// File: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.1.0/contracts/utils/ReentrancyGuard.sol
pragma solidity ^0.6.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor () internal {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// File: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.1.0/contracts/utils/Address.sol
pragma solidity ^0.6.2;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// File: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.1.0/contracts/token/ERC20/IERC20.sol
pragma solidity ^0.6.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.1.0/contracts/math/SafeMath.sol
pragma solidity ^0.6.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.1.0/contracts/token/ERC20/SafeERC20.sol
pragma solidity ^0.6.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// File: hub2eth.sol
pragma solidity ^0.6.6;
pragma experimental ABIEncoderV2;
// This is being used purely to avoid stack too deep errors
struct LogicCallArgs {
// Transfers out to the logic contract
uint256[] transferAmounts;
address[] transferTokenContracts;
// The fees (transferred to msg.sender)
uint256[] feeAmounts;
address[] feeTokenContracts;
// The arbitrary logic call
address logicContractAddress;
bytes payload;
// Invalidation metadata
uint256 timeOut;
bytes32 invalidationId;
uint256 invalidationNonce;
}
interface IWETH {
function deposit() external payable;
function withdraw(uint) external;
}
contract Hub2Eth is ReentrancyGuard {
using SafeMath for uint256;
using SafeMath for uint;
using SafeERC20 for IERC20;
// These are updated often
bytes32 public state_lastValsetCheckpoint;
mapping(address => uint256) public state_lastBatchNonces;
mapping(bytes32 => uint256) public state_invalidationMapping;
uint256 public state_lastValsetNonce = 0;
// event nonce zero is reserved by the Cosmos module as a special
// value indicating that no events have yet been submitted
uint256 public state_lastEventNonce = 1;
// These are set once at initialization
bytes32 public state_gravityId;
uint256 public state_powerThreshold;
address public wethAddress;
address public guardian;
// TransactionBatchExecutedEvent and TransferToChain both include the field _eventNonce.
// This is incremented every time one of these events is emitted. It is checked by the
// Cosmos module to ensure that all events are received in order, and that none are lost.
//
// ValsetUpdatedEvent does not include the field _eventNonce because it is never submitted to the Cosmos
// module. It is purely for the use of relayers to allow them to successfully submit batches.
event TransactionBatchExecutedEvent(
uint256 indexed _batchNonce,
address indexed _token,
uint256 _eventNonce
);
event TransferToChainEvent(
address indexed _tokenContract,
address indexed _sender,
bytes32 indexed _destinationChain,
bytes32 _destination,
uint256 _amount,
uint256 _fee,
uint256 _eventNonce
);
event ValsetUpdatedEvent(
uint256 indexed _newValsetNonce,
uint256 _eventNonce,
address[] _validators,
uint256[] _powers
);
event LogicCallEvent(
bytes32 _invalidationId,
uint256 _invalidationNonce,
uint256 _eventNonce,
bytes _returnData
);
receive() external payable {
assert(msg.sender == wethAddress); // only accept ETH via fallback from the WETH contract
}
function lastBatchNonce(address _erc20Address) public view returns (uint256) {
return state_lastBatchNonces[_erc20Address];
}
function lastLogicCallNonce(bytes32 _invalidation_id) public view returns (uint256) {
return state_invalidationMapping[_invalidation_id];
}
// Utility function to verify geth style signatures
function verifySig(
address _signer,
bytes32 _theHash,
uint8 _v,
bytes32 _r,
bytes32 _s
) private pure returns (bool) {
bytes32 messageDigest =
keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", _theHash));
return _signer == ecrecover(messageDigest, _v, _r, _s);
}
// Make a new checkpoint from the supplied validator set
// A checkpoint is a hash of all relevant information about the valset. This is stored by the contract,
// instead of storing the information directly. This saves on storage and gas.
// The format of the checkpoint is:
// h(gravityId, "checkpoint", valsetNonce, validators[], powers[])
// Where h is the keccak256 hash function.
// The validator powers must be decreasing or equal. This is important for checking the signatures on the
// next valset, since it allows the caller to stop verifying signatures once a quorum of signatures have been verified.
function makeCheckpoint(
address[] memory _validators,
uint256[] memory _powers,
uint256 _valsetNonce,
bytes32 _gravityId
) private pure returns (bytes32) {
// bytes32 encoding of the string "checkpoint"
bytes32 methodName = 0x636865636b706f696e7400000000000000000000000000000000000000000000;
bytes32 checkpoint =
keccak256(abi.encode(_gravityId, methodName, _valsetNonce, _validators, _powers));
return checkpoint;
}
function checkValidatorSignatures(
// The current validator set and their powers
address[] memory _currentValidators,
uint256[] memory _currentPowers,
// The current validator's signatures
uint8[] memory _v,
bytes32[] memory _r,
bytes32[] memory _s,
// This is what we are checking they have signed
bytes32 _theHash,
uint256 _powerThreshold
) private pure {
uint256 cumulativePower = 0;
for (uint256 i = 0; i < _currentValidators.length; i++) {
// If v is set to 0, this signifies that it was not possible to get a signature from this validator and we skip evaluation
// (In a valid signature, it is either 27 or 28)
if (_v[i] != 0) {
// Check that the current validator has signed off on the hash
require(
verifySig(_currentValidators[i], _theHash, _v[i], _r[i], _s[i]),
"Validator signature does not match."
);
// Sum up cumulative power
cumulativePower = cumulativePower + _currentPowers[i];
// Break early to avoid wasting gas
if (cumulativePower > _powerThreshold) {
break;
}
}
}
// Check that there was enough power
require(
cumulativePower > _powerThreshold,
"Submitted validator set signatures do not have enough power."
);
// Success
}
// This updates the valset by checking that the validators in the current valset have signed off on the
// new valset. The signatures supplied are the signatures of the current valset over the checkpoint hash
// generated from the new valset.
// Anyone can call this function, but they must supply valid signatures of state_powerThreshold of the current valset over
// the new valset.
function updateValset(
// The new version of the validator set
address[] memory _newValidators,
uint256[] memory _newPowers,
uint256 _newValsetNonce,
// The current validators that approve the change
address[] memory _currentValidators,
uint256[] memory _currentPowers,
uint256 _currentValsetNonce,
// These are arrays of the parts of the current validator's signatures
uint8[] memory _v,
bytes32[] memory _r,
bytes32[] memory _s
) public nonReentrant {
// CHECKS
// Check that the valset nonce is greater than the old one
require(
_newValsetNonce > _currentValsetNonce,
"New valset nonce must be greater than the current nonce"
);
// Check that new validators and powers set is well-formed
require(_newValidators.length == _newPowers.length, "Malformed new validator set");
// Check that current validators, powers, and signatures (v,r,s) set is well-formed
require(
_currentValidators.length == _currentPowers.length &&
_currentValidators.length == _v.length &&
_currentValidators.length == _r.length &&
_currentValidators.length == _s.length,
"Malformed current validator set"
);
// Check that the supplied current validator set matches the saved checkpoint
require(
makeCheckpoint(
_currentValidators,
_currentPowers,
_currentValsetNonce,
state_gravityId
) == state_lastValsetCheckpoint,
"Supplied current validators and powers do not match checkpoint."
);
// Check that enough current validators have signed off on the new validator set
bytes32 newCheckpoint =
makeCheckpoint(_newValidators, _newPowers, _newValsetNonce, state_gravityId);
checkValidatorSignatures(
_currentValidators,
_currentPowers,
_v,
_r,
_s,
newCheckpoint,
state_powerThreshold
);
// ACTIONS
// Stored to be used next time to validate that the valset
// supplied by the caller is correct.
state_lastValsetCheckpoint = newCheckpoint;
// Store new nonce
state_lastValsetNonce = _newValsetNonce;
// LOGS
state_lastEventNonce = state_lastEventNonce.add(1);
emit ValsetUpdatedEvent(_newValsetNonce, state_lastEventNonce, _newValidators, _newPowers);
}
// submitBatch processes a batch of Cosmos -> Ethereum transactions by sending the tokens in the transactions
// to the destination addresses. It is approved by the current Cosmos validator set.
// Anyone can call this function, but they must supply valid signatures of state_powerThreshold of the current valset over
// the batch.
function submitBatch(
// The validators that approve the batch
address[] memory _currentValidators,
uint256[] memory _currentPowers,
uint256 _currentValsetNonce,
// These are arrays of the parts of the validators signatures
uint8[] memory _v,
bytes32[] memory _r,
bytes32[] memory _s,
// The batch of transactions
uint256[] memory _amounts,
address payable[] memory _destinations,
uint256[] memory _fees,
uint256 _batchNonce,
address _tokenContract,
// a block height beyond which this batch is not valid
// used to provide a fee-free timeout
uint256 _batchTimeout
) public nonReentrant {
// CHECKS scoped to reduce stack depth
{
// Check that the batch nonce is higher than the last nonce for this token
require(
state_lastBatchNonces[_tokenContract] < _batchNonce,
"New batch nonce must be greater than the current nonce"
);
// Check that the block height is less than the timeout height
require(
block.number < _batchTimeout,
"Batch timeout must be greater than the current block height"
);
// Check that current validators, powers, and signatures (v,r,s) set is well-formed
require(
_currentValidators.length == _currentPowers.length &&
_currentValidators.length == _v.length &&
_currentValidators.length == _r.length &&
_currentValidators.length == _s.length,
"Malformed current validator set"
);
// Check that the supplied current validator set matches the saved checkpoint
require(
makeCheckpoint(
_currentValidators,
_currentPowers,
_currentValsetNonce,
state_gravityId
) == state_lastValsetCheckpoint,
"Supplied current validators and powers do not match checkpoint."
);
// Check that the transaction batch is well-formed
require(
_amounts.length == _destinations.length && _amounts.length == _fees.length,
"Malformed batch of transactions"
);
// Check that enough current validators have signed off on the transaction batch and valset
checkValidatorSignatures(
_currentValidators,
_currentPowers,
_v,
_r,
_s,
// Get hash of the transaction batch and checkpoint
keccak256(
abi.encode(
state_gravityId,
// bytes32 encoding of "transactionBatch"
0x7472616e73616374696f6e426174636800000000000000000000000000000000,
_amounts,
_destinations,
_fees,
_batchNonce,
_tokenContract,
_batchTimeout
)
),
state_powerThreshold
);
// ACTIONS
// Store batch nonce
state_lastBatchNonces[_tokenContract] = _batchNonce;
// Send transaction amounts to destinations
if (_tokenContract == wethAddress) {
for (uint256 i = 0; i < _amounts.length; i++) {
IWETH(wethAddress).withdraw(_amounts[i]);
TransferHelper.safeTransferETH(_destinations[i], _amounts[i]);
}
} else {
for (uint256 i = 0; i < _amounts.length; i++) {
IERC20(_tokenContract).safeTransfer(_destinations[i], _amounts[i]);
}
}
}
// LOGS scoped to reduce stack depth
{
state_lastEventNonce = state_lastEventNonce.add(1);
emit TransactionBatchExecutedEvent(_batchNonce, _tokenContract, state_lastEventNonce);
}
}
// This makes calls to contracts that execute arbitrary logic
// First, it gives the logic contract some tokens
// Then, it gives msg.senders tokens for fees
// Then, it calls an arbitrary function on the logic contract
// invalidationId and invalidationNonce are used for replay prevention.
// They can be used to implement a per-token nonce by setting the token
// address as the invalidationId and incrementing the nonce each call.
// They can be used for nonce-free replay prevention by using a different invalidationId
// for each call.
function submitLogicCall(
// The validators that approve the call
address[] memory _currentValidators,
uint256[] memory _currentPowers,
uint256 _currentValsetNonce,
// These are arrays of the parts of the validators signatures
uint8[] memory _v,
bytes32[] memory _r,
bytes32[] memory _s,
LogicCallArgs memory _args
) public nonReentrant {
// CHECKS scoped to reduce stack depth
{
// Check that the call has not timed out
require(block.number < _args.timeOut, "Timed out");
// Check that the invalidation nonce is higher than the last nonce for this invalidation Id
require(
state_invalidationMapping[_args.invalidationId] < _args.invalidationNonce,
"New invalidation nonce must be greater than the current nonce"
);
// Check that current validators, powers, and signatures (v,r,s) set is well-formed
require(
_currentValidators.length == _currentPowers.length &&
_currentValidators.length == _v.length &&
_currentValidators.length == _r.length &&
_currentValidators.length == _s.length,
"Malformed current validator set"
);
// Check that the supplied current validator set matches the saved checkpoint
require(
makeCheckpoint(
_currentValidators,
_currentPowers,
_currentValsetNonce,
state_gravityId
) == state_lastValsetCheckpoint,
"Supplied current validators and powers do not match checkpoint."
);
// Check that the token transfer list is well-formed
require(
_args.transferAmounts.length == _args.transferTokenContracts.length,
"Malformed list of token transfers"
);
// Check that the fee list is well-formed
require(
_args.feeAmounts.length == _args.feeTokenContracts.length,
"Malformed list of fees"
);
}
bytes32 argsHash =
keccak256(
abi.encode(
state_gravityId,
// bytes32 encoding of "logicCall"
0x6c6f67696343616c6c0000000000000000000000000000000000000000000000,
_args.transferAmounts,
_args.transferTokenContracts,
_args.feeAmounts,
_args.feeTokenContracts,
_args.logicContractAddress,
_args.payload,
_args.timeOut,
_args.invalidationId,
_args.invalidationNonce
)
);
{
// Check that enough current validators have signed off on the transaction batch and valset
checkValidatorSignatures(
_currentValidators,
_currentPowers,
_v,
_r,
_s,
// Get hash of the transaction batch and checkpoint
argsHash,
state_powerThreshold
);
}
// ACTIONS
// Update invaldiation nonce
state_invalidationMapping[_args.invalidationId] = _args.invalidationNonce;
// Send tokens to the logic contract
for (uint256 i = 0; i < _args.transferAmounts.length; i++) {
IERC20(_args.transferTokenContracts[i]).safeTransfer(
_args.logicContractAddress,
_args.transferAmounts[i]
);
}
// Make call to logic contract
bytes memory returnData = Address.functionCall(_args.logicContractAddress, _args.payload);
// Send fees to msg.sender
for (uint256 i = 0; i < _args.feeAmounts.length; i++) {
IERC20(_args.feeTokenContracts[i]).safeTransfer(msg.sender, _args.feeAmounts[i]);
}
// LOGS scoped to reduce stack depth
{
state_lastEventNonce = state_lastEventNonce.add(1);
emit LogicCallEvent(
_args.invalidationId,
_args.invalidationNonce,
state_lastEventNonce,
returnData
);
}
}
function transferToChain(
address _tokenContract,
bytes32 _destinationChain,
bytes32 _destination,
uint256 _amount,
uint256 _fee
) public nonReentrant {
IERC20(_tokenContract).safeTransferFrom(msg.sender, address(this), _amount);
state_lastEventNonce = state_lastEventNonce.add(1);
emit TransferToChainEvent(
_tokenContract,
msg.sender,
_destinationChain,
_destination,
_amount,
_fee,
state_lastEventNonce
);
}
function transferETHToChain(
bytes32 _destinationChain,
bytes32 _destination,
uint256 _fee
) public nonReentrant payable {
IWETH(wethAddress).deposit{value: msg.value}();
state_lastEventNonce = state_lastEventNonce.add(1);
emit TransferToChainEvent(
wethAddress,
msg.sender,
_destinationChain,
_destination,
msg.value,
_fee,
state_lastEventNonce
);
}
function changeGuardian(address _guardian) public {
require(msg.sender == guardian, "permission denied");
guardian = _guardian;
}
function panicHalt(address[] memory _tokenContracts, address _safeAddress) public {
require(msg.sender == guardian, "permission denied");
for (uint256 i = 0; i < _tokenContracts.length; i++) {
IERC20 token = IERC20(_tokenContracts[i]);
token.safeTransfer(_safeAddress, token.balanceOf(address(this)));
}
}
constructor(
// A unique identifier for this gravity instance to use in signatures
bytes32 _gravityId,
// How much voting power is needed to approve operations
uint256 _powerThreshold,
// The validator set
address[] memory _validators,
uint256[] memory _powers,
address[] memory _validators2,
uint256[] memory _powers2,
address _wethAddress,
address _guardian
) public {
// CHECKS
// Check that validators, powers, and signatures (v,r,s) set is well-formed
require(_validators.length == _powers.length, "Malformed current validator set");
// Check cumulative power to ensure the contract has sufficient power to actually
// pass a vote
uint256 cumulativePower = 0;
for (uint256 i = 0; i < _powers.length; i++) {
cumulativePower = cumulativePower + _powers[i];
if (cumulativePower > _powerThreshold) {
break;
}
}
require(
cumulativePower > _powerThreshold,
"Submitted validator set signatures do not have enough power."
);
bytes32 newCheckpoint = makeCheckpoint(_validators2, _powers2, 3, _gravityId);
// ACTIONS
state_gravityId = _gravityId;
state_powerThreshold = _powerThreshold;
state_lastValsetCheckpoint = newCheckpoint;
wethAddress = _wethAddress;
guardian = _guardian;
// LOGS
emit ValsetUpdatedEvent(state_lastValsetNonce, state_lastEventNonce, _validators, _powers);
emit ValsetUpdatedEvent(3, 2, _validators2, _powers2);
state_lastValsetNonce = 3;
state_lastEventNonce = 2;
}
}
library TransferHelper {
function safeApprove(address token, address to, uint value) internal {
// bytes4(keccak256(bytes('approve(address,uint256)')));
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: APPROVE_FAILED');
}
function safeTransfer(address token, address to, uint value) internal {
// bytes4(keccak256(bytes('transfer(address,uint256)')));
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FAILED');
}
function safeTransferFrom(address token, address from, address to, uint value) internal {
// bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FROM_FAILED');
}
function safeTransferETH(address to, uint value) internal {
(bool success,) = to.call{value:value}(new bytes(0));
require(success, 'TransferHelper: ETH_TRANSFER_FAILED');
}
}
{
"compilationTarget": {
"Hub2Eth.sol": "Hub2Eth"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"bytes32","name":"_gravityId","type":"bytes32"},{"internalType":"uint256","name":"_powerThreshold","type":"uint256"},{"internalType":"address[]","name":"_validators","type":"address[]"},{"internalType":"uint256[]","name":"_powers","type":"uint256[]"},{"internalType":"address[]","name":"_validators2","type":"address[]"},{"internalType":"uint256[]","name":"_powers2","type":"uint256[]"},{"internalType":"address","name":"_wethAddress","type":"address"},{"internalType":"address","name":"_guardian","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"_invalidationId","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"_invalidationNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_eventNonce","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"_returnData","type":"bytes"}],"name":"LogicCallEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_batchNonce","type":"uint256"},{"indexed":true,"internalType":"address","name":"_token","type":"address"},{"indexed":false,"internalType":"uint256","name":"_eventNonce","type":"uint256"}],"name":"TransactionBatchExecutedEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_tokenContract","type":"address"},{"indexed":true,"internalType":"address","name":"_sender","type":"address"},{"indexed":true,"internalType":"bytes32","name":"_destinationChain","type":"bytes32"},{"indexed":false,"internalType":"bytes32","name":"_destination","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_fee","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_eventNonce","type":"uint256"}],"name":"TransferToChainEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_newValsetNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_eventNonce","type":"uint256"},{"indexed":false,"internalType":"address[]","name":"_validators","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"_powers","type":"uint256[]"}],"name":"ValsetUpdatedEvent","type":"event"},{"inputs":[{"internalType":"address","name":"_guardian","type":"address"}],"name":"changeGuardian","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"guardian","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_erc20Address","type":"address"}],"name":"lastBatchNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_invalidation_id","type":"bytes32"}],"name":"lastLogicCallNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"_tokenContracts","type":"address[]"},{"internalType":"address","name":"_safeAddress","type":"address"}],"name":"panicHalt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"state_gravityId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"state_invalidationMapping","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"state_lastBatchNonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"state_lastEventNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"state_lastValsetCheckpoint","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"state_lastValsetNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"state_powerThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"_currentValidators","type":"address[]"},{"internalType":"uint256[]","name":"_currentPowers","type":"uint256[]"},{"internalType":"uint256","name":"_currentValsetNonce","type":"uint256"},{"internalType":"uint8[]","name":"_v","type":"uint8[]"},{"internalType":"bytes32[]","name":"_r","type":"bytes32[]"},{"internalType":"bytes32[]","name":"_s","type":"bytes32[]"},{"internalType":"uint256[]","name":"_amounts","type":"uint256[]"},{"internalType":"address payable[]","name":"_destinations","type":"address[]"},{"internalType":"uint256[]","name":"_fees","type":"uint256[]"},{"internalType":"uint256","name":"_batchNonce","type":"uint256"},{"internalType":"address","name":"_tokenContract","type":"address"},{"internalType":"uint256","name":"_batchTimeout","type":"uint256"}],"name":"submitBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_currentValidators","type":"address[]"},{"internalType":"uint256[]","name":"_currentPowers","type":"uint256[]"},{"internalType":"uint256","name":"_currentValsetNonce","type":"uint256"},{"internalType":"uint8[]","name":"_v","type":"uint8[]"},{"internalType":"bytes32[]","name":"_r","type":"bytes32[]"},{"internalType":"bytes32[]","name":"_s","type":"bytes32[]"},{"components":[{"internalType":"uint256[]","name":"transferAmounts","type":"uint256[]"},{"internalType":"address[]","name":"transferTokenContracts","type":"address[]"},{"internalType":"uint256[]","name":"feeAmounts","type":"uint256[]"},{"internalType":"address[]","name":"feeTokenContracts","type":"address[]"},{"internalType":"address","name":"logicContractAddress","type":"address"},{"internalType":"bytes","name":"payload","type":"bytes"},{"internalType":"uint256","name":"timeOut","type":"uint256"},{"internalType":"bytes32","name":"invalidationId","type":"bytes32"},{"internalType":"uint256","name":"invalidationNonce","type":"uint256"}],"internalType":"struct LogicCallArgs","name":"_args","type":"tuple"}],"name":"submitLogicCall","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_destinationChain","type":"bytes32"},{"internalType":"bytes32","name":"_destination","type":"bytes32"},{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"transferETHToChain","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_tokenContract","type":"address"},{"internalType":"bytes32","name":"_destinationChain","type":"bytes32"},{"internalType":"bytes32","name":"_destination","type":"bytes32"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"transferToChain","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_newValidators","type":"address[]"},{"internalType":"uint256[]","name":"_newPowers","type":"uint256[]"},{"internalType":"uint256","name":"_newValsetNonce","type":"uint256"},{"internalType":"address[]","name":"_currentValidators","type":"address[]"},{"internalType":"uint256[]","name":"_currentPowers","type":"uint256[]"},{"internalType":"uint256","name":"_currentValsetNonce","type":"uint256"},{"internalType":"uint8[]","name":"_v","type":"uint8[]"},{"internalType":"bytes32[]","name":"_r","type":"bytes32[]"},{"internalType":"bytes32[]","name":"_s","type":"bytes32[]"}],"name":"updateValset","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"wethAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]