner(signer, owner);
		}

		_approve(owner, spender, value);
	}

	/**
	 * @inheritdoc IERC20Permit
	 */
	function nonces(
		address owner
	) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
		return super.nonces(owner);
	}

	/**
	 * @inheritdoc IERC20Permit
	 */
	// solhint-disable-next-line func-name-mixedcase
	function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
		return _domainSeparatorV4();
	}
}
合同源代码
文件 6 的 18:IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity 0.8.22;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
	/**
	 * @dev Emitted when `value` tokens are moved from one account (`from`) to
	 * another (`to`).
	 *
	 * Note that `value` may be zero.
	 */
	event Transfer(address indexed from, address indexed to, uint256 value);

	/**
	 * @dev Emitted when the allowance of a `spender` for an `owner` is set by
	 * a call to {approve}. `value` is the new allowance.
	 */
	event Approval(address indexed owner, address indexed spender, uint256 value);

	/**
	 * @dev Returns the value of tokens in existence.
	 */
	function totalSupply() external view returns (uint256);

	/**
	 * @dev Returns the value of tokens owned by `account`.
	 */
	function balanceOf(address account) external view returns (uint256);

	/**
	 * @dev Moves a `value` amount of tokens from the caller's account to `to`.
	 *
	 * Returns a boolean value indicating whether the operation succeeded.
	 *
	 * Emits a {Transfer} event.
	 */
	function transfer(address to, uint256 value) external returns (bool);

	/**
	 * @dev Returns the remaining number of tokens that `spender` will be
	 * allowed to spend on behalf of `owner` through {transferFrom}. This is
	 * zero by default.
	 *
	 * This value changes when {approve} or {transferFrom} are called.
	 */
	function allowance(address owner, address spender) external view returns (uint256);

	/**
	 * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
	 * caller's tokens.
	 *
	 * Returns a boolean value indicating whether the operation succeeded.
	 *
	 * IMPORTANT: Beware that changing an allowance with this method brings the risk
	 * that someone may use both the old and the new allowance by unfortunate
	 * transaction ordering. One possible solution to mitigate this race
	 * condition is to first reduce the spender's allowance to 0 and set the
	 * desired value afterwards:
	 * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
	 *
	 * Emits an {Approval} event.
	 */
	function approve(address spender, uint256 value) external returns (bool);

	/**
	 * @dev Moves a `value` amount of tokens from `from` to `to` using the
	 * allowance mechanism. `value` is then deducted from the caller's
	 * allowance.
	 *
	 * Returns a boolean value indicating whether the operation succeeded.
	 *
	 * Emits a {Transfer} event.
	 */
	function transferFrom(address from, address to, uint256 value) external returns (bool);
}
合同源代码
文件 7 的 18:IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity 0.8.22;

import {IERC20} from '../IERC20.sol';

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
	/**
	 * @dev Returns the name of the token.
	 */
	function name() external view returns (string memory);

	/**
	 * @dev Returns the symbol of the token.
	 */
	function symbol() external view returns (string memory);

	/**
	 * @dev Returns the decimals places of the token.
	 */
	function decimals() external view returns (uint8);
}
合同源代码
文件 8 的 18:IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity 0.8.22;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
	/**
	 * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
	 * given ``owner``'s signed approval.
	 *
	 * IMPORTANT: The same issues {IERC20-approve} has related to transaction
	 * ordering also apply here.
	 *
	 * Emits an {Approval} event.
	 *
	 * Requirements:
	 *
	 * - `spender` cannot be the zero address.
	 * - `deadline` must be a timestamp in the future.
	 * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
	 * over the EIP712-formatted function arguments.
	 * - the signature must use ``owner``'s current nonce (see {nonces}).
	 *
	 * For more information on the signature format, see the
	 * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
	 * section].
	 *
	 * CAUTION: See Security Considerations above.
	 */
	function permit(
		address owner,
		address spender,
		uint256 value,
		uint256 deadline,
		uint8 v,
		bytes32 r,
		bytes32 s
	) external;

	/**
	 * @dev Returns the current nonce for `owner`. This value must be
	 * included whenever a signature is generated for {permit}.
	 *
	 * Every successful call to {permit} increases ``owner``'s nonce by one. This
	 * prevents a signature from being used multiple times.
	 */
	function nonces(address owner) external view returns (uint256);

	/**
	 * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
	 */
	// solhint-disable-next-line func-name-mixedcase
	function DOMAIN_SEPARATOR() external view returns (bytes32);
}
合同源代码
文件 9 的 18:IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity 0.8.22;

interface IERC5267 {
	/**
	 * @dev MAY be emitted to signal that the domain could have changed.
	 */
	event EIP712DomainChanged();

	/**
	 * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
	 * signature.
	 */
	function eip712Domain()
		external
		view
		returns (
			bytes1 fields,
			string memory name,
			string memory version,
			uint256 chainId,
			address verifyingContract,
			bytes32 salt,
			uint256[] memory extensions
		);
}
合同源代码
文件 10 的 18:Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity 0.8.22;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
	/**
	 * @dev Muldiv operation overflow.
	 */
	error MathOverflowedMulDiv();

	enum Rounding {
		Floor, // Toward negative infinity
		Ceil, // Toward positive infinity
		Trunc, // Toward zero
		Expand // Away from zero
	}

	/**
	 * @dev Returns the addition of two unsigned integers, with an overflow flag.
	 */
	function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
		unchecked {
			uint256 c = a + b;
			if (c < a) return (false, 0);
			return (true, c);
		}
	}

	/**
	 * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
	 */
	function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
		unchecked {
			if (b > a) return (false, 0);
			return (true, a - b);
		}
	}

	/**
	 * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
	 */
	function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
		unchecked {
			// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
			// benefit is lost if 'b' is also tested.
			// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
			if (a == 0) return (true, 0);
			uint256 c = a * b;
			if (c / a != b) return (false, 0);
			return (true, c);
		}
	}

	/**
	 * @dev Returns the division of two unsigned integers, with a division by zero flag.
	 */
	function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
		unchecked {
			if (b == 0) return (false, 0);
			return (true, a / b);
		}
	}

	/**
	 * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
	 */
	function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
		unchecked {
			if (b == 0) return (false, 0);
			return (true, a % b);
		}
	}

	/**
	 * @dev Returns the largest of two numbers.
	 */
	function max(uint256 a, uint256 b) internal pure returns (uint256) {
		return a > b ? a : b;
	}

	/**
	 * @dev Returns the smallest of two numbers.
	 */
	function min(uint256 a, uint256 b) internal pure returns (uint256) {
		return a < b ? a : b;
	}

	/**
	 * @dev Returns the average of two numbers. The result is rounded towards
	 * zero.
	 */
	function average(uint256 a, uint256 b) internal pure returns (uint256) {
		// (a + b) / 2 can overflow.
		return (a & b) + (a ^ b) / 2;
	}

	/**
	 * @dev Returns the ceiling of the division of two numbers.
	 *
	 * This differs from standard division with `/` in that it rounds towards infinity instead
	 * of rounding towards zero.
	 */
	function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
		if (b == 0) {
			// Guarantee the same behavior as in a regular Solidity division.
			return a / b;
		}

		// (a + b - 1) / b can overflow on addition, so we distribute.
		return a == 0 ? 0 : (a - 1) / b + 1;
	}

	/**
	 * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
	 * denominator == 0.
	 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
	 * Uniswap Labs also under MIT license.
	 */
	function mulDiv(
		uint256 x,
		uint256 y,
		uint256 denominator
	) internal pure returns (uint256 result) {
		unchecked {
			// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
			// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
			// variables such that product = prod1 * 2^256 + prod0.
			uint256 prod0 = x * y; // Least significant 256 bits of the product
			uint256 prod1; // Most significant 256 bits of the product
			assembly {
				let mm := mulmod(x, y, not(0))
				prod1 := sub(sub(mm, prod0), lt(mm, prod0))
			}

			// Handle non-overflow cases, 256 by 256 division.
			if (prod1 == 0) {
				// Solidity will revert if denominator == 0, unlike the div opcode on its own.
				// The surrounding unchecked block does not change this fact.
				// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
				return prod0 / denominator;
			}

			// Make sure the result is less than 2^256. Also prevents denominator == 0.
			if (denominator <= prod1) {
				revert MathOverflowedMulDiv();
			}

			///////////////////////////////////////////////
			// 512 by 256 division.
			///////////////////////////////////////////////

			// Make division exact by subtracting the remainder from [prod1 prod0].
			uint256 remainder;
			assembly {
				// Compute remainder using mulmod.
				remainder := mulmod(x, y, denominator)

				// Subtract 256 bit number from 512 bit number.
				prod1 := sub(prod1, gt(remainder, prod0))
				prod0 := sub(prod0, remainder)
			}

			// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
			// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

			uint256 twos = denominator & (0 - denominator);
			assembly {
				// Divide denominator by twos.
				denominator := div(denominator, twos)

				// Divide [prod1 prod0] by twos.
				prod0 := div(prod0, twos)

				// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
				twos := add(div(sub(0, twos), twos), 1)
			}

			// Shift in bits from prod1 into prod0.
			prod0 |= prod1 * twos;

			// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
			// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
			// four bits. That is, denominator * inv = 1 mod 2^4.
			uint256 inverse = (3 * denominator) ^ 2;

			// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
			// works in modular arithmetic, doubling the correct bits in each step.
			inverse *= 2 - denominator * inverse; // inverse mod 2^8
			inverse *= 2 - denominator * inverse; // inverse mod 2^16
			inverse *= 2 - denominator * inverse; // inverse mod 2^32
			inverse *= 2 - denominator * inverse; // inverse mod 2^64
			inverse *= 2 - denominator * inverse; // inverse mod 2^128
			inverse *= 2 - denominator * inverse; // inverse mod 2^256

			// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
			// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
			// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
			// is no longer required.
			result = prod0 * inverse;
			return result;
		}
	}

	/**
	 * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
	 */
	function mulDiv(
		uint256 x,
		uint256 y,
		uint256 denominator,
		Rounding rounding
	) internal pure returns (uint256) {
		uint256 result = mulDiv(x, y, denominator);
		if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
			result += 1;
		}
		return result;
	}

	/**
	 * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
	 * towards zero.
	 *
	 * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
	 */
	function sqrt(uint256 a) internal pure returns (uint256) {
		if (a == 0) {
			return 0;
		}

		// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
		//
		// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
		// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
		//
		// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
		// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
		// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
		//
		// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
		uint256 result = 1 << (log2(a) >> 1);

		// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
		// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
		// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
		// into the expected uint128 result.
		unchecked {
			result = (result + a / result) >> 1;
			result = (result + a / result) >> 1;
			result = (result + a / result) >> 1;
			result = (result + a / result) >> 1;
			result = (result + a / result) >> 1;
			result = (result + a / result) >> 1;
			result = (result + a / result) >> 1;
			return min(result, a / result);
		}
	}

	/**
	 * @notice Calculates sqrt(a), following the selected rounding direction.
	 */
	function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
		unchecked {
			uint256 result = sqrt(a);
			return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
		}
	}

	/**
	 * @dev Return the log in base 2 of a positive value rounded towards zero.
	 * Returns 0 if given 0.
	 */
	function log2(uint256 value) internal pure returns (uint256) {
		uint256 result = 0;
		unchecked {
			if (value >> 128 > 0) {
				value >>= 128;
				result += 128;
			}
			if (value >> 64 > 0) {
				value >>= 64;
				result += 64;
			}
			if (value >> 32 > 0) {
				value >>= 32;
				result += 32;
			}
			if (value >> 16 > 0) {
				value >>= 16;
				result += 16;
			}
			if (value >> 8 > 0) {
				value >>= 8;
				result += 8;
			}
			if (value >> 4 > 0) {
				value >>= 4;
				result += 4;
			}
			if (value >> 2 > 0) {
				value >>= 2;
				result += 2;
			}
			if (value >> 1 > 0) {
				result += 1;
			}
		}
		return result;
	}

	/**
	 * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
	 * Returns 0 if given 0.
	 */
	function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
		unchecked {
			uint256 result = log2(value);
			return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
		}
	}

	/**
	 * @dev Return the log in base 10 of a positive value rounded towards zero.
	 * Returns 0 if given 0.
	 */
	function log10(uint256 value) internal pure returns (uint256) {
		uint256 result = 0;
		unchecked {
			if (value >= 10 ** 64) {
				value /= 10 ** 64;
				result += 64;
			}
			if (value >= 10 ** 32) {
				value /= 10 ** 32;
				result += 32;
			}
			if (value >= 10 ** 16) {
				value /= 10 ** 16;
				result += 16;
			}
			if (value >= 10 ** 8) {
				value /= 10 ** 8;
				result += 8;
			}
			if (value >= 10 ** 4) {
				value /= 10 ** 4;
				result += 4;
			}
			if (value >= 10 ** 2) {
				value /= 10 ** 2;
				result += 2;
			}
			if (value >= 10 ** 1) {
				result += 1;
			}
		}
		return result;
	}

	/**
	 * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
	 * Returns 0 if given 0.
	 */
	function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
		unchecked {
			uint256 result = log10(value);
			return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
		}
	}

	/**
	 * @dev Return the log in base 256 of a positive value rounded towards zero.
	 * Returns 0 if given 0.
	 *
	 * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
	 */
	function log256(uint256 value) internal pure returns (uint256) {
		uint256 result = 0;
		unchecked {
			if (value >> 128 > 0) {
				value >>= 128;
				result += 16;
			}
			if (value >> 64 > 0) {
				value >>= 64;
				result += 8;
			}
			if (value >> 32 > 0) {
				value >>= 32;
				result += 4;
			}
			if (value >> 16 > 0) {
				value >>= 16;
				result += 2;
			}
			if (value >> 8 > 0) {
				result += 1;
			}
		}
		return result;
	}

	/**
	 * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
	 * Returns 0 if given 0.
	 */
	function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
		unchecked {
			uint256 result = log256(value);
			return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
		}
	}

	/**
	 * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
	 */
	function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
		return uint8(rounding) % 2 == 1;
	}
}
合同源代码
文件 11 的 18:MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity 0.8.22;

import {Strings} from '../Strings.sol';

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
	/**
	 * @dev Returns the keccak256 digest of an EIP-191 signed data with version
	 * `0x45` (`personal_sign` messages).
	 *
	 * The digest is calculated by prefixing a bytes32 `messageHash` with
	 * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
	 * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
	 *
	 * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
	 * keccak256, although any bytes32 value can be safely used because the final digest will
	 * be re-hashed.
	 *
	 * See {ECDSA-recover}.
	 */
	function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
		/// @solidity memory-safe-assembly
		assembly {
			mstore(0x00, '\x19Ethereum Signed Message:\n32') // 32 is the bytes-length of messageHash
			mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
			digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
		}
	}

	/**
	 * @dev Returns the keccak256 digest of an EIP-191 signed data with version
	 * `0x45` (`personal_sign` messages).
	 *
	 * The digest is calculated by prefixing an arbitrary `message` with
	 * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
	 * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
	 *
	 * See {ECDSA-recover}.
	 */
	function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
		return
			keccak256(
				bytes.concat(
					'\x19Ethereum Signed Message:\n',
					bytes(Strings.toString(message.length)),
					message
				)
			);
	}

	/**
	 * @dev Returns the keccak256 digest of an EIP-191 signed data with version
	 * `0x00` (data with intended validator).
	 *
	 * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
	 * `validator` address. Then hashing the result.
	 *
	 * See {ECDSA-recover}.
	 */
	function toDataWithIntendedValidatorHash(
		address validator,
		bytes memory data
	) internal pure returns (bytes32) {
		return keccak256(abi.encodePacked(hex'19_00', validator, data));
	}

	/**
	 * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
	 *
	 * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
	 * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
	 * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
	 *
	 * See {ECDSA-recover}.
	 */
	function toTypedDataHash(
		bytes32 domainSeparator,
		bytes32 structHash
	) internal pure returns (bytes32 digest) {
		/// @solidity memory-safe-assembly
		assembly {
			let ptr := mload(0x40)
			mstore(ptr, hex'19_01')
			mstore(add(ptr, 0x02), domainSeparator)
			mstore(add(ptr, 0x22), structHash)
			digest := keccak256(ptr, 0x42)
		}
	}
}
合同源代码
文件 12 的 18:Nonces.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity 0.8.22;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
	/**
	 * @dev The nonce used for an `account` is not the expected current nonce.
	 */
	error InvalidAccountNonce(address account, uint256 currentNonce);

	mapping(address account => uint256) private _nonces;

	/**
	 * @dev Returns the next unused nonce for an address.
	 */
	function nonces(address owner) public view virtual returns (uint256) {
		return _nonces[owner];
	}

	/**
	 * @dev Consumes a nonce.
	 *
	 * Returns the current value and increments nonce.
	 */
	function _useNonce(address owner) internal virtual returns (uint256) {
		// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
		// decremented or reset. This guarantees that the nonce never overflows.
		unchecked {
			// It is important to do x++ and not ++x here.
			return _nonces[owner]++;
		}
	}

	/**
	 * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
	 */
	function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
		uint256 current = _useNonce(owner);
		if (nonce != current) {
			revert InvalidAccountNonce(owner, current);
		}
	}
}
合同源代码
文件 13 的 18:ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)

pragma solidity 0.8.22;

import {StorageSlot} from './StorageSlot.sol';

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
	// Used as an identifier for strings longer than 31 bytes.
	bytes32 private constant FALLBACK_SENTINEL =
		0x00000000000000000000000000000000000000000000000000000000000000FF;

	error StringTooLong(string str);
	error InvalidShortString();

	/**
	 * @dev Encode a string of at most 31 chars into a `ShortString`.
	 *
	 * This will trigger a `StringTooLong` error is the input string is too long.
	 */
	function toShortString(string memory str) internal pure returns (ShortString) {
		bytes memory bstr = bytes(str);
		if (bstr.length > 31) {
			revert StringTooLong(str);
		}
		return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
	}

	/**
	 * @dev Decode a `ShortString` back to a "normal" string.
	 */
	function toString(ShortString sstr) internal pure returns (string memory) {
		uint256 len = byteLength(sstr);
		// using `new string(len)` would work locally but is not memory safe.
		string memory str = new string(32);
		/// @solidity memory-safe-assembly
		assembly {
			mstore(str, len)
			mstore(add(str, 0x20), sstr)
		}
		return str;
	}

	/**
	 * @dev Return the length of a `ShortString`.
	 */
	function byteLength(ShortString sstr) internal pure returns (uint256) {
		uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
		if (result > 31) {
			revert InvalidShortString();
		}
		return result;
	}

	/**
	 * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
	 */
	function toShortStringWithFallback(
		string memory value,
		string storage store
	) internal returns (ShortString) {
		if (bytes(value).length < 32) {
			return toShortString(value);
		} else {
			StorageSlot.getStringSlot(store).value = value;
			return ShortString.wrap(FALLBACK_SENTINEL);
		}
	}

	/**
	 * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
	 */
	function toStringWithFallback(
		ShortString value,
		string storage store
	) internal pure returns (string memory) {
		if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
			return toString(value);
		} else {
			return store;
		}
	}

	/**
	 * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
	 * {setWithFallback}.
	 *
	 * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
	 * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
	 */
	function byteLengthWithFallback(
		ShortString value,
		string storage store
	) internal view returns (uint256) {
		if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
			return byteLength(value);
		} else {
			return bytes(store).length;
		}
	}
}
合同源代码
文件 14 的 18:SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity 0.8.22;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
	/**
	 * @dev Returns the largest of two signed numbers.
	 */
	function max(int256 a, int256 b) internal pure returns (int256) {
		return a > b ? a : b;
	}

	/**
	 * @dev Returns the smallest of two signed numbers.
	 */
	function min(int256 a, int256 b) internal pure returns (int256) {
		return a < b ? a : b;
	}

	/**
	 * @dev Returns the average of two signed numbers without overflow.
	 * The result is rounded towards zero.
	 */
	function average(int256 a, int256 b) internal pure returns (int256) {
		// Formula from the book "Hacker's Delight"
		int256 x = (a & b) + ((a ^ b) >> 1);
		return x + (int256(uint256(x) >> 255) & (a ^ b));
	}

	/**
	 * @dev Returns the absolute unsigned value of a signed value.
	 */
	function abs(int256 n) internal pure returns (uint256) {
		unchecked {
			// must be unchecked in order to support `n = type(int256).min`
			return uint256(n >= 0 ? n : -n);
		}
	}
}
合同源代码
文件 15 的 18:StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity 0.8.22;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
	struct AddressSlot {
		address value;
	}

	struct BooleanSlot {
		bool value;
	}

	struct Bytes32Slot {
		bytes32 value;
	}

	struct Uint256Slot {
		uint256 value;
	}

	struct StringSlot {
		string value;
	}

	struct BytesSlot {
		bytes value;
	}

	/**
	 * @dev Returns an `AddressSlot` with member `value` located at `slot`.
	 */
	function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
		/// @solidity memory-safe-assembly
		assembly {
			r.slot := slot
		}
	}

	/**
	 * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
	 */
	function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
		/// @solidity memory-safe-assembly
		assembly {
			r.slot := slot
		}
	}

	/**
	 * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
	 */
	function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
		/// @solidity memory-safe-assembly
		assembly {
			r.slot := slot
		}
	}

	/**
	 * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
	 */
	function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
		/// @solidity memory-safe-assembly
		assembly {
			r.slot := slot
		}
	}

	/**
	 * @dev Returns an `StringSlot` with member `value` located at `slot`.
	 */
	function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
		/// @solidity memory-safe-assembly
		assembly {
			r.slot := slot
		}
	}

	/**
	 * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
	 */
	function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
		/// @solidity memory-safe-assembly
		assembly {
			r.slot := store.slot
		}
	}

	/**
	 * @dev Returns an `BytesSlot` with member `value` located at `slot`.
	 */
	function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
		/// @solidity memory-safe-assembly
		assembly {
			r.slot := slot
		}
	}

	/**
	 * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
	 */
	function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
		/// @solidity memory-safe-assembly
		assembly {
			r.slot := store.slot
		}
	}
}
合同源代码
文件 16 的 18:Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity 0.8.22;

import {Math} from './math/Math.sol';
import {SignedMath} from './math/SignedMath.sol';

/**
 * @dev String operations.
 */
library Strings {
	bytes16 private constant HEX_DIGITS = '0123456789abcdef';
	uint8 private constant ADDRESS_LENGTH = 20;

	/**
	 * @dev The `value` string doesn't fit in the specified `length`.
	 */
	error StringsInsufficientHexLength(uint256 value, uint256 length);

	/**
	 * @dev Converts a `uint256` to its ASCII `string` decimal representation.
	 */
	function toString(uint256 value) internal pure returns (string memory) {
		unchecked {
			uint256 length = Math.log10(value) + 1;
			string memory buffer = new string(length);
			uint256 ptr;
			/// @solidity memory-safe-assembly
			assembly {
				ptr := add(buffer, add(32, length))
			}
			while (true) {
				ptr--;
				/// @solidity memory-safe-assembly
				assembly {
					mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
				}
				value /= 10;
				if (value == 0) break;
			}
			return buffer;
		}
	}

	/**
	 * @dev Converts a `int256` to its ASCII `string` decimal representation.
	 */
	function toStringSigned(int256 value) internal pure returns (string memory) {
		return string.concat(value < 0 ? '-' : '', toString(SignedMath.abs(value)));
	}

	/**
	 * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
	 */
	function toHexString(uint256 value) internal pure returns (string memory) {
		unchecked {
			return toHexString(value, Math.log256(value) + 1);
		}
	}

	/**
	 * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
	 */
	function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
		uint256 localValue = value;
		bytes memory buffer = new bytes(2 * length + 2);
		buffer[0] = '0';
		buffer[1] = 'x';
		for (uint256 i = 2 * length + 1; i > 1; --i) {
			buffer[i] = HEX_DIGITS[localValue & 0xf];
			localValue >>= 4;
		}
		if (localValue != 0) {
			revert StringsInsufficientHexLength(value, length);
		}
		return string(buffer);
	}

	/**
	 * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
	 * representation.
	 */
	function toHexString(address addr) internal pure returns (string memory) {
		return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
	}

	/**
	 * @dev Returns true if the two strings are equal.
	 */
	function equal(string memory a, string memory b) internal pure returns (bool) {
		return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
	}
}
合同源代码
文件 17 的 18:YellowToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.22;

import '@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol';

/**
 * @notice Yellow and Canary utility token is a simple ERC20 token with permit functionality.
 * All the supply is minted to the deployer.
 */
contract YellowToken is ERC20Permit {
	/**
	 * @dev Simple constructor, passing arguments to ERC20Permit and ERC20 constructors.
	 * Mints the supply to the deployer.
	 * @param name Name of the Token.
	 * @param symbol Symbol of the Token.
	 * @param supply Maximum supply of the Token.
	 */
	constructor(
		string memory name,
		string memory symbol,
		uint256 supply
	) ERC20Permit(name) ERC20(name, symbol) {
		_mint(msg.sender, supply);
	}

	/**
	 * @notice Return the number of decimals used to get its user representation.
	 * @dev Overrides ERC20 default value of 18;
	 * @return uint8 Number of decimals of Token.
	 */
	function decimals() public pure override returns (uint8) {
		return 8;
	}
}
合同源代码
文件 18 的 18:draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity 0.8.22;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
	/**
	 * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
	 * @param sender Address whose tokens are being transferred.
	 * @param balance Current balance for the interacting account.
	 * @param needed Minimum amount required to perform a transfer.
	 */
	error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

	/**
	 * @dev Indicates a failure with the token `sender`. Used in transfers.
	 * @param sender Address whose tokens are being transferred.
	 */
	error ERC20InvalidSender(address sender);

	/**
	 * @dev Indicates a failure with the token `receiver`. Used in transfers.
	 * @param receiver Address to which tokens are being transferred.
	 */
	error ERC20InvalidReceiver(address receiver);

	/**
	 * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
	 * @param spender Address that may be allowed to operate on tokens without being their owner.
	 * @param allowance Amount of tokens a `spender` is allowed to operate with.
	 * @param needed Minimum amount required to perform a transfer.
	 */
	error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

	/**
	 * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
	 * @param approver Address initiating an approval operation.
	 */
	error ERC20InvalidApprover(address approver);

	/**
	 * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
	 * @param spender Address that may be allowed to operate on tokens without being their owner.
	 */
	error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
	/**
	 * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
	 * Used in balance queries.
	 * @param owner Address of the current owner of a token.
	 */
	error ERC721InvalidOwner(address owner);

	/**
	 * @dev Indicates a `tokenId` whose `owner` is the zero address.
	 * @param tokenId Identifier number of a token.
	 */
	error ERC721NonexistentToken(uint256 tokenId);

	/**
	 * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
	 * @param sender Address whose tokens are being transferred.
	 * @param tokenId Identifier number of a token.
	 * @param owner Address of the current owner of a token.
	 */
	error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

	/**
	 * @dev Indicates a failure with the token `sender`. Used in transfers.
	 * @param sender Address whose tokens are being transferred.
	 */
	error ERC721InvalidSender(address sender);

	/**
	 * @dev Indicates a failure with the token `receiver`. Used in transfers.
	 * @param receiver Address to which tokens are being transferred.
	 */
	error ERC721InvalidReceiver(address receiver);

	/**
	 * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
	 * @param operator Address that may be allowed to operate on tokens without being their owner.
	 * @param tokenId Identifier number of a token.
	 */
	error ERC721InsufficientApproval(address operator, uint256 tokenId);

	/**
	 * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
	 * @param approver Address initiating an approval operation.
	 */
	error ERC721InvalidApprover(address approver);

	/**
	 * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
	 * @param operator Address that may be allowed to operate on tokens without being their owner.
	 */
	error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
	/**
	 * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
	 * @param sender Address whose tokens are being transferred.
	 * @param balance Current balance for the interacting account.
	 * @param needed Minimum amount required to perform a transfer.
	 * @param tokenId Identifier number of a token.
	 */
	error ERC1155InsufficientBalance(
		address sender,
		uint256 balance,
		uint256 needed,
		uint256 tokenId
	);

	/**
	 * @dev Indicates a failure with the token `sender`. Used in transfers.
	 * @param sender Address whose tokens are being transferred.
	 */
	error ERC1155InvalidSender(address sender);

	/**
	 * @dev Indicates a failure with the token `receiver`. Used in transfers.
	 * @param receiver Address to which tokens are being transferred.
	 */
	error ERC1155InvalidReceiver(address receiver);

	/**
	 * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
	 * @param operator Address that may be allowed to operate on tokens without being their owner.
	 * @param owner Address of the current owner of a token.
	 */
	error ERC1155MissingApprovalForAll(address operator, address owner);

	/**
	 * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
	 * @param approver Address initiating an approval operation.
	 */
	error ERC1155InvalidApprover(address approver);

	/**
	 * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
	 * @param operator Address that may be allowed to operate on tokens without being their owner.
	 */
	error ERC1155InvalidOperator(address operator);

	/**
	 * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
	 * Used in batch transfers.
	 * @param idsLength Length of the array of token identifiers
	 * @param valuesLength Length of the array of token amounts
	 */
	error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
设置
{
  "compilationTarget": {
    "contracts/YellowToken.sol": "YellowToken"
  },
  "evmVersion": "paris",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "remappings": []
}
ABI
[{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"supply","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]