// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.23;
library Cast {
error Overflow();
function toAddress(uint256 _value) internal pure returns (address) {
return address(toUint160(_value));
}
function toUint256(address _value) internal pure returns (uint256) {
return uint256(uint160(_value));
}
function toUint160(uint256 _x) internal pure returns (uint160 y) {
if (_x >> 160 != 0) revert Overflow();
// solhint-disable-next-line no-inline-assembly
assembly {
y := _x
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.23;
/**
* @title Modified minimal proxy
* @author Splits
* @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibClone.sol)
* @dev Modified minimal proxy includes a `receive()` method that emits the
* `ReceiveETH(uint256)` event to skip `DELEGATECALL` when there is no calldata.
* Enables us to accept hard gas-capped `sends` & `transfers` for maximum backwards
* composability.
*/
// solhint-disable no-inline-assembly
library Clone {
error DeploymentFailed();
uint256 private constant FREE_PTR = 0x40;
uint256 private constant ZERO_PTR = 0x60;
/// @dev Deploys a modified minimal proxy of `implementation`
function cloneDeterministic(address _implementation, bytes32 _salt) internal returns (address instance) {
assembly ("memory-safe") {
/**
* --------------------------------------------------------------------------+
* CREATION (9 bytes - 0x09) |
* --------------------------------------------------------------------------|
* Opcode | Mnemonic | Stack | Memory |
* --------------------------------------------------------------------------|
* 60 runSize | PUSH1 runSize | r | |
* 3d | RETURNDATASIZE | 0 r | |
* 81 | DUP2 | r 0 r | |
* 60 offset | PUSH1 offset | o r 0 r | |
* 3d | RETURNDATASIZE | 0 o r 0 r | |
* 39 | CODECOPY | 0 r | [0..runSize): runtime code |
* f3 | RETURN | | [0..runSize): runtime code |
* --------------------------------------------------------------------------|
* RUNTIME (89 bytes - 0x59) |
* --------------------------------------------------------------------------|
* Opcode | Mnemonic | Stack | Memory |
* --------------------------------------------------------------------------|
* |
* 36 | CALLDATASIZE | cds | |
* 60 0x2c | PUSH1 0x2c | 0x2c cds | |
* 57 | JUMPI | | |
* 34 | CALLVALUE | cv | |
* 3d | RETURNDATASIZE | 0 cv | |
* 52 | MSTORE | | [0..0x20): callvalue |
* 7f sig | PUSH32 0x9e.. | sig | [0..0x20): callvalue |
* 59 | MSIZE | 0x20 sig | [0..0x20): callvalue |
* 3d | RETURNDATASIZE | 0 0x20 sig | [0..0x20): callvalue |
* a1 | LOG1 | | [0..0x20): callvalue |
* 00 | STOP | | [0..0x20): callvalue |
* 5b | JUMPDEST | | |
* |
* ::: keep some values in stack ::::::::::::::::::::::::::::::::::::::::::: |
* 3d | RETURNDATASIZE | 0 | |
* 3d | RETURNDATASIZE | 0 0 | |
* 3d | RETURNDATASIZE | 0 0 0 | |
* 3d | RETURNDATASIZE | 0 0 0 0 | |
* |
* ::: copy calldata to memory ::::::::::::::::::::::::::::::::::::::::::::: |
* 36 | CALLDATASIZE | cds 0 0 0 0 | |
* 3d | RETURNDATASIZE | 0 cds 0 0 0 0 | |
* 3d | RETURNDATASIZE | 0 0 cds 0 0 0 0 | |
* 37 | CALLDATACOPY | 0 0 0 0 | [0..cds): calldata |
* |
* ::: delegate call to the implementation contract :::::::::::::::::::::::: |
* 36 | CALLDATASIZE | cds 0 0 0 0 | [0..cds): calldata |
* 3d | RETURNDATASIZE | 0 cds 0 0 0 0 | [0..cds): calldata |
* 73 addr | PUSH20 addr | addr 0 cds 0 0 0 0 | [0..cds): calldata |
* 5a | GAS | gas addr 0 cds 0 0 0 0 | [0..cds): calldata |
* f4 | DELEGATECALL | success 0 0 | [0..cds): calldata |
* |
* ::: copy return data to memory :::::::::::::::::::::::::::::::::::::::::: |
* 3d | RETURNDATASIZE | rds success 0 0 | [0..cds): calldata |
* 3d | RETURNDATASIZE | rds rds success 0 0 | [0..cds): calldata |
* 93 | SWAP4 | 0 rds success 0 rds | [0..cds): calldata |
* 80 | DUP1 | 0 0 rds success 0 rds | [0..cds): calldata |
* 3e | RETURNDATACOPY | success 0 rds | [0..rds): returndata |
* |
* 60 0x57 | PUSH1 0x57 | 0x57 success 0 rds | [0..rds): returndata |
* 57 | JUMPI | 0 rds | [0..rds): returndata |
* |
* ::: revert :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
* fd | REVERT | | [0..rds): returndata |
* |
* ::: return :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
* 5b | JUMPDEST | 0 rds | [0..rds): returndata |
* f3 | RETURN | | [0..rds): returndata |
* --------------------------------------------------------------------------+
* TOTAL INIT (98 bytes - 0x62) |
* --------------------------------------------------------------------------|
*/
// save free pointer
let fp := mload(FREE_PTR)
mstore(0x51, 0x5af43d3d93803e605757fd5bf3) // 13 bytes
mstore(0x44, _implementation) // 20 bytes
mstore(0x30, 0x593da1005b3d3d3d3d363d3d37363d73) // 16 bytes
// `keccak256("ReceiveETH(uint256)")`
mstore(0x20, 0x9e4ac34f21c619cefc926c8bd93b54bf5a39c7ab2127a895af1cc0691d7e3dff) // 32 bytes
mstore(0x00, 0x60593d8160093d39f336602c57343d527f) // 17 bytes
// total: 113 bytes = 0x71
// offset: 15 bytes = 0x0f
// data: 98 bytes = 0x62
instance := create2(0, 0x0f, 0x71, _salt)
// restore free pointer, zero slot
mstore(FREE_PTR, fp)
mstore(ZERO_PTR, 0)
// If `instance` is zero, revert.
if iszero(instance) {
// Store the function selector of `DeploymentFailed()`.
mstore(0x00, 0x30116425)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
}
}
function initCodeHash(address _implementation) internal pure returns (bytes32 hash) {
/// @solidity memory-safe-assembly
assembly {
// save free pointer
let fp := mload(FREE_PTR)
mstore(0x51, 0x5af43d3d93803e605757fd5bf3) // 13 bytes
mstore(0x44, _implementation) // 20 bytes
mstore(0x30, 0x593da1005b3d3d3d3d363d3d37363d73) // 16 bytes
// `keccak256("ReceiveETH(uint256)")`
mstore(0x20, 0x9e4ac34f21c619cefc926c8bd93b54bf5a39c7ab2127a895af1cc0691d7e3dff) // 32 bytes
mstore(0x00, 0x60593d8160093d39f336602c57343d527f) // 17 bytes
hash := keccak256(0x0f, 0x71)
// restore free pointer, zero slot
mstore(FREE_PTR, fp)
mstore(ZERO_PTR, 0)
}
}
function predictDeterministicAddress(
address _implementation,
bytes32 _salt,
address _deployer
)
internal
pure
returns (address predicted)
{
bytes32 hash = initCodeHash(_implementation);
predicted = predictDeterministicAddress({ _hash: hash, _salt: _salt, _deployer: _deployer });
}
function predictDeterministicAddress(
bytes32 _hash,
bytes32 _salt,
address _deployer
)
internal
pure
returns (address predicted)
{
/// @solidity memory-safe-assembly
assembly {
// Compute and store the bytecode hash.
mstore8(0x00, 0xff) // Write the prefix.
mstore(0x35, _hash)
mstore(0x01, shl(96, _deployer))
mstore(0x15, _salt)
predicted := keccak256(0x00, 0x55)
mstore(0x35, 0) // Restore the overwritten part of the free memory pointer.
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.8;
import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* _Available since v3.4._
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant _TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {EIP-5267}.
*
* _Available since v4.9._
*/
function eip712Domain()
public
view
virtual
override
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_name.toStringWithFallback(_nameFallback),
_version.toStringWithFallback(_versionFallback),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/utils/ERC1155Holder.sol)
pragma solidity ^0.8.0;
import "./ERC1155Receiver.sol";
/**
* Simple implementation of `ERC1155Receiver` that will allow a contract to hold ERC1155 tokens.
*
* IMPORTANT: When inheriting this contract, you must include a way to use the received tokens, otherwise they will be
* stuck.
*
* @dev _Available since v3.1._
*/
contract ERC1155Holder is ERC1155Receiver {
function onERC1155Received(
address,
address,
uint256,
uint256,
bytes memory
) public virtual override returns (bytes4) {
return this.onERC1155Received.selector;
}
function onERC1155BatchReceived(
address,
address,
uint256[] memory,
uint256[] memory,
bytes memory
) public virtual override returns (bytes4) {
return this.onERC1155BatchReceived.selector;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC1155/utils/ERC1155Receiver.sol)
pragma solidity ^0.8.0;
import "../IERC1155Receiver.sol";
import "../../../utils/introspection/ERC165.sol";
/**
* @dev _Available since v3.1._
*/
abstract contract ERC1155Receiver is ERC165, IERC1155Receiver {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return interfaceId == type(IERC1155Receiver).interfaceId || super.supportsInterface(interfaceId);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.23;
import { EIP712 } from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import { SignatureChecker } from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
/**
* @notice ERC-1271 with guards for same signer being used on multiple splits
* @author Splits
* Based on coinbase (https://github.com/coinbase/smart-wallet/blob/main/src/ERC1271.sol)
*/
abstract contract ERC1271 is EIP712 {
/* -------------------------------------------------------------------------- */
/* CONSTANTS */
/* -------------------------------------------------------------------------- */
/**
* @dev We use `bytes32 hash` rather than `bytes message`
* In the EIP-712 context, `bytes message` would be useful for showing users a full message
* they are signing in some wallet preview. But in this case, to prevent replay
* across accounts, we are always dealing with nested messages, and so the
* input should be a EIP-191 or EIP-712 output hash.
* E.g. The input hash would be result of
*
* keccak256("\x19\x01" || someDomainSeparator || hashStruct(someStruct))
*
* OR
*
* keccak256("\x19Ethereum Signed Message:\n" || len(someMessage) || someMessage),
*/
bytes32 private constant _MESSAGE_TYPEHASH = keccak256("SplitWalletMessage(bytes32 hash)");
/* -------------------------------------------------------------------------- */
/* CONSTRUCTOR */
/* -------------------------------------------------------------------------- */
/**
* @dev Initializes the {EIP712} domain separator.
*/
constructor(string memory _name, string memory _version) EIP712(_name, _version) { }
/* -------------------------------------------------------------------------- */
/* PUBLIC FUNCTIONS */
/* -------------------------------------------------------------------------- */
/**
* @notice Validates the signature with ERC1271 return, so that this account can also be used as a signer.
*/
function isValidSignature(bytes32 hash, bytes calldata signature) public view virtual returns (bytes4 result) {
if (
SignatureChecker.isValidSignatureNow({
signer: getSigner(),
hash: replaySafeHash(hash),
signature: signature
})
) {
// bytes4(keccak256("isValidSignature(bytes32,bytes)"))
return 0x1626ba7e;
}
return 0xffffffff;
}
/**
* @dev Returns an EIP-712-compliant hash of `hash`,
* where the domainSeparator includes address(this) and block.chainId
* to protect against the same signature being used for many accounts.
* @return
* keccak256(\x19\x01 || this.domainSeparator ||
* hashStruct(SplitWalletMessage({
* hash: `hash`
* }))
* )
*/
function replaySafeHash(bytes32 hash) public view virtual returns (bytes32) {
return _hashTypedDataV4(keccak256(abi.encode(_MESSAGE_TYPEHASH, hash)));
}
/// @dev returns the ERC1271 signer.
function getSigner() internal view virtual returns (address);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/utils/ERC721Holder.sol)
pragma solidity ^0.8.0;
import "../IERC721Receiver.sol";
/**
* @dev Implementation of the {IERC721Receiver} interface.
*
* Accepts all token transfers.
* Make sure the contract is able to use its token with {IERC721-safeTransferFrom}, {IERC721-approve} or {IERC721-setApprovalForAll}.
*/
contract ERC721Holder is IERC721Receiver {
/**
* @dev See {IERC721Receiver-onERC721Received}.
*
* Always returns `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(address, address, uint256, bytes memory) public virtual override returns (bytes4) {
return this.onERC721Received.selector;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev _Available since v3.1._
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*
* _Available since v4.1._
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.23;
interface IERC165 {
/// @notice Checks if a contract implements an interface.
/// @param interfaceId The interface identifier, as specified in ERC-165.
/// @return supported True if the contract implements `interfaceId` and
/// `interfaceId` is not 0xffffffff, false otherwise.
function supportsInterface(bytes4 interfaceId) external view returns (bool supported);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.0;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.23;
import { IERC165 } from "./IERC165.sol";
/// @title ERC6909 Core Interface
/// @author jtriley.eth
interface IERC6909 is IERC165 {
/// @notice The event emitted when a transfer occurs.
/// @param caller The caller of the transfer.
/// @param sender The address of the sender.
/// @param receiver The address of the receiver.
/// @param id The id of the token.
/// @param amount The amount of the token.
event Transfer(
address caller, address indexed sender, address indexed receiver, uint256 indexed id, uint256 amount
);
/// @notice The event emitted when an operator is set.
/// @param owner The address of the owner.
/// @param spender The address of the spender.
/// @param approved The approval status.
event OperatorSet(address indexed owner, address indexed spender, bool approved);
/// @notice The event emitted when an approval occurs.
/// @param owner The address of the owner.
/// @param spender The address of the spender.
/// @param id The id of the token.
/// @param amount The amount of the token.
event Approval(address indexed owner, address indexed spender, uint256 indexed id, uint256 amount);
/// @notice Owner balance of an id.
/// @param owner The address of the owner.
/// @param id The id of the token.
/// @return amount The balance of the token.
function balanceOf(address owner, uint256 id) external view returns (uint256 amount);
/// @notice Spender allowance of an id.
/// @param owner The address of the owner.
/// @param spender The address of the spender.
/// @param id The id of the token.
/// @return amount The allowance of the token.
function allowance(address owner, address spender, uint256 id) external view returns (uint256 amount);
/// @notice Checks if a spender is approved by an owner as an operator
/// @param owner The address of the owner.
/// @param spender The address of the spender.
/// @return approved The approval status.
function isOperator(address owner, address spender) external view returns (bool approved);
/// @notice Transfers an amount of an id from the caller to a receiver.
/// @param receiver The address of the receiver.
/// @param id The id of the token.
/// @param amount The amount of the token.
function transfer(address receiver, uint256 id, uint256 amount) external returns (bool);
/// @notice Transfers an amount of an id from a sender to a receiver.
/// @param sender The address of the sender.
/// @param receiver The address of the receiver.
/// @param id The id of the token.
/// @param amount The amount of the token.
function transferFrom(address sender, address receiver, uint256 id, uint256 amount) external returns (bool);
/// @notice Approves an amount of an id to a spender.
/// @param spender The address of the spender.
/// @param id The id of the token.
/// @param amount The amount of the token.
function approve(address spender, uint256 id, uint256 amount) external returns (bool);
/// @notice Sets or removes a spender as an operator for the caller.
/// @param spender The address of the spender.
/// @param approved The approval status.
function setOperator(address spender, bool approved) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.23;
import { IERC6909 } from "./IERC6909.sol";
interface ISplitsWarehouse is IERC6909 {
function NATIVE_TOKEN() external view returns (address);
function deposit(address receiver, address token, uint256 amount) external payable;
function batchDeposit(address[] calldata receivers, address token, uint256[] calldata amounts) external;
function batchTransfer(address[] calldata receivers, address token, uint256[] calldata amounts) external;
function withdraw(address owner, address token) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.23;
/**
* @title Track hash Nonces
* @dev Inspired by OpenZeppelin's Nonces.sol
*/
abstract contract Nonces {
mapping(bytes32 hash => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for a hash.
*/
function nonces(bytes32 _hash) public view virtual returns (uint256) {
return _nonces[_hash];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function useNonce(bytes32 _hash) internal virtual returns (uint256) {
// For each hash, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[_hash]++;
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.23;
import { Ownable } from "./Ownable.sol";
/**
* @title Pausable Implementation
* @author Splits
* @notice Pausable clone-implementation
*/
abstract contract Pausable is Ownable {
/* -------------------------------------------------------------------------- */
/* ERRORS */
/* -------------------------------------------------------------------------- */
error Paused();
/* -------------------------------------------------------------------------- */
/* EVENTS */
/* -------------------------------------------------------------------------- */
event SetPaused(bool paused);
/* -------------------------------------------------------------------------- */
/* STORAGE */
/* -------------------------------------------------------------------------- */
bool public paused;
/* -------------------------------------------------------------------------- */
/* CONSTRUCTOR & INITIALIZER */
/* -------------------------------------------------------------------------- */
function __initPausable(address _owner, bool _paused) internal virtual {
__initOwnable(_owner);
paused = _paused;
}
/* -------------------------------------------------------------------------- */
/* MODIFIERS */
/* -------------------------------------------------------------------------- */
modifier pausable() virtual {
address owner_ = owner;
if (paused) {
// solhint-disable-next-line avoid-tx-origin
if (msg.sender != owner_ && tx.origin != owner_ && msg.sender != address(this)) {
revert Paused();
}
}
_;
}
/* -------------------------------------------------------------------------- */
/* PUBLIC/EXTERNAL FUNCTIONS */
/* -------------------------------------------------------------------------- */
function setPaused(bool _paused) public virtual onlyOwner {
paused = _paused;
emit SetPaused({ paused: _paused });
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.23;
import { Cast } from "../../libraries/Cast.sol";
import { SplitV2Lib } from "../../libraries/SplitV2.sol";
import { SplitWalletV2 } from "../SplitWalletV2.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
/**
* @title Pull Split Wallet
* @author Splits
* @notice The implementation logic for a splitter that distributes using the splits warehouse.
* @dev `SplitProxy` handles `receive()` itself to avoid the gas cost with `DELEGATECALL`.
*/
contract PullSplit is SplitWalletV2 {
using SplitV2Lib for SplitV2Lib.Split;
using SafeERC20 for IERC20;
using Cast for address;
/* -------------------------------------------------------------------------- */
/* CONSTRUCTOR & INITIALIZER */
/* -------------------------------------------------------------------------- */
constructor(address _splitWarehouse) SplitWalletV2(_splitWarehouse) { }
/* -------------------------------------------------------------------------- */
/* PUBLIC/EXTERNAL FUNCTIONS */
/* -------------------------------------------------------------------------- */
/**
* @notice Distributes the tokens in the split & Warehouse to the recipients through the warehouse.
* @dev The split must be initialized and the hash of _split must match splitHash.
* @param _split The split struct containing the split data that gets distributed.
* @param _token The token to distribute.
* @param _distributor The distributor of the split.
*/
function distribute(
SplitV2Lib.Split calldata _split,
address _token,
address _distributor
)
external
override
pausable
{
if (splitHash != _split.getHash()) revert InvalidSplit();
(uint256 splitBalance, uint256 warehouseBalance) = getSplitBalance(_token);
// @solidity memory-safe-assembly
assembly {
// splitBalance -= uint(splitBalance > 0);
splitBalance := sub(splitBalance, iszero(iszero(splitBalance)))
// warehouseBalance -= uint(warehouseBalance > 0);
warehouseBalance := sub(warehouseBalance, iszero(iszero(warehouseBalance)))
}
if (splitBalance > 0) depositToWarehouse(_token, splitBalance);
_distribute({
_split: _split,
_token: _token,
_amount: warehouseBalance + splitBalance,
_distributor: _distributor
});
}
/**
* @notice Distributes a specific amount of tokens in the split & Warehouse to the recipients through the warehouse.
* @dev The split must be initialized and the hash of _split must match splitHash.
* @dev Will revert if the amount of tokens to transfer or distribute doesn't exist.
* @param _split The split struct containing the split data that gets distributed.
* @param _token The token to distribute.
* @param _distributeAmount The amount of tokens to distribute.
* @param _performWarehouseTransfer if true, deposits all but 1 amount of tokens to the warehouse.
* @param _distributor The distributor of the split.
*/
function distribute(
SplitV2Lib.Split calldata _split,
address _token,
uint256 _distributeAmount,
bool _performWarehouseTransfer,
address _distributor
)
external
override
pausable
{
if (splitHash != _split.getHash()) revert InvalidSplit();
if (_performWarehouseTransfer) {
uint256 amount =
(_token == NATIVE_TOKEN ? address(this).balance : IERC20(_token).balanceOf(address(this))) - 1;
depositToWarehouse(_token, amount);
}
_distribute({ _split: _split, _token: _token, _amount: _distributeAmount, _distributor: _distributor });
}
/**
* @notice Deposits tokens to the warehouse.
* @param _token The token to deposit.
* @param _amount The amount of tokens to deposit
*/
function depositToWarehouse(address _token, uint256 _amount) public {
if (_token == NATIVE_TOKEN) {
SPLITS_WAREHOUSE.deposit{ value: _amount }({ receiver: address(this), token: _token, amount: _amount });
} else {
try SPLITS_WAREHOUSE.deposit({ receiver: address(this), token: _token, amount: _amount }) { }
catch {
IERC20(_token).approve({ spender: address(SPLITS_WAREHOUSE), amount: type(uint256).max });
SPLITS_WAREHOUSE.deposit({ receiver: address(this), token: _token, amount: _amount });
}
}
}
/* -------------------------------------------------------------------------- */
/* INTERNAL/PRIVATE */
/* -------------------------------------------------------------------------- */
/// @dev Assumes the amount is already deposited to the warehouse.
function _distribute(
SplitV2Lib.Split calldata _split,
address _token,
uint256 _amount,
address _distributor
)
internal
{
(uint256[] memory amounts, uint256 distibutorReward) = _split.getDistributions(_amount);
SPLITS_WAREHOUSE.batchTransfer({ receivers: _split.recipients, token: _token, amounts: amounts });
if (distibutorReward > 0) {
SPLITS_WAREHOUSE.transfer({ receiver: _distributor, id: _token.toUint256(), amount: distibutorReward });
}
emit SplitDistributed({ token: _token, distributor: _distributor, amount: _amount });
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.23;
import { SplitFactoryV2 } from "../SplitFactoryV2.sol";
import { PullSplit } from "./PullSplit.sol";
/**
* @title Pull split factory
* @author Splits
* @notice Minimal smart wallet clone-factory for pull flow splitters.
*/
contract PullSplitFactory is SplitFactoryV2 {
/* -------------------------------------------------------------------------- */
/* CONSTRUCTOR */
/* -------------------------------------------------------------------------- */
constructor(address _splitsWarehouse) {
SPLIT_WALLET_IMPLEMENTATION = address(new PullSplit(_splitsWarehouse));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.8;
import "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(_FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.23;
import { Clone } from "../libraries/Clone.sol";
import { SplitV2Lib } from "../libraries/SplitV2.sol";
import { Nonces } from "../utils/Nonces.sol";
import { SplitWalletV2 } from "./SplitWalletV2.sol";
/**
* @title SplitFactoryV2
* @author Splits
* @notice Minimal smart wallet clone-factory for v2 splitters.
*/
abstract contract SplitFactoryV2 is Nonces {
/* -------------------------------------------------------------------------- */
/* EVENTS */
/* -------------------------------------------------------------------------- */
event SplitCreated(address indexed split, SplitV2Lib.Split splitParams, address owner, address creator);
/* -------------------------------------------------------------------------- */
/* STORAGE */
/* -------------------------------------------------------------------------- */
/// @notice address of Split Wallet V2 implementation.
address public immutable SPLIT_WALLET_IMPLEMENTATION;
/* -------------------------------------------------------------------------- */
/* EXTERNAL FUNCTIONS */
/* -------------------------------------------------------------------------- */
/**
* @notice Create a new split using create2.
* @param _splitParams Params to create split with.
* @param _owner Owner of created split.
* @param _creator Creator of created split.
* @param _salt Salt for create2.
*/
function createSplitDeterministic(
SplitV2Lib.Split calldata _splitParams,
address _owner,
address _creator,
bytes32 _salt
)
external
returns (address split)
{
split = Clone.cloneDeterministic({
_implementation: SPLIT_WALLET_IMPLEMENTATION,
_salt: _getSalt({ _splitParams: _splitParams, _owner: _owner, _salt: _salt })
});
SplitWalletV2(split).initialize(_splitParams, _owner);
emit SplitCreated({ split: split, splitParams: _splitParams, owner: _owner, creator: _creator });
}
/**
* @notice Create a new split with params and owner.
* @dev Uses a hash-based incrementing nonce over params and owner.
* @param _splitParams Params to create split with.
* @param _owner Owner of created split.
* @param _creator Creator of created split.
*/
function createSplit(
SplitV2Lib.Split calldata _splitParams,
address _owner,
address _creator
)
external
returns (address split)
{
bytes32 hash = keccak256(abi.encode(_splitParams, _owner));
split = Clone.cloneDeterministic({
_implementation: SPLIT_WALLET_IMPLEMENTATION,
_salt: keccak256(bytes.concat(hash, abi.encode(useNonce(hash))))
});
SplitWalletV2(split).initialize(_splitParams, _owner);
emit SplitCreated({ split: split, splitParams: _splitParams, owner: _owner, creator: _creator });
}
/**
* @notice Predict the address of a new split based on split params, owner, and salt.
* @param _splitParams Params to create split with
* @param _owner Owner of created split
* @param _salt Salt for create2
*/
function predictDeterministicAddress(
SplitV2Lib.Split calldata _splitParams,
address _owner,
bytes32 _salt
)
external
view
returns (address)
{
return _predictDeterministicAddress({ _splitParams: _splitParams, _owner: _owner, _salt: _salt });
}
/**
* @notice Predict the address of a new split based on the nonce of the hash of the params and owner.
* @param _splitParams Params to create split with.
* @param _owner Owner of created split.
*/
function predictDeterministicAddress(
SplitV2Lib.Split calldata _splitParams,
address _owner
)
external
view
returns (address)
{
bytes32 hash = keccak256(abi.encode(_splitParams, _owner));
return Clone.predictDeterministicAddress({
_implementation: SPLIT_WALLET_IMPLEMENTATION,
_salt: keccak256(bytes.concat(hash, abi.encode(nonces(hash)))),
_deployer: address(this)
});
}
/**
* @notice Predict the address of a new split and check if it is deployed.
* @param _splitParams Params to create split with.
* @param _owner Owner of created split.
* @param _salt Salt for create2.
*/
function isDeployed(
SplitV2Lib.Split calldata _splitParams,
address _owner,
bytes32 _salt
)
external
view
returns (address split, bool exists)
{
split = _predictDeterministicAddress({ _splitParams: _splitParams, _owner: _owner, _salt: _salt });
exists = split.code.length > 0;
}
/* -------------------------------------------------------------------------- */
/* PRIVATE/INTERNAL FUNCTIONS */
/* -------------------------------------------------------------------------- */
function _getSalt(
SplitV2Lib.Split calldata _splitParams,
address _owner,
bytes32 _salt
)
internal
pure
returns (bytes32)
{
return keccak256(bytes.concat(abi.encode(_splitParams, _owner), _salt));
}
function _predictDeterministicAddress(
SplitV2Lib.Split calldata _splitParams,
address _owner,
bytes32 _salt
)
internal
view
returns (address)
{
return Clone.predictDeterministicAddress({
_implementation: SPLIT_WALLET_IMPLEMENTATION,
_salt: _getSalt({ _splitParams: _splitParams, _owner: _owner, _salt: _salt }),
_deployer: address(this)
});
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.23;
library SplitV2Lib {
/* -------------------------------------------------------------------------- */
/* ERRORS */
/* -------------------------------------------------------------------------- */
error InvalidSplit_TotalAllocationMismatch();
error InvalidSplit_LengthMismatch();
/* -------------------------------------------------------------------------- */
/* STRUCTS */
/* -------------------------------------------------------------------------- */
/**
* @notice Split struct
* @dev This struct is used to store the split information.
* @dev There are no hard caps on the number of recipients/totalAllocation/allocation unit. Thus the chain and its
* gas limits will dictate these hard caps. Please double check if the split you are creating can be distributed on
* the chain.
* @param recipients The recipients of the split.
* @param allocations The allocations of the split.
* @param totalAllocation The total allocation of the split.
* @param distributionIncentive The incentive for distribution. Limits max incentive to 6.5%.
*/
struct Split {
address[] recipients;
uint256[] allocations;
uint256 totalAllocation;
uint16 distributionIncentive;
}
/* -------------------------------------------------------------------------- */
/* CONSTANTS */
/* -------------------------------------------------------------------------- */
uint256 internal constant PERCENTAGE_SCALE = 1e6;
/* -------------------------------------------------------------------------- */
/* FUNCTIONS */
/* -------------------------------------------------------------------------- */
function getHash(Split calldata _split) internal pure returns (bytes32) {
return keccak256(abi.encode(_split));
}
function getHashMem(Split memory _split) internal pure returns (bytes32) {
return keccak256(abi.encode(_split));
}
function validate(Split calldata _split) internal pure {
uint256 numOfRecipients = _split.recipients.length;
if (_split.allocations.length != numOfRecipients) {
revert InvalidSplit_LengthMismatch();
}
uint256 totalAllocation;
for (uint256 i; i < numOfRecipients; ++i) {
totalAllocation += _split.allocations[i];
}
if (totalAllocation != _split.totalAllocation) revert InvalidSplit_TotalAllocationMismatch();
}
function getDistributions(
Split calldata _split,
uint256 _amount
)
internal
pure
returns (uint256[] memory amounts, uint256 distributorReward)
{
uint256 numOfRecipients = _split.recipients.length;
amounts = new uint256[](numOfRecipients);
distributorReward = calculateDistributorReward(_split, _amount);
_amount -= distributorReward;
for (uint256 i; i < numOfRecipients; ++i) {
amounts[i] = calculateAllocatedAmount(_split, _amount, i);
}
}
function calculateAllocatedAmount(
Split calldata _split,
uint256 _amount,
uint256 _index
)
internal
pure
returns (uint256 allocatedAmount)
{
allocatedAmount = _amount * _split.allocations[_index] / _split.totalAllocation;
}
function calculateDistributorReward(
Split calldata _split,
uint256 _amount
)
internal
pure
returns (uint256 distributorReward)
{
distributorReward = _amount * _split.distributionIncentive / PERCENTAGE_SCALE;
}
// only used in tests
function getDistributionsMem(
Split memory _split,
uint256 _amount
)
internal
pure
returns (uint256[] memory amounts, uint256 distributorReward)
{
uint256 numOfRecipients = _split.recipients.length;
amounts = new uint256[](numOfRecipients);
distributorReward = _amount * _split.distributionIncentive / PERCENTAGE_SCALE;
_amount -= distributorReward;
for (uint256 i; i < numOfRecipients; ++i) {
amounts[i] = _amount * _split.allocations[i] / _split.totalAllocation;
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.23;
import { ISplitsWarehouse } from "../interfaces/ISplitsWarehouse.sol";
import { Cast } from "../libraries/Cast.sol";
import { SplitV2Lib } from "../libraries/SplitV2.sol";
import { ERC1271 } from "../utils/ERC1271.sol";
import { Wallet } from "../utils/Wallet.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/**
* @title Split Wallet V2
* @author Splits
* @notice Base splitter contract.
* @dev `SplitProxy` handles `receive()` itself to avoid the gas cost with `DELEGATECALL`.
*/
abstract contract SplitWalletV2 is Wallet, ERC1271 {
using SplitV2Lib for SplitV2Lib.Split;
using Cast for address;
/* -------------------------------------------------------------------------- */
/* ERRORS */
/* -------------------------------------------------------------------------- */
error UnauthorizedInitializer();
error InvalidSplit();
/* -------------------------------------------------------------------------- */
/* EVENTS */
/* -------------------------------------------------------------------------- */
event SplitUpdated(SplitV2Lib.Split _split);
event SplitDistributed(address indexed token, address indexed distributor, uint256 amount);
/* -------------------------------------------------------------------------- */
/* CONSTANTS/IMMUTABLES */
/* -------------------------------------------------------------------------- */
/// @notice address of Splits Warehouse
ISplitsWarehouse public immutable SPLITS_WAREHOUSE;
/// @notice address of Split Wallet V2 factory
address public immutable FACTORY;
/// @notice address of native token
address public immutable NATIVE_TOKEN;
/* -------------------------------------------------------------------------- */
/* STORAGE */
/* -------------------------------------------------------------------------- */
/// @notice the split hash - Keccak256 hash of the split struct
bytes32 public splitHash;
/* -------------------------------------------------------------------------- */
/* CONSTRUCTOR & INITIALIZER */
/* -------------------------------------------------------------------------- */
constructor(address _splitWarehouse) ERC1271("splitWallet", "2") {
SPLITS_WAREHOUSE = ISplitsWarehouse(_splitWarehouse);
NATIVE_TOKEN = SPLITS_WAREHOUSE.NATIVE_TOKEN();
FACTORY = msg.sender;
}
/**
* @notice Initializes the split wallet with a split and its corresponding data.
* @dev Only the factory can call this function.
* @param _split The split struct containing the split data that gets initialized.
*/
function initialize(SplitV2Lib.Split calldata _split, address _owner) external {
if (msg.sender != FACTORY) revert UnauthorizedInitializer();
_split.validate();
splitHash = _split.getHash();
Wallet.__initWallet(_owner);
}
/* -------------------------------------------------------------------------- */
/* PUBLIC/EXTERNAL FUNCTIONS */
/* -------------------------------------------------------------------------- */
function distribute(SplitV2Lib.Split calldata _split, address _token, address _distributor) external virtual;
function distribute(
SplitV2Lib.Split calldata _split,
address _token,
uint256 _distributeAmount,
bool _performWarehouseTransfer,
address _distributor
)
external
virtual;
/**
* @notice Gets the total token balance of the split wallet and the warehouse.
* @param _token The token to get the balance of.
* @return splitBalance The token balance in the split wallet.
* @return warehouseBalance The token balance in the warehouse of the split wallet.
*/
function getSplitBalance(address _token) public view returns (uint256 splitBalance, uint256 warehouseBalance) {
splitBalance = (_token == NATIVE_TOKEN) ? address(this).balance : IERC20(_token).balanceOf(address(this));
warehouseBalance = SPLITS_WAREHOUSE.balanceOf(address(this), _token.toUint256());
}
/**
* @notice Updates the split.
* @dev Only the owner can call this function.
* @param _split The new split struct.
*/
function updateSplit(SplitV2Lib.Split calldata _split) external onlyOwner {
// throws error if invalid
_split.validate();
splitHash = _split.getHash();
emit SplitUpdated(_split);
}
/* -------------------------------------------------------------------------- */
/* INTERNAL FUNCTIONS */
/* -------------------------------------------------------------------------- */
function getSigner() internal view override returns (address) {
return owner;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.0;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
* _Available since v4.9 for `string`, `bytes`._
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.23;
import { Pausable } from "./Pausable.sol";
import { ERC1155Holder } from "@openzeppelin/contracts/token/ERC1155/utils/ERC1155Holder.sol";
import { ERC721Holder } from "@openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol";
/**
* @title Wallet Implementation
* @author Splits
* @notice Minimal smart wallet clone-implementation.
*/
abstract contract Wallet is Pausable, ERC721Holder, ERC1155Holder {
/* -------------------------------------------------------------------------- */
/* ERRORS */
/* -------------------------------------------------------------------------- */
error InvalidCalldataForEOA(Call call);
/* -------------------------------------------------------------------------- */
/* STRUCTS */
/* -------------------------------------------------------------------------- */
struct Call {
address to;
uint256 value;
bytes data;
}
/* -------------------------------------------------------------------------- */
/* EVENTS */
/* -------------------------------------------------------------------------- */
event ExecCalls(Call[] calls);
/* -------------------------------------------------------------------------- */
/* CONSTRUCTOR & INITIALIZER */
/* -------------------------------------------------------------------------- */
function __initWallet(address _owner) internal {
__initPausable(_owner, false);
}
/* -------------------------------------------------------------------------- */
/* FUNCTONS */
/* -------------------------------------------------------------------------- */
/**
* @notice Execute a batch of calls.
* @dev The calls are executed in order, reverting if any of them fails. Can
* only be called by the owner.
* @param _calls The calls to execute
*/
function execCalls(Call[] calldata _calls)
external
payable
returns (uint256 blockNumber, bytes[] memory returnData)
{
address caller = msg.sender;
blockNumber = block.number;
uint256 length = _calls.length;
returnData = new bytes[](length);
bool success;
for (uint256 i; i < length; ++i) {
// prevent user from executing calls after transferring ownership.
if (caller != owner) revert Unauthorized();
Call calldata calli = _calls[i];
if (calli.to.code.length == 0) {
// When the call is to an EOA, the calldata must be empty.
if (calli.data.length > 0) revert InvalidCalldataForEOA({ call: calli });
}
(success, returnData[i]) = calli.to.call{ value: calli.value }(calli.data);
// solhint-disable-next-line
require(success, string(returnData[i]));
}
emit ExecCalls({ calls: _calls });
}
}
{
"compilationTarget": {
"src/splitters/pull/PullSplitFactory.sol": "PullSplitFactory"
},
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 5000000
},
"remappings": [
":@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/",
":@prb/test/=node_modules/@prb/test/src/",
":forge-std/=node_modules/forge-std/src/",
":multicaller/=node_modules/multicaller/",
":solady/=node_modules/solady/src/"
],
"viaIR": true
}
[{"inputs":[{"internalType":"address","name":"_splitsWarehouse","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"split","type":"address"},{"components":[{"internalType":"address[]","name":"recipients","type":"address[]"},{"internalType":"uint256[]","name":"allocations","type":"uint256[]"},{"internalType":"uint256","name":"totalAllocation","type":"uint256"},{"internalType":"uint16","name":"distributionIncentive","type":"uint16"}],"indexed":false,"internalType":"struct SplitV2Lib.Split","name":"splitParams","type":"tuple"},{"indexed":false,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"address","name":"creator","type":"address"}],"name":"SplitCreated","type":"event"},{"inputs":[],"name":"SPLIT_WALLET_IMPLEMENTATION","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address[]","name":"recipients","type":"address[]"},{"internalType":"uint256[]","name":"allocations","type":"uint256[]"},{"internalType":"uint256","name":"totalAllocation","type":"uint256"},{"internalType":"uint16","name":"distributionIncentive","type":"uint16"}],"internalType":"struct SplitV2Lib.Split","name":"_splitParams","type":"tuple"},{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_creator","type":"address"}],"name":"createSplit","outputs":[{"internalType":"address","name":"split","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address[]","name":"recipients","type":"address[]"},{"internalType":"uint256[]","name":"allocations","type":"uint256[]"},{"internalType":"uint256","name":"totalAllocation","type":"uint256"},{"internalType":"uint16","name":"distributionIncentive","type":"uint16"}],"internalType":"struct SplitV2Lib.Split","name":"_splitParams","type":"tuple"},{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_creator","type":"address"},{"internalType":"bytes32","name":"_salt","type":"bytes32"}],"name":"createSplitDeterministic","outputs":[{"internalType":"address","name":"split","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address[]","name":"recipients","type":"address[]"},{"internalType":"uint256[]","name":"allocations","type":"uint256[]"},{"internalType":"uint256","name":"totalAllocation","type":"uint256"},{"internalType":"uint16","name":"distributionIncentive","type":"uint16"}],"internalType":"struct SplitV2Lib.Split","name":"_splitParams","type":"tuple"},{"internalType":"address","name":"_owner","type":"address"},{"internalType":"bytes32","name":"_salt","type":"bytes32"}],"name":"isDeployed","outputs":[{"internalType":"address","name":"split","type":"address"},{"internalType":"bool","name":"exists","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_hash","type":"bytes32"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address[]","name":"recipients","type":"address[]"},{"internalType":"uint256[]","name":"allocations","type":"uint256[]"},{"internalType":"uint256","name":"totalAllocation","type":"uint256"},{"internalType":"uint16","name":"distributionIncentive","type":"uint16"}],"internalType":"struct SplitV2Lib.Split","name":"_splitParams","type":"tuple"},{"internalType":"address","name":"_owner","type":"address"}],"name":"predictDeterministicAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address[]","name":"recipients","type":"address[]"},{"internalType":"uint256[]","name":"allocations","type":"uint256[]"},{"internalType":"uint256","name":"totalAllocation","type":"uint256"},{"internalType":"uint16","name":"distributionIncentive","type":"uint16"}],"internalType":"struct SplitV2Lib.Split","name":"_splitParams","type":"tuple"},{"internalType":"address","name":"_owner","type":"address"},{"internalType":"bytes32","name":"_salt","type":"bytes32"}],"name":"predictDeterministicAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]