// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.0;
import "./ECDSA.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* _Available since v3.4._
*/
abstract contract EIP712 {
/* solhint-disable var-name-mixedcase */
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
uint256 private immutable _CACHED_CHAIN_ID;
address private immutable _CACHED_THIS;
bytes32 private immutable _HASHED_NAME;
bytes32 private immutable _HASHED_VERSION;
bytes32 private immutable _TYPE_HASH;
/* solhint-enable var-name-mixedcase */
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
bytes32 hashedName = keccak256(bytes(name));
bytes32 hashedVersion = keccak256(bytes(version));
bytes32 typeHash = keccak256(
"EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
);
_HASHED_NAME = hashedName;
_HASHED_VERSION = hashedVersion;
_CACHED_CHAIN_ID = block.chainid;
_CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);
_CACHED_THIS = address(this);
_TYPE_HASH = typeHash;
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) {
return _CACHED_DOMAIN_SEPARATOR;
} else {
return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION);
}
}
function _buildDomainSeparator(
bytes32 typeHash,
bytes32 nameHash,
bytes32 versionHash
) private view returns (bytes32) {
return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*
* _Available since v4.1._
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import './LibOrder.sol';
import './LibMath.sol';
library LibFillResults {
struct MatchedFillResults {
uint256 makerSellFilledAmount; // The amount sold by the maker in the maker sell token
uint256 takerSellFilledAmount; // The amount received by the taker in the taker sell token
uint256 makerFeePaid; // The fee paid by the maker in the maker sell token
uint256 takerFeePaid; // The fee paid by the taker in the taker sell token
}
function calculateMatchedFillResults(
LibOrder.Order memory makerOrder,
LibOrder.Order memory takerOrder,
uint256 makerOrderBuyFilledAmount,
uint256 takerOrderBuyFilledAmount,
uint256 maker_fee_numerator,
uint256 maker_fee_denominator,
uint256 taker_fee_numerator,
uint256 taker_fee_denominator
) internal pure returns (MatchedFillResults memory matchedFillResults) {
uint256 makerBuyAmountRemaining = makerOrder.buyAmount -
makerOrderBuyFilledAmount;
uint256 makerSellAmountRemaining = LibMath.safeGetPartialAmountFloor(
makerOrder.sellAmount,
makerOrder.buyAmount,
makerBuyAmountRemaining
);
uint256 takerBuyAmountRemaining = takerOrder.buyAmount -
takerOrderBuyFilledAmount;
uint256 takerSellAmountRemaining = LibMath.safeGetPartialAmountFloor(
takerOrder.sellAmount,
takerOrder.buyAmount,
takerBuyAmountRemaining
);
matchedFillResults = _calculateMatchedFillResultsWithMaximalFill(
makerOrder,
makerSellAmountRemaining,
makerBuyAmountRemaining,
takerSellAmountRemaining
);
// Compute volume fees
matchedFillResults.makerFeePaid =
(matchedFillResults.makerSellFilledAmount * maker_fee_numerator) /
maker_fee_denominator;
matchedFillResults.takerFeePaid =
(matchedFillResults.takerSellFilledAmount * taker_fee_numerator) /
taker_fee_denominator;
}
function _calculateMatchedFillResultsWithMaximalFill(
LibOrder.Order memory makerOrder,
uint256 makerSellAmountRemaining,
uint256 makerBuyAmountRemaining,
uint256 takerSellAmountRemaining
) private pure returns (MatchedFillResults memory matchedFillResults) {
// Calculate the maximum fill results for the maker and taker assets. At least one of the orders will be fully filled.
//
// The maximum that the maker maker can possibly buy is the amount that the taker order can sell.
// The maximum that the taker maker can possibly buy is the amount that the maker order can sell.
//
// If the maker order is fully filled, profit will be paid out in the maker maker asset. If the taker order is fully filled,
// the profit will be out in the taker maker asset.
//
// There are three cases to consider:
// Case 1.
// If the maker can buy more or the same as the taker can sell, then the taker order is fully filled, but at the price of the maker order.
// Case 2.
// If the taker can buy more or the same as the maker can sell, then the maker order is fully filled, at the price of the maker order.
// Case 3.
// Both orders can be filled fully so we can default to case 2
if (makerBuyAmountRemaining >= takerSellAmountRemaining) {
matchedFillResults.makerSellFilledAmount = LibMath
.safeGetPartialAmountFloor(
makerOrder.sellAmount,
makerOrder.buyAmount,
takerSellAmountRemaining
);
matchedFillResults.takerSellFilledAmount = takerSellAmountRemaining;
} else {
matchedFillResults.makerSellFilledAmount = makerSellAmountRemaining;
matchedFillResults.takerSellFilledAmount = makerBuyAmountRemaining;
}
return matchedFillResults;
}
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library LibMath {
function safeGetPartialAmountFloor(
uint256 numerator,
uint256 denominator,
uint256 target
) internal pure returns (uint256 partialAmount) {
require(
!isRoundingErrorFloor(numerator, denominator, target),
'floor rounding error >= 0.1%'
);
partialAmount = (numerator * target) / denominator;
return partialAmount;
}
function safeGetPartialAmountCeil(
uint256 numerator,
uint256 denominator,
uint256 target
) internal pure returns (uint256 partialAmount) {
require(
!isRoundingErrorCeil(numerator, denominator, target),
'ceil rounding error >= 0.1%'
);
// safeDiv computes `floor(a / b)`. We use the identity (a, b integer):
// ceil(a / b) = floor((a + b - 1) / b)
// To implement `ceil(a / b)` using safeDiv.
partialAmount = (numerator * (target + (denominator - 1))) / denominator;
return partialAmount;
}
function isRoundingErrorFloor(
uint256 numerator,
uint256 denominator,
uint256 target
) internal pure returns (bool isError) {
require(denominator != 0, 'error denominator is zero');
if (target == 0 || numerator == 0) {
return false;
}
uint256 remainder = mulmod(target, numerator, denominator);
isError = remainder * 1000 >= numerator * target;
return isError;
}
function isRoundingErrorCeil(
uint256 numerator,
uint256 denominator,
uint256 target
) internal pure returns (bool isError) {
require(denominator != 0, 'error denominator is zero');
// See the comments in `isRoundingError`.
if (target == 0 || numerator == 0) {
// When either is zero, the ideal value and rounded value are zero
// and there is no rounding error. (Although the relative error
// is undefined.)
return false;
}
// Compute remainder as before
uint256 remainder = mulmod(target, numerator, denominator);
remainder = (denominator - remainder) % denominator;
isError = remainder * 1000 >= numerator * target;
return isError;
}
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library LibOrder {
bytes32 internal constant _EIP712_ORDER_SCHEMA_HASH =
0x68d868c8698fc31da3a36bb7a184a4af099797794701bae97bea3de7ebe6e399;
//keccak256("Order(address user,address sellToken,address buyToken,uint256 sellAmount,uint256 buyAmount,uint256 expirationTimeSeconds)")
enum OrderStatus {
INVALID, // Default value
INVALID_MAKER_ASSET_AMOUNT, // Order does not have a valid maker asset amount
INVALID_TAKER_ASSET_AMOUNT, // Order does not have a valid taker asset amount
FILLABLE, // Order is fillable
EXPIRED, // Order has already expired
FULLY_FILLED, // Order is fully filled
CANCELLED // Order has been cancelled
}
struct Order {
address user; //address of the Order Creator making the sale
address sellToken; // address of the Token the Order Creator wants to sell
address buyToken; // address of the Token the Order Creator wants to receive in return
uint256 sellAmount; // amount of Token that the Order Creator wants to sell
uint256 buyAmount; // amount of Token that the Order Creator wants to receive in return
uint256 expirationTimeSeconds; //time after which the order is no longer valid
}
struct OrderInfo {
OrderStatus orderStatus; // Status that describes order's validity and fillability.
bytes32 orderHash; // EIP712 typed data hash of the order (see LibOrder.getTypedDataHash).
uint256 orderBuyFilledAmount; // Amount of order that has already been filled.
}
// https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct
function getOrderHash(Order memory order) internal pure returns (bytes32 orderHash) {
orderHash = keccak256(
abi.encode(
_EIP712_ORDER_SCHEMA_HASH,
order.user,
order.sellToken,
order.buyToken,
order.sellAmount,
order.buyAmount,
order.expirationTimeSeconds
)
);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/cryptography/SignatureChecker.sol)
pragma solidity ^0.8.0;
import "./ECDSA.sol";
import "../Address.sol";
import "../../interfaces/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
* Argent and Gnosis Safe.
*
* _Available since v4.1._
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidSignatureNow(
address signer,
bytes32 hash,
bytes memory signature
) internal view returns (bool) {
(address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature);
if (error == ECDSA.RecoverError.NoError && recovered == signer) {
return true;
}
(bool success, bytes memory result) = signer.staticcall(
abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature)
);
return (success &&
result.length == 32 &&
abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import './LibOrder.sol';
import './LibFillResults.sol';
import {IERC20} from '@openzeppelin/contracts/token/ERC20/IERC20.sol';
import {EIP712} from '@openzeppelin/contracts/utils/cryptography/EIP712.sol';
import {SignatureChecker} from '@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol';
//import "hardhat/console.sol";
contract ZigZagExchange is EIP712 {
event Swap(
address maker,
address taker,
address makerSellToken,
address takerSellToken,
uint256 makerSellAmount,
uint256 takerSellAmount,
uint256 makerVolumeFee,
uint256 takerVolumeFee
);
using LibOrder for LibOrder.Order;
mapping(bytes32 => uint256) public filled;
mapping(bytes32 => bool) public cancelled;
// fees
address FEE_ADDRESS;
uint256 maker_fee_numerator = 0;
uint256 maker_fee_denominator = 10000;
uint256 taker_fee_numerator = 5;
uint256 taker_fee_denominator = 10000;
// initialize fee address
constructor(
string memory name,
string memory version,
address fee_address
) EIP712(name, version) {
FEE_ADDRESS = fee_address;
}
function cancelOrder(LibOrder.Order memory order) public {
require(msg.sender == order.user, 'only user may cancel order');
bytes32 orderHash = order.getOrderHash();
cancelled[orderHash] = true;
}
function matchOrders(
LibOrder.Order memory makerOrder,
LibOrder.Order memory takerOrder,
bytes memory makerSignature,
bytes memory takerSignature
)
public
returns (LibFillResults.MatchedFillResults memory matchedFillResults)
{
// check that tokens address match
require(takerOrder.sellToken == makerOrder.buyToken, 'mismatched tokens');
require(takerOrder.buyToken == makerOrder.sellToken, 'mismatched tokens');
// no self-swap
require(takerOrder.user != makerOrder.user, 'self swap not allowed');
LibOrder.OrderInfo memory makerOrderInfo = getOrderInfo(makerOrder);
LibOrder.OrderInfo memory takerOrderInfo = getOrderInfo(takerOrder);
//validate signature
require(
_isValidSignatureHash(
takerOrder.user,
takerOrderInfo.orderHash,
takerSignature
),
'invalid taker signature'
);
require(
_isValidSignatureHash(
makerOrder.user,
makerOrderInfo.orderHash,
makerSignature
),
'invalid maker signature'
);
// Make sure there is a profitable spread.
// There is a profitable spread iff the cost per unit bought (OrderA.SellAmount/OrderA.BuyAmount) for each order is greater
// than the profit per unit sold of the matched order (OrderB.BuyAmount/OrderB.SellAmount).
// This is satisfied by the equations below:
// <makerOrder.sellAmount> / <makerOrder.buyAmount> >= <takerOrder.buyAmount> / <takerOrder.sellAmount>
// AND
// <takerOrder.sellAmount> / <takerOrder.buyAmount> >= <makerOrder.buyAmount> / <makerOrder.sellAmount>
// These equations can be combined to get the following:
require(
makerOrder.sellAmount * takerOrder.sellAmount >=
makerOrder.buyAmount * takerOrder.buyAmount,
'not profitable spread'
);
matchedFillResults = LibFillResults.calculateMatchedFillResults(
makerOrder,
takerOrder,
makerOrderInfo.orderBuyFilledAmount,
takerOrderInfo.orderBuyFilledAmount,
maker_fee_numerator,
maker_fee_denominator,
taker_fee_numerator,
taker_fee_denominator
);
_updateFilledState(
makerOrderInfo.orderHash,
matchedFillResults.takerSellFilledAmount
);
_updateFilledState(
takerOrderInfo.orderHash,
matchedFillResults.makerSellFilledAmount
);
_settleMatchedOrders(makerOrder, takerOrder, matchedFillResults);
}
function _settleMatchedOrders(
LibOrder.Order memory makerOrder,
LibOrder.Order memory takerOrder,
LibFillResults.MatchedFillResults memory matchedFillResults
) internal {
require(
IERC20(takerOrder.sellToken).balanceOf(takerOrder.user) >=
matchedFillResults.takerSellFilledAmount,
'taker order not enough balance'
);
require(
IERC20(makerOrder.sellToken).balanceOf(makerOrder.user) >=
matchedFillResults.makerSellFilledAmount,
'maker order not enough balance'
);
// Right maker asset -> maker maker
IERC20(takerOrder.sellToken).transferFrom(
takerOrder.user,
makerOrder.user,
matchedFillResults.takerSellFilledAmount
);
// Left maker asset -> taker maker
IERC20(makerOrder.sellToken).transferFrom(
makerOrder.user,
takerOrder.user,
matchedFillResults.makerSellFilledAmount
);
/* Fees Paid */
// Taker fee + gas fee -> fee recipient
if (matchedFillResults.takerFeePaid > 0) {
require(
IERC20(takerOrder.sellToken).balanceOf(takerOrder.user) >=
matchedFillResults.takerFeePaid,
'taker order not enough balance for fee'
);
IERC20(takerOrder.sellToken).transferFrom(
takerOrder.user,
FEE_ADDRESS,
matchedFillResults.takerFeePaid
);
}
// Maker fee -> fee recipient
if (matchedFillResults.makerFeePaid > 0) {
require(
IERC20(makerOrder.sellToken).balanceOf(makerOrder.user) >=
matchedFillResults.makerFeePaid,
'maker order not enough balance for fee'
);
IERC20(makerOrder.sellToken).transferFrom(
makerOrder.user,
FEE_ADDRESS,
matchedFillResults.makerFeePaid
);
}
emit Swap(
makerOrder.user,
takerOrder.user,
makerOrder.sellToken,
takerOrder.sellToken,
matchedFillResults.makerSellFilledAmount,
matchedFillResults.takerSellFilledAmount,
matchedFillResults.makerFeePaid,
matchedFillResults.takerFeePaid
);
}
function _updateFilledState(bytes32 orderHash, uint256 orderBuyFilledAmount)
internal
{
filled[orderHash] += orderBuyFilledAmount;
}
function getOrderInfo(LibOrder.Order memory order)
public
view
returns (LibOrder.OrderInfo memory orderInfo)
{
(
orderInfo.orderHash,
orderInfo.orderBuyFilledAmount
) = _getOrderHashAndFilledAmount(order);
require(
orderInfo.orderBuyFilledAmount < order.buyAmount,
'order is filled'
);
require(block.timestamp <= order.expirationTimeSeconds, 'order expired');
require(!cancelled[orderInfo.orderHash], 'order canceled');
orderInfo.orderStatus = LibOrder.OrderStatus.FILLABLE;
}
function _getOrderHashAndFilledAmount(LibOrder.Order memory order)
internal
view
returns (bytes32 orderHash, uint256 orderBuyFilledAmount)
{
orderHash = order.getOrderHash();
orderBuyFilledAmount = filled[orderHash];
}
function isValidSignature(LibOrder.Order memory order, bytes memory signature)
public
view
returns (bool)
{
bytes32 orderHash = order.getOrderHash();
return _isValidSignatureHash(order.user, orderHash, signature);
}
function _isValidSignatureHash(
address user,
bytes32 orderHash,
bytes memory signature
) private view returns (bool) {
bytes32 digest = _hashTypedDataV4(orderHash);
return SignatureChecker.isValidSignatureNow(user, digest, signature);
}
function setFees(
uint256 _taker_fee_numerator,
uint256 _taker_fee_denominator,
uint256 _maker_fee_numerator,
uint256 _maker_fee_denominator
) public {
require(msg.sender == FEE_ADDRESS, 'only fee address may update fees');
taker_fee_numerator = _taker_fee_numerator;
taker_fee_denominator = _taker_fee_denominator;
maker_fee_numerator = _maker_fee_numerator;
maker_fee_denominator = _maker_fee_denominator;
}
}
{
"compilationTarget": {
"contracts/ZigZagExchange.sol": "ZigZagExchange"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"address","name":"fee_address","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"maker","type":"address"},{"indexed":false,"internalType":"address","name":"taker","type":"address"},{"indexed":false,"internalType":"address","name":"makerSellToken","type":"address"},{"indexed":false,"internalType":"address","name":"takerSellToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"makerSellAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"takerSellAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"makerVolumeFee","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"takerVolumeFee","type":"uint256"}],"name":"Swap","type":"event"},{"inputs":[{"components":[{"internalType":"address","name":"user","type":"address"},{"internalType":"address","name":"sellToken","type":"address"},{"internalType":"address","name":"buyToken","type":"address"},{"internalType":"uint256","name":"sellAmount","type":"uint256"},{"internalType":"uint256","name":"buyAmount","type":"uint256"},{"internalType":"uint256","name":"expirationTimeSeconds","type":"uint256"}],"internalType":"struct LibOrder.Order","name":"order","type":"tuple"}],"name":"cancelOrder","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"cancelled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"filled","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"user","type":"address"},{"internalType":"address","name":"sellToken","type":"address"},{"internalType":"address","name":"buyToken","type":"address"},{"internalType":"uint256","name":"sellAmount","type":"uint256"},{"internalType":"uint256","name":"buyAmount","type":"uint256"},{"internalType":"uint256","name":"expirationTimeSeconds","type":"uint256"}],"internalType":"struct LibOrder.Order","name":"order","type":"tuple"}],"name":"getOrderInfo","outputs":[{"components":[{"internalType":"enum LibOrder.OrderStatus","name":"orderStatus","type":"uint8"},{"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"internalType":"uint256","name":"orderBuyFilledAmount","type":"uint256"}],"internalType":"struct LibOrder.OrderInfo","name":"orderInfo","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"user","type":"address"},{"internalType":"address","name":"sellToken","type":"address"},{"internalType":"address","name":"buyToken","type":"address"},{"internalType":"uint256","name":"sellAmount","type":"uint256"},{"internalType":"uint256","name":"buyAmount","type":"uint256"},{"internalType":"uint256","name":"expirationTimeSeconds","type":"uint256"}],"internalType":"struct LibOrder.Order","name":"order","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"isValidSignature","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"user","type":"address"},{"internalType":"address","name":"sellToken","type":"address"},{"internalType":"address","name":"buyToken","type":"address"},{"internalType":"uint256","name":"sellAmount","type":"uint256"},{"internalType":"uint256","name":"buyAmount","type":"uint256"},{"internalType":"uint256","name":"expirationTimeSeconds","type":"uint256"}],"internalType":"struct LibOrder.Order","name":"makerOrder","type":"tuple"},{"components":[{"internalType":"address","name":"user","type":"address"},{"internalType":"address","name":"sellToken","type":"address"},{"internalType":"address","name":"buyToken","type":"address"},{"internalType":"uint256","name":"sellAmount","type":"uint256"},{"internalType":"uint256","name":"buyAmount","type":"uint256"},{"internalType":"uint256","name":"expirationTimeSeconds","type":"uint256"}],"internalType":"struct LibOrder.Order","name":"takerOrder","type":"tuple"},{"internalType":"bytes","name":"makerSignature","type":"bytes"},{"internalType":"bytes","name":"takerSignature","type":"bytes"}],"name":"matchOrders","outputs":[{"components":[{"internalType":"uint256","name":"makerSellFilledAmount","type":"uint256"},{"internalType":"uint256","name":"takerSellFilledAmount","type":"uint256"},{"internalType":"uint256","name":"makerFeePaid","type":"uint256"},{"internalType":"uint256","name":"takerFeePaid","type":"uint256"}],"internalType":"struct LibFillResults.MatchedFillResults","name":"matchedFillResults","type":"tuple"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_taker_fee_numerator","type":"uint256"},{"internalType":"uint256","name":"_taker_fee_denominator","type":"uint256"},{"internalType":"uint256","name":"_maker_fee_numerator","type":"uint256"},{"internalType":"uint256","name":"_maker_fee_denominator","type":"uint256"}],"name":"setFees","outputs":[],"stateMutability":"nonpayable","type":"function"}]