// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0 || ^0.8.0;
// solhint-disable func-name-mixedcase
// solhint-disable var-name-mixedcase
interface ICurveTokenMinter {
function token() external view returns (address);
function controller() external view returns (address);
function minted(address _user, address _gauge) external view returns (uint256);
function allowed_to_mint_for(address _minter, address _user) external view returns (bool);
function mint(address gauge_addr) external;
function mint_many(address[8] memory gauge_addrs) external;
function mint_for(address gauge_addr, address _for) external;
function toggle_approve_mint(address minting_user) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0 || ^0.8.0;
interface IFxRebalancePoolSplitter {
/**********
* Events *
**********/
/// @notice Emitted when the address of splitter is updated.
/// @param token The address of the token.
/// @param oldSplitter The address of previous token splitter.
/// @param newSplitter The address of current token splitter.
event UpdateSplitter(address indexed token, address indexed oldSplitter, address indexed newSplitter);
/// @notice Emitted when a new receiver is added.
/// @param token The address of the token.
/// @param receiver The address of the receiver.
event RegisterReceiver(address indexed token, address indexed receiver);
/// @notice Emitted when an exsited receiver is removed.
/// @param token The address of the token.
/// @param receiver The address of the receiver.
event DeregisterReceiver(address indexed token, address indexed receiver);
/// @notice Emitted when the split ratio is updated.
/// @param token The address of the token.
/// @param ratios The list of new split ratios.
event UpdateSplitRatios(address indexed token, uint256[] ratios);
/*************************
* Public View Functions *
*************************/
/// @notice Return the splitter of the given token.
/// @param token The address of token to query.
function splitter(address token) external view returns (address);
/// @notice Return the receivers and split ratios for the given token.
/// @param token The address of token to query.
/// @return receivers The address list of receivers.
/// @return ratios The list of corresponding split ratio.
function getReceivers(address token) external view returns (address[] memory receivers, uint256[] memory ratios);
/****************************
* Public Mutated Functions *
****************************/
/// @notice Split token to different RebalancePool.
/// @param token The address of token to split.
function split(address token) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0 || ^0.8.0;
interface IFxTreasury {
/**********
* Events *
**********/
/// @notice Emitted when the net asset value is updated.
/// @param price The new price of base token.
/// @param fNav The new net asset value of fToken.
event ProtocolSettle(uint256 price, uint256 fNav);
/*********
* Enums *
*********/
enum MintOption {
Both,
FToken,
XToken
}
/*************************
* Public View Functions *
*************************/
/// @notice Return the address of base token.
function baseToken() external view returns (address);
/// @notice Return the address fractional base token.
function fToken() external view returns (address);
/// @notice Return the address leveraged base token.
function xToken() external view returns (address);
/// @notice Return the address of strategy contract.
function strategy() external view returns (address);
/// @notice The last updated permissioned base token price.
function lastPermissionedPrice() external view returns (uint256);
/// @notice Return the total amount of base token deposited.
function totalBaseToken() external view returns (uint256);
/// @notice Return the total amount of base token managed by strategy.
function strategyUnderlying() external view returns (uint256);
/// @notice Return the current collateral ratio of fToken, multipled by 1e18.
function collateralRatio() external view returns (uint256);
/// @notice Convert unwrapped token amount to wrapped token amount.
/// @param amount The unwrapped token amount.
function convertToWrapped(uint256 amount) external view returns (uint256);
/// @notice Convert wrapped token amount to unwrapped token amount.
/// @param amount The wrapped token amount.
function convertToUnwrapped(uint256 amount) external view returns (uint256);
/// @notice Return current nav for base token, fToken and xToken.
/// @return baseNav The nav for base token.
/// @return fNav The nav for fToken.
/// @return xNav The nav for xToken.
function getCurrentNav()
external
view
returns (
uint256 baseNav,
uint256 fNav,
uint256 xNav
);
/// @notice Compute the amount of base token needed to reach the new collateral ratio.
/// @param newCollateralRatio The target collateral ratio, multipled by 1e18.
/// @return maxBaseIn The amount of base token needed.
/// @return maxFTokenMintable The amount of fToken can be minted.
function maxMintableFToken(uint256 newCollateralRatio)
external
view
returns (uint256 maxBaseIn, uint256 maxFTokenMintable);
/// @notice Compute the amount of base token needed to reach the new collateral ratio.
/// @param newCollateralRatio The target collateral ratio, multipled by 1e18.
/// @return maxBaseIn The amount of base token needed.
/// @return maxXTokenMintable The amount of xToken can be minted.
function maxMintableXToken(uint256 newCollateralRatio)
external
view
returns (uint256 maxBaseIn, uint256 maxXTokenMintable);
/// @notice Compute the amount of base token needed to reach the new collateral ratio, with incentive.
/// @param newCollateralRatio The target collateral ratio, multipled by 1e18.
/// @param incentiveRatio The extra incentive ratio, multipled by 1e18.
/// @return maxBaseIn The amount of base token needed.
/// @return maxXTokenMintable The amount of xToken can be minted.
function maxMintableXTokenWithIncentive(uint256 newCollateralRatio, uint256 incentiveRatio)
external
view
returns (uint256 maxBaseIn, uint256 maxXTokenMintable);
/// @notice Compute the amount of fToken needed to reach the new collateral ratio.
/// @param newCollateralRatio The target collateral ratio, multipled by 1e18.
/// @return maxBaseOut The amount of base token redeemed.
/// @return maxFTokenRedeemable The amount of fToken needed.
function maxRedeemableFToken(uint256 newCollateralRatio)
external
view
returns (uint256 maxBaseOut, uint256 maxFTokenRedeemable);
/// @notice Compute the amount of xToken needed to reach the new collateral ratio.
/// @param newCollateralRatio The target collateral ratio, multipled by 1e18.
/// @return maxBaseOut The amount of base token redeemed.
/// @return maxXTokenRedeemable The amount of xToken needed.
function maxRedeemableXToken(uint256 newCollateralRatio)
external
view
returns (uint256 maxBaseOut, uint256 maxXTokenRedeemable);
/// @notice Compute the maximum amount of fToken can be liquidated.
/// @param newCollateralRatio The target collateral ratio, multipled by 1e18.
/// @param incentiveRatio The extra incentive ratio, multipled by 1e18.
/// @return maxBaseOut The maximum amount of base token can liquidate, without incentive.
/// @return maxFTokenLiquidatable The maximum amount of fToken can be liquidated.
function maxLiquidatable(uint256 newCollateralRatio, uint256 incentiveRatio)
external
view
returns (uint256 maxBaseOut, uint256 maxFTokenLiquidatable);
/// @notice Return the exponential moving average of the leverage ratio.
function leverageRatio() external view returns (uint256);
/****************************
* Public Mutated Functions *
****************************/
/// @notice Mint fToken and xToken with some base token.
/// @param baseIn The amount of base token deposited.
/// @param recipient The address of receiver.
/// @param option The mint option, xToken or fToken or both.
/// @return fTokenOut The amount of fToken minted.
/// @return xTokenOut The amount of xToken minted.
function mint(
uint256 baseIn,
address recipient,
MintOption option
) external returns (uint256 fTokenOut, uint256 xTokenOut);
/// @notice Redeem fToken and xToken to base tokne.
/// @param fTokenIn The amount of fToken to redeem.
/// @param xTokenIn The amount of xToken to redeem.
/// @param owner The owner of the fToken or xToken.
/// @param baseOut The amount of base token redeemed.
function redeem(
uint256 fTokenIn,
uint256 xTokenIn,
address owner
) external returns (uint256 baseOut);
/// @notice Add some base token to mint xToken with incentive.
/// @param baseIn The amount of base token deposited.
/// @param incentiveRatio The incentive ratio.
/// @param recipient The address of receiver.
/// @return xTokenOut The amount of xToken minted.
function addBaseToken(
uint256 baseIn,
uint256 incentiveRatio,
address recipient
) external returns (uint256 xTokenOut);
/// @notice Liquidate fToken to base token with incentive.
/// @param fTokenIn The amount of fToken to liquidate.
/// @param incentiveRatio The incentive ratio.
/// @param owner The owner of the fToken.
/// @param baseOut The amount of base token liquidated.
function liquidate(
uint256 fTokenIn,
uint256 incentiveRatio,
address owner
) external returns (uint256 baseOut);
/// @notice Settle the nav of base token, fToken and xToken.
function protocolSettle() external;
/// @notice Transfer some base token to strategy contract.
/// @param amount The amount of token to transfer.
function transferToStrategy(uint256 amount) external;
/// @notice Notify base token profit from strategy contract.
/// @param amount The amount of base token.
function notifyStrategyProfit(uint256 amount) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.0;
import "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.20;
import { Ownable2Step } from "@openzeppelin/contracts-v4/access/Ownable2Step.sol";
import { IERC20 } from "@openzeppelin/contracts-v4/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts-v4/token/ERC20/utils/SafeERC20.sol";
import { IFxRebalancePoolSplitter } from "../../interfaces/f(x)/IFxRebalancePoolSplitter.sol";
import { IFxTreasury } from "../../interfaces/f(x)/IFxTreasury.sol";
import { ICurveTokenMinter } from "../../interfaces/ICurveTokenMinter.sol";
contract RebalancePoolGaugeClaimer is Ownable2Step {
using SafeERC20 for IERC20;
/**********
* Events *
**********/
/// @notice Emitted when the incentive ratio is updated.
/// @param oldIncentiveRatio The value of previous incentive ratio, multiplied by 1e18.
/// @param newIncentiveRatio The value of current incentive ratio, multiplied by 1e18.
event UpdateIncentiveRatio(uint256 oldIncentiveRatio, uint256 newIncentiveRatio);
/// @notice Emitted when the splitter ratio parameter is updated.
/// @param leverageRatioLowerBound The current lower bound of leverage ratio, multiplied by 1e18.
/// @param leverageRatioUpperBound The current upper bound of leverage ratio, multiplied by 1e18.
/// @param minSplitterRatio The current minimum splitter ratio, multiplied by 1e18.
event UpdateSplitterRatio(uint256 leverageRatioLowerBound, uint256 leverageRatioUpperBound, uint256 minSplitterRatio);
/**********
* Errors *
**********/
/// @dev Thrown when the incentive ratio is too large.
error ErrorIncentiveRatioTooLarge();
/// @dev Thrown when the leverage ratio lower bound is out of bound.
error ErrorInvalidLeverageRatioLowerBound();
/// @dev Thrown when the leverage ratio upper bound is out of bound.
error ErrorInvalidLeverageRatioUpperBound();
/// @dev Thrown when the min splitter ratio is out of bound.
error ErrorInvalidMinSplitRatio();
/*************
* Constants *
*************/
/// @dev The incentive ratio precision.
uint256 private constant PRECISION = 1e18;
/// @dev The maximum value of incentive ratio.
uint256 private constant MAX_INCENTIVE_RATIO = 1e17; // 10%
/// @dev The minimum value of `leveratio_raio_min`.
uint256 private constant MIN_LEVERAGE_RATIO_LOWER_BOUND = 13e17; // 1.3
/// @dev The maximum value of `leveratio_raio_min`.
uint256 private constant MAX_LEVERAGE_RATIO_LOWER_BOUND = 2e18; // 2
/// @dev The minimum value of `leveratio_raio_max`.
uint256 private constant MIN_LEVERAGE_RATIO_UPPER_BOUND = 2e18; // 2
/// @dev The maximum value of `leveratio_raio_max`.
uint256 private constant MAX_LEVERAGE_RATIO_UPPER_BOUND = 5e18; // 5
/// @dev The minimum value of `splitter_raio_min`.
uint256 private constant MIN_MINIMUM_SPLITTER_RATIO = 5e17; // 0.5
/// @dev The maximum value of `splitter_raio_max`.
uint256 private constant MAX_MINIMUM_SPLITTER_RATIO = 1e18; // 1
/// @dev The address of FXN token.
address private constant FXN = 0x365AccFCa291e7D3914637ABf1F7635dB165Bb09;
/// @dev The address of FXN token minter.
address private constant TOKEN_MINTER = 0xC8b194925D55d5dE9555AD1db74c149329F71DeF;
/// @notice The address of FXN reserve pool.
address public immutable reservePool;
/// @notice The address of Treasury contract.
address public immutable treasury;
/// @notice The address of gauge contract.
address public immutable gauge;
/// @notice The address of RebalancePoolSplitter contract.
address public immutable splitter;
/***********
* Structs *
***********/
/// @param leverageRatioLowerBound The lower bound value of leverage ratio.
/// @param leverageRatioUpperBound The upper bound value of leverage ratio.
/// @param minSplitterRatio The minimum value of splitter ratio.
struct SplitterRatioParameters {
uint64 leverageRatioLowerBound;
uint64 leverageRatioUpperBound;
uint64 minSplitterRatio;
}
/*************
* Variables *
*************/
/// @notice The parameters used to compute splitter ratio.
SplitterRatioParameters public params;
/// @notice The incentive ratio for caller of `claim`.
uint256 public incentiveRatio;
/***************
* Constructor *
***************/
constructor(
address _reservePool,
address _treasury,
address _gauge,
address _splitter
) {
reservePool = _reservePool;
treasury = _treasury;
gauge = _gauge;
splitter = _splitter;
_updateSplitterRatioParameters(2 * 10**18, 3 * 10**18, 666666666666666666);
_updateIncentiveRatio(10**16);
}
/*************************
* Public View Functions *
*************************/
/// @notice Compute the current splitter ratio, multiplied by 1e18.
function getSplitterRatio() external view returns (uint256) {
return _computeSplitterRatio();
}
/****************************
* Public Mutated Functions *
****************************/
/// @notice Claim pending FXN from gauge and split to rebalance pools.
/// @param _receiver The address of incentive receiver.
function claim(address _receiver) external {
unchecked {
// @note We allow donating FXN to this contract, the incentive should only consider minted FXN.
uint256 _balance = IERC20(FXN).balanceOf(address(this));
ICurveTokenMinter(TOKEN_MINTER).mint(gauge);
uint256 _minted = IERC20(FXN).balanceOf(address(this)) - _balance;
uint256 _incentive = (_minted * incentiveRatio) / PRECISION;
_balance += _minted;
if (_incentive > 0) {
IERC20(FXN).safeTransfer(_receiver, _incentive);
_balance -= _incentive;
}
if (_balance > 0) {
uint256 _ratio = _computeSplitterRatio();
uint256 _splitterFXN = (_balance * _ratio) / PRECISION;
// deposit rewards to rebalance pool splitter
IERC20(FXN).safeTransfer(splitter, _splitterFXN);
// transfer extra FXN to reserve pool
IERC20(FXN).safeTransfer(reservePool, _balance - _splitterFXN);
// split rewards
IFxRebalancePoolSplitter(splitter).split(FXN);
}
}
}
/************************
* Restricted Functions *
************************/
/// @notice Update the incentive ratio.
/// @param _newIncentiveRatio The new incentive ratio to claim caller, multiplied by 1e18.
function updateIncentiveRatio(uint256 _newIncentiveRatio) external onlyOwner {
_updateIncentiveRatio(_newIncentiveRatio);
}
/// @notice Update the splitter ratio parameters.
/// @param _minLeverage The minimum leverage ratio, multiplied by 1e18.
/// @param _maxLeverage The maximum leverage ratio, multiplied by 1e18.
/// @param _minRatio The minimum splitter ratio, multiplied by 1e18.
function updateSplitterRatioParameters(
uint64 _minLeverage,
uint64 _maxLeverage,
uint64 _minRatio
) external onlyOwner {
_updateSplitterRatioParameters(_minLeverage, _maxLeverage, _minRatio);
}
/************************
* Internal Functions *
************************/
/// @dev Internal function to compute current splitter ratio.
/// @return _splitterRatio The current splitter ratio, multiplied by 1e18.
function _computeSplitterRatio() internal view returns (uint256 _splitterRatio) {
SplitterRatioParameters memory _params = params;
uint256 _leverageRatio = IFxTreasury(treasury).leverageRatio();
if (_leverageRatio > _params.leverageRatioUpperBound) {
_splitterRatio = _params.minSplitterRatio;
} else if (_leverageRatio < _params.leverageRatioLowerBound) {
_splitterRatio = PRECISION;
} else {
// a = (leverageRatioLowerBound * minSplitterRatio - leverageRatioUpperBound) / c
// b = (1 - minSplitterRatio) / c
// c = leverageRatioLowerBound - leverageRatioUpperBound
// a + b * leverageRatio
// = leverageRatioLowerBound * minSplitterRatio - leverageRatioUpperBound + (1 - minSplitterRatio) * leverageRatio
// = minSplitterRatio * (leverageRatioLowerBound - leverageRatio) + leverageRatio - leverageRatioUpperBound
unchecked {
_splitterRatio =
(uint256(_params.minSplitterRatio) *
(_leverageRatio - uint256(_params.leverageRatioLowerBound)) +
(uint256(_params.leverageRatioUpperBound) - _leverageRatio) *
PRECISION) /
uint256(_params.leverageRatioUpperBound - _params.leverageRatioLowerBound);
}
}
}
/// @dev Internal function to update the incentive ratio.
/// @param _newIncentiveRatio The new incentive ratio to claim caller, multiplied by 1e18.
function _updateIncentiveRatio(uint256 _newIncentiveRatio) internal {
if (_newIncentiveRatio > MAX_INCENTIVE_RATIO) {
revert ErrorIncentiveRatioTooLarge();
}
uint256 _oldIncentiveRatio = incentiveRatio;
incentiveRatio = _newIncentiveRatio;
emit UpdateIncentiveRatio(_oldIncentiveRatio, _newIncentiveRatio);
}
/// @dev Internal function to update the splitter ratio parameters.
/// @param _leverageRatioLowerBound The lower bound of leverage ratio, multiplied by 1e18.
/// @param _leverageRatioUpperBound The upper bound of leverage ratio, multiplied by 1e18.
/// @param _minSplitterRatio The minimum splitter ratio, multiplied by 1e18.
function _updateSplitterRatioParameters(
uint64 _leverageRatioLowerBound,
uint64 _leverageRatioUpperBound,
uint64 _minSplitterRatio
) internal {
if (
_leverageRatioLowerBound < MIN_LEVERAGE_RATIO_LOWER_BOUND ||
_leverageRatioLowerBound > MAX_LEVERAGE_RATIO_LOWER_BOUND
) {
revert ErrorInvalidLeverageRatioLowerBound();
}
if (
_leverageRatioUpperBound < MIN_LEVERAGE_RATIO_UPPER_BOUND ||
_leverageRatioUpperBound > MAX_LEVERAGE_RATIO_UPPER_BOUND
) {
revert ErrorInvalidLeverageRatioUpperBound();
}
if (_minSplitterRatio < MIN_MINIMUM_SPLITTER_RATIO || _minSplitterRatio > MAX_MINIMUM_SPLITTER_RATIO) {
revert ErrorInvalidMinSplitRatio();
}
params = SplitterRatioParameters(_leverageRatioLowerBound, _leverageRatioUpperBound, _minSplitterRatio);
emit UpdateSplitterRatio(_leverageRatioLowerBound, _leverageRatioUpperBound, _minSplitterRatio);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
{
"compilationTarget": {
"contracts/f(x)/rebalance-pool/RebalancePoolGaugeClaimer.sol": "RebalancePoolGaugeClaimer"
},
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_reservePool","type":"address"},{"internalType":"address","name":"_treasury","type":"address"},{"internalType":"address","name":"_gauge","type":"address"},{"internalType":"address","name":"_splitter","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ErrorIncentiveRatioTooLarge","type":"error"},{"inputs":[],"name":"ErrorInvalidLeverageRatioLowerBound","type":"error"},{"inputs":[],"name":"ErrorInvalidLeverageRatioUpperBound","type":"error"},{"inputs":[],"name":"ErrorInvalidMinSplitRatio","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldIncentiveRatio","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newIncentiveRatio","type":"uint256"}],"name":"UpdateIncentiveRatio","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"leverageRatioLowerBound","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"leverageRatioUpperBound","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"minSplitterRatio","type":"uint256"}],"name":"UpdateSplitterRatio","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"gauge","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSplitterRatio","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"incentiveRatio","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"params","outputs":[{"internalType":"uint64","name":"leverageRatioLowerBound","type":"uint64"},{"internalType":"uint64","name":"leverageRatioUpperBound","type":"uint64"},{"internalType":"uint64","name":"minSplitterRatio","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"reservePool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"splitter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasury","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_newIncentiveRatio","type":"uint256"}],"name":"updateIncentiveRatio","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"_minLeverage","type":"uint64"},{"internalType":"uint64","name":"_maxLeverage","type":"uint64"},{"internalType":"uint64","name":"_minRatio","type":"uint64"}],"name":"updateSplitterRatioParameters","outputs":[],"stateMutability":"nonpayable","type":"function"}]