// Sources flattened with hardhat v2.22.17 https://hardhat.org
// SPDX-License-Identifier: MIT AND UNLICENSED
// File @openzeppelin/contracts/utils/Context.sol@v4.7.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// File @openzeppelin/contracts/access/Ownable.sol@v4.7.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File @openzeppelin/contracts/utils/Strings.sol@v4.7.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
// Inspired by OraclizeAPI's implementation - MIT licence
// https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
if (value == 0) {
return "0";
}
uint256 temp = value;
uint256 digits;
while (temp != 0) {
digits++;
temp /= 10;
}
bytes memory buffer = new bytes(digits);
while (value != 0) {
digits -= 1;
buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
value /= 10;
}
return string(buffer);
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
if (value == 0) {
return "0x00";
}
uint256 temp = value;
uint256 length = 0;
while (temp != 0) {
length++;
temp >>= 8;
}
return toHexString(value, length);
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _HEX_SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// File @openzeppelin/contracts/utils/cryptography/ECDSA.sol@v4.7.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.3) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
} else if (error == RecoverError.InvalidSignatureV) {
revert("ECDSA: invalid signature 'v' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
if (v != 27 && v != 28) {
return (address(0), RecoverError.InvalidSignatureV);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}
// File @openzeppelin/contracts/security/ReentrancyGuard.sol@v4.7.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// File @openzeppelin/contracts/token/ERC20/IERC20.sol@v4.7.3
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// File contracts/PresaleControl.sol
// Original license: SPDX_License_Identifier: UNLICENSED
pragma solidity =0.8.19;
contract PresaleControl is Ownable, ReentrancyGuard {
using ECDSA for bytes32;
event Buy(int8 round, address indexed from, uint256 value, uint256 token);
event Transfer(address indexed to, uint256 token);
address public tokenAddr; // erc20 token address, decimals 1e18
address public treasuryAddr; // ETH treasure address
int8 public roundLatest = -1; // round is start at 0
string public name = 'GLS sale';
struct RoundOpt {
uint256 startTime; // round start at
uint256 endTime; // round end at
uint256 totalSupply; // total erc20 token supply for this round
uint256 raiseCap; // total raise cap, 0 means nolimit
uint256 perUnit; // token amount = perUnit * 1ETH, 0 means we should wait for the round to end
uint256 minBuy; // minimun amount per wallet
uint256 maxBuy; // maximum amount per wallet, 0 means nolimit
address signerAddress; // signer for whitelist, empty means nolimit
// vesting period
uint256 vestingStartTime; // vestingStartTime > tokenReleaseAt
uint256 vestingEndTime; //
uint256 initVestedPerc; // 0~100
}
struct RoundStat {
uint256 totalRaised; // eth
uint256 totalToken; // token
uint256 totalClaim; // token
}
struct Wallet {
uint256 totalDeposited; // eth
uint256 totalToken; // token
uint256 totalClaim; // token
}
mapping(int8 => RoundOpt) public roundOpts;
mapping(int8 => RoundStat) public roundStat;
mapping(int8 => mapping(address => Wallet)) public wallets;
constructor(address _tokenAddr, address _treasuryAddr) {
tokenAddr = _tokenAddr;
treasuryAddr = _treasuryAddr;
}
// ============= State Function =============
function currentRound() public view returns (int8) {
int8 _currentRound = -1;
for (int8 roundNum = 0; roundNum <= roundLatest; roundNum++) {
RoundOpt storage opt = roundOpts[roundNum];
if (opt.startTime <= block.timestamp) {
_currentRound = roundNum;
}
}
return _currentRound;
}
// ============= Exchange Function =============
function buy(bytes memory signature) external payable {
int8 _currentRound = currentRound();
RoundOpt storage opt = roundOpts[_currentRound];
RoundStat storage stat = roundStat[_currentRound];
Wallet storage wallet = wallets[_currentRound][msg.sender];
_requireValidRoundWallet(_currentRound, wallet, opt, stat, signature);
// record raise
stat.totalRaised += msg.value;
wallet.totalDeposited += msg.value;
// exchange token (if perUnit == 0, the amount is determined at the end of the round)
uint256 amount = opt.perUnit * msg.value;
// transfer to treasure
(payable(treasuryAddr)).transfer(msg.value);
emit Buy(_currentRound, msg.sender, msg.value, amount);
if (amount > 0) {
wallet.totalToken += amount;
stat.totalToken += amount;
}
}
// ============= Claim Fuciton ===============
// User claim
function totalToken(address addr) external view returns (uint256 deposited, uint256 amount, uint256 claimable, uint256 claimed) {
int8 _currentRound = currentRound();
for (int8 roundNum = 0; roundNum <= _currentRound; roundNum++) {
RoundOpt storage opt = roundOpts[roundNum];
RoundStat storage stat = roundStat[roundNum];
Wallet storage wallet = wallets[roundNum][addr];
amount += _getBoughtToken(wallet, opt, stat);
claimable += _claimableToken(wallet, opt, stat);
claimed += wallet.totalClaim;
deposited += wallet.totalDeposited;
}
return (deposited, amount, claimable, claimed);
}
function _getBoughtToken(
Wallet storage wallet,
RoundOpt storage opt,
RoundStat storage stat
) private view returns (uint256) {
if (opt.perUnit == 0) {
if (opt.endTime > block.timestamp) {
return 0;
} else {
return opt.totalSupply / stat.totalRaised * wallet.totalDeposited;
}
} else {
return wallet.totalToken;
}
}
function _claimableToken(
Wallet storage wallet,
RoundOpt storage opt,
RoundStat storage stat
) private view returns (uint256) {
uint256 _totalToken = _getBoughtToken(wallet, opt, stat);
uint256 vested = getVestedAmount(_totalToken, opt);
require(vested <= _totalToken, "AssertionFailed: vested <= _totalToken");
require(vested >= wallet.totalClaim, "AssertionFailed: vested >= wallet.totalClaim");
return vested - wallet.totalClaim;
}
function getVestedAmount(uint256 boughtAmount, RoundOpt storage opt) private view returns (uint256) {
if (opt.vestingStartTime > block.timestamp) {
return 0;
}
uint256 initVestedAmount = boughtAmount / 100 * opt.initVestedPerc;
uint256 vestingAmount = boughtAmount - initVestedAmount;
uint256 vestedAmount = 0;
if (opt.vestingEndTime < block.timestamp) {
vestedAmount = vestingAmount;
} else {
vestedAmount = vestingAmount / (opt.vestingEndTime - opt.vestingStartTime) * (block.timestamp - opt.vestingStartTime);
}
return vestedAmount + initVestedAmount;
}
// claimAll claimable token
function claimAll(address addr) external nonReentrant {
int8 _currentRound = currentRound();
for (int8 roundNum = 0; roundNum <= _currentRound; roundNum++) {
_claim(addr, roundNum);
}
}
function _claim(address addr, int8 roundNum) private {
RoundStat storage stat = roundStat[roundNum];
Wallet storage wallet = wallets[roundNum][addr];
uint256 claimable = _claimableToken(wallet, roundOpts[roundNum], stat);
if (claimable == 0) {
return;
}
wallet.totalClaim += claimable;
stat.totalClaim += claimable;
IERC20(tokenAddr).transfer(addr, claimable);
emit Transfer(addr, claimable);
}
// =========== Admin Fuction (onlyOwner)============
// setup round
function setupRound(
int8 roundNum,
RoundOpt calldata opt
) external onlyOwner {
require(roundNum >= 0 && roundNum <= roundLatest + 1, "Presale: invalid roundNum");
require(
opt.startTime > 0 && opt.endTime > opt.startTime,
"Presale: invalid startTime or endTime"
);
require(opt.minBuy > 0, "Presale: invalid minBuy");
require(
opt.raiseCap >= 0 && opt.totalSupply > 0,
"Presale: invalid raiseCap or totalSupply"
);
if (opt.raiseCap > 0 && opt.totalSupply > 0) {
require(opt.perUnit > 0, "Presale: invalid perUnit");
}
if (roundNum > roundLatest) {
roundLatest = roundNum;
}
roundOpts[roundNum] = opt;
}
// withdraw
function withdraw() external onlyOwner {
uint256 count = address(this).balance;
(payable(msg.sender)).transfer(count);
}
function withdrawToken(address addr) external onlyOwner {
uint256 count = IERC20(tokenAddr).balanceOf(address(this));
IERC20(tokenAddr).transfer(addr, count);
}
// internal helper
function _requireValidRoundWallet(
int8 _currentRound,
Wallet storage wallet,
RoundOpt storage opt,
RoundStat storage stat,
bytes memory signature
) internal {
// check basic
require(_currentRound >= 0, "Presale Launch is not init");
require(
opt.startTime <= block.timestamp && block.timestamp <= opt.endTime,
"Presale Launch: wrong time for this round"
);
require(msg.value >= opt.minBuy, "Presale: less than minBuy");
// check whitelist
if (opt.signerAddress != address(0)) {
bytes32 messageHash = keccak256(abi.encodePacked(msg.sender));
require(
opt.signerAddress ==
messageHash.toEthSignedMessageHash().recover(signature),
"Presale: sender not in whitelist"
);
}
// check round totalRaised
if (opt.raiseCap > 0) {
require(
stat.totalRaised + msg.value <= opt.raiseCap,
"Presale: more than raise cap!"
);
}
// check user totalDeposited
if (opt.maxBuy > 0) {
require(
wallet.totalDeposited + msg.value <= opt.maxBuy,
"Presale: totalDeposited more than maxBuy"
);
}
}
}
{
"compilationTarget": {
"PresaleControl.sol": "PresaleControl"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_tokenAddr","type":"address"},{"internalType":"address","name":"_treasuryAddr","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"int8","name":"round","type":"int8"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"token","type":"uint256"}],"name":"Buy","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"token","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"buy","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"claimAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"currentRound","outputs":[{"internalType":"int8","name":"","type":"int8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"roundLatest","outputs":[{"internalType":"int8","name":"","type":"int8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"int8","name":"","type":"int8"}],"name":"roundOpts","outputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"totalSupply","type":"uint256"},{"internalType":"uint256","name":"raiseCap","type":"uint256"},{"internalType":"uint256","name":"perUnit","type":"uint256"},{"internalType":"uint256","name":"minBuy","type":"uint256"},{"internalType":"uint256","name":"maxBuy","type":"uint256"},{"internalType":"address","name":"signerAddress","type":"address"},{"internalType":"uint256","name":"vestingStartTime","type":"uint256"},{"internalType":"uint256","name":"vestingEndTime","type":"uint256"},{"internalType":"uint256","name":"initVestedPerc","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"int8","name":"","type":"int8"}],"name":"roundStat","outputs":[{"internalType":"uint256","name":"totalRaised","type":"uint256"},{"internalType":"uint256","name":"totalToken","type":"uint256"},{"internalType":"uint256","name":"totalClaim","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"int8","name":"roundNum","type":"int8"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"totalSupply","type":"uint256"},{"internalType":"uint256","name":"raiseCap","type":"uint256"},{"internalType":"uint256","name":"perUnit","type":"uint256"},{"internalType":"uint256","name":"minBuy","type":"uint256"},{"internalType":"uint256","name":"maxBuy","type":"uint256"},{"internalType":"address","name":"signerAddress","type":"address"},{"internalType":"uint256","name":"vestingStartTime","type":"uint256"},{"internalType":"uint256","name":"vestingEndTime","type":"uint256"},{"internalType":"uint256","name":"initVestedPerc","type":"uint256"}],"internalType":"struct PresaleControl.RoundOpt","name":"opt","type":"tuple"}],"name":"setupRound","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"tokenAddr","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"totalToken","outputs":[{"internalType":"uint256","name":"deposited","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"claimable","type":"uint256"},{"internalType":"uint256","name":"claimed","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasuryAddr","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"int8","name":"","type":"int8"},{"internalType":"address","name":"","type":"address"}],"name":"wallets","outputs":[{"internalType":"uint256","name":"totalDeposited","type":"uint256"},{"internalType":"uint256","name":"totalToken","type":"uint256"},{"internalType":"uint256","name":"totalClaim","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"withdrawToken","outputs":[],"stateMutability":"nonpayable","type":"function"}]