// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
* ```
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;
/// @title FixedPoint96
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
/// @dev Used in SqrtPriceMath.sol
library FixedPoint96 {
uint8 internal constant RESOLUTION = 96;
uint256 internal constant Q96 = 0x1000000000000000000000000;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = (0 - denominator) & denominator;
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivRoundingUp(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
result = mulDiv(a, b, denominator);
if (mulmod(a, b, denominator) > 0) {
require(result < type(uint256).max);
result++;
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.0;
interface IPriceFeed {
function decimals() external view returns (uint8);
function description() external view returns (string memory);
function version() external view returns (uint256);
function latestAnswer() external view returns (int256);
function latestRound() external view returns (uint256);
function latestRoundData()
external
view
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
function getRoundData(uint80 _roundId)
external
view
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IUniswapV3PoolActions#mint
/// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface
interface IUniswapV3MintCallback {
/// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint.
/// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
/// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
/// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
/// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
/// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call
function uniswapV3MintCallback(
uint256 amount0Owed,
uint256 amount1Owed,
bytes calldata data
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import {IUniswapV3PoolImmutables} from './pool/IUniswapV3PoolImmutables.sol';
import {IUniswapV3PoolState} from './pool/IUniswapV3PoolState.sol';
import {IUniswapV3PoolDerivedState} from './pool/IUniswapV3PoolDerivedState.sol';
import {IUniswapV3PoolActions} from './pool/IUniswapV3PoolActions.sol';
import {IUniswapV3PoolOwnerActions} from './pool/IUniswapV3PoolOwnerActions.sol';
import {IUniswapV3PoolErrors} from './pool/IUniswapV3PoolErrors.sol';
import {IUniswapV3PoolEvents} from './pool/IUniswapV3PoolEvents.sol';
/// @title The interface for a Uniswap V3 Pool
/// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IUniswapV3Pool is
IUniswapV3PoolImmutables,
IUniswapV3PoolState,
IUniswapV3PoolDerivedState,
IUniswapV3PoolActions,
IUniswapV3PoolOwnerActions,
IUniswapV3PoolErrors,
IUniswapV3PoolEvents
{
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IUniswapV3PoolActions {
/// @notice Sets the initial price for the pool
/// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
/// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
function initialize(uint160 sqrtPriceX96) external;
/// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
/// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
/// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
/// on tickLower, tickUpper, the amount of liquidity, and the current price.
/// @param recipient The address for which the liquidity will be created
/// @param tickLower The lower tick of the position in which to add liquidity
/// @param tickUpper The upper tick of the position in which to add liquidity
/// @param amount The amount of liquidity to mint
/// @param data Any data that should be passed through to the callback
/// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
/// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
function mint(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount,
bytes calldata data
) external returns (uint256 amount0, uint256 amount1);
/// @notice Collects tokens owed to a position
/// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
/// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
/// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
/// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
/// @param recipient The address which should receive the fees collected
/// @param tickLower The lower tick of the position for which to collect fees
/// @param tickUpper The upper tick of the position for which to collect fees
/// @param amount0Requested How much token0 should be withdrawn from the fees owed
/// @param amount1Requested How much token1 should be withdrawn from the fees owed
/// @return amount0 The amount of fees collected in token0
/// @return amount1 The amount of fees collected in token1
function collect(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
/// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
/// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
/// @dev Fees must be collected separately via a call to #collect
/// @param tickLower The lower tick of the position for which to burn liquidity
/// @param tickUpper The upper tick of the position for which to burn liquidity
/// @param amount How much liquidity to burn
/// @return amount0 The amount of token0 sent to the recipient
/// @return amount1 The amount of token1 sent to the recipient
function burn(
int24 tickLower,
int24 tickUpper,
uint128 amount
) external returns (uint256 amount0, uint256 amount1);
/// @notice Swap token0 for token1, or token1 for token0
/// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
/// @param recipient The address to receive the output of the swap
/// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
/// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
/// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
/// value after the swap. If one for zero, the price cannot be greater than this value after the swap
/// @param data Any data to be passed through to the callback
/// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
/// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external returns (int256 amount0, int256 amount1);
/// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
/// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
/// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
/// with 0 amount{0,1} and sending the donation amount(s) from the callback
/// @param recipient The address which will receive the token0 and token1 amounts
/// @param amount0 The amount of token0 to send
/// @param amount1 The amount of token1 to send
/// @param data Any data to be passed through to the callback
function flash(
address recipient,
uint256 amount0,
uint256 amount1,
bytes calldata data
) external;
/// @notice Increase the maximum number of price and liquidity observations that this pool will store
/// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
/// the input observationCardinalityNext.
/// @param observationCardinalityNext The desired minimum number of observations for the pool to store
function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IUniswapV3PoolDerivedState {
/// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
/// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
/// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
/// you must call it with secondsAgos = [3600, 0].
/// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
/// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
/// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
/// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
/// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
/// timestamp
function observe(uint32[] calldata secondsAgos)
external
view
returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
/// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
/// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
/// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
/// snapshot is taken and the second snapshot is taken.
/// @param tickLower The lower tick of the range
/// @param tickUpper The upper tick of the range
/// @return tickCumulativeInside The snapshot of the tick accumulator for the range
/// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
/// @return secondsInside The snapshot of seconds per liquidity for the range
function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
external
view
returns (
int56 tickCumulativeInside,
uint160 secondsPerLiquidityInsideX128,
uint32 secondsInside
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Errors emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolErrors {
error LOK();
error TLU();
error TLM();
error TUM();
error AI();
error M0();
error M1();
error AS();
error IIA();
error L();
error F0();
error F1();
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Events emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolEvents {
/// @notice Emitted exactly once by a pool when #initialize is first called on the pool
/// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
/// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
/// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
event Initialize(uint160 sqrtPriceX96, int24 tick);
/// @notice Emitted when liquidity is minted for a given position
/// @param sender The address that minted the liquidity
/// @param owner The owner of the position and recipient of any minted liquidity
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount The amount of liquidity minted to the position range
/// @param amount0 How much token0 was required for the minted liquidity
/// @param amount1 How much token1 was required for the minted liquidity
event Mint(
address sender,
address indexed owner,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted when fees are collected by the owner of a position
/// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
/// @param owner The owner of the position for which fees are collected
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount0 The amount of token0 fees collected
/// @param amount1 The amount of token1 fees collected
event Collect(
address indexed owner,
address recipient,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount0,
uint128 amount1
);
/// @notice Emitted when a position's liquidity is removed
/// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
/// @param owner The owner of the position for which liquidity is removed
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount The amount of liquidity to remove
/// @param amount0 The amount of token0 withdrawn
/// @param amount1 The amount of token1 withdrawn
event Burn(
address indexed owner,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted by the pool for any swaps between token0 and token1
/// @param sender The address that initiated the swap call, and that received the callback
/// @param recipient The address that received the output of the swap
/// @param amount0 The delta of the token0 balance of the pool
/// @param amount1 The delta of the token1 balance of the pool
/// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
/// @param liquidity The liquidity of the pool after the swap
/// @param tick The log base 1.0001 of price of the pool after the swap
event Swap(
address indexed sender,
address indexed recipient,
int256 amount0,
int256 amount1,
uint160 sqrtPriceX96,
uint128 liquidity,
int24 tick
);
/// @notice Emitted by the pool for any flashes of token0/token1
/// @param sender The address that initiated the swap call, and that received the callback
/// @param recipient The address that received the tokens from flash
/// @param amount0 The amount of token0 that was flashed
/// @param amount1 The amount of token1 that was flashed
/// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
/// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
event Flash(
address indexed sender,
address indexed recipient,
uint256 amount0,
uint256 amount1,
uint256 paid0,
uint256 paid1
);
/// @notice Emitted by the pool for increases to the number of observations that can be stored
/// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
/// just before a mint/swap/burn.
/// @param observationCardinalityNextOld The previous value of the next observation cardinality
/// @param observationCardinalityNextNew The updated value of the next observation cardinality
event IncreaseObservationCardinalityNext(
uint16 observationCardinalityNextOld,
uint16 observationCardinalityNextNew
);
/// @notice Emitted when the protocol fee is changed by the pool
/// @param feeProtocol0Old The previous value of the token0 protocol fee
/// @param feeProtocol1Old The previous value of the token1 protocol fee
/// @param feeProtocol0New The updated value of the token0 protocol fee
/// @param feeProtocol1New The updated value of the token1 protocol fee
event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
/// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
/// @param sender The address that collects the protocol fees
/// @param recipient The address that receives the collected protocol fees
/// @param amount0 The amount of token0 protocol fees that is withdrawn
/// @param amount0 The amount of token1 protocol fees that is withdrawn
event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IUniswapV3PoolImmutables {
/// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
/// @return The contract address
function factory() external view returns (address);
/// @notice The first of the two tokens of the pool, sorted by address
/// @return The token contract address
function token0() external view returns (address);
/// @notice The second of the two tokens of the pool, sorted by address
/// @return The token contract address
function token1() external view returns (address);
/// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
/// @return The fee
function fee() external view returns (uint24);
/// @notice The pool tick spacing
/// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
/// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
/// This value is an int24 to avoid casting even though it is always positive.
/// @return The tick spacing
function tickSpacing() external view returns (int24);
/// @notice The maximum amount of position liquidity that can use any tick in the range
/// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
/// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
/// @return The max amount of liquidity per tick
function maxLiquidityPerTick() external view returns (uint128);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Permissioned pool actions
/// @notice Contains pool methods that may only be called by the factory owner
interface IUniswapV3PoolOwnerActions {
/// @notice Set the denominator of the protocol's % share of the fees
/// @param feeProtocol0 new protocol fee for token0 of the pool
/// @param feeProtocol1 new protocol fee for token1 of the pool
function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
/// @notice Collect the protocol fee accrued to the pool
/// @param recipient The address to which collected protocol fees should be sent
/// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
/// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
/// @return amount0 The protocol fee collected in token0
/// @return amount1 The protocol fee collected in token1
function collectProtocol(
address recipient,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IUniswapV3PoolState {
/// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
/// when accessed externally.
/// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
/// @return tick The current tick of the pool, i.e. according to the last tick transition that was run.
/// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
/// boundary.
/// @return observationIndex The index of the last oracle observation that was written,
/// @return observationCardinality The current maximum number of observations stored in the pool,
/// @return observationCardinalityNext The next maximum number of observations, to be updated when the observation.
/// @return feeProtocol The protocol fee for both tokens of the pool.
/// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
/// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
/// unlocked Whether the pool is currently locked to reentrancy
function slot0()
external
view
returns (
uint160 sqrtPriceX96,
int24 tick,
uint16 observationIndex,
uint16 observationCardinality,
uint16 observationCardinalityNext,
uint8 feeProtocol,
bool unlocked
);
/// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal0X128() external view returns (uint256);
/// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal1X128() external view returns (uint256);
/// @notice The amounts of token0 and token1 that are owed to the protocol
/// @dev Protocol fees will never exceed uint128 max in either token
function protocolFees() external view returns (uint128 token0, uint128 token1);
/// @notice The currently in range liquidity available to the pool
/// @dev This value has no relationship to the total liquidity across all ticks
/// @return The liquidity at the current price of the pool
function liquidity() external view returns (uint128);
/// @notice Look up information about a specific tick in the pool
/// @param tick The tick to look up
/// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
/// tick upper
/// @return liquidityNet how much liquidity changes when the pool price crosses the tick,
/// @return feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
/// @return feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
/// @return tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
/// @return secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
/// @return secondsOutside the seconds spent on the other side of the tick from the current tick,
/// @return initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
/// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
/// In addition, these values are only relative and must be used only in comparison to previous snapshots for
/// a specific position.
function ticks(int24 tick)
external
view
returns (
uint128 liquidityGross,
int128 liquidityNet,
uint256 feeGrowthOutside0X128,
uint256 feeGrowthOutside1X128,
int56 tickCumulativeOutside,
uint160 secondsPerLiquidityOutsideX128,
uint32 secondsOutside,
bool initialized
);
/// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
function tickBitmap(int16 wordPosition) external view returns (uint256);
/// @notice Returns the information about a position by the position's key
/// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
/// @return liquidity The amount of liquidity in the position,
/// @return feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
/// @return feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
/// @return tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
/// @return tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
function positions(bytes32 key)
external
view
returns (
uint128 liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
);
/// @notice Returns data about a specific observation index
/// @param index The element of the observations array to fetch
/// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
/// ago, rather than at a specific index in the array.
/// @return blockTimestamp The timestamp of the observation,
/// @return tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
/// @return secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
/// @return initialized whether the observation has been initialized and the values are safe to use
function observations(uint256 index)
external
view
returns (
uint32 blockTimestamp,
int56 tickCumulative,
uint160 secondsPerLiquidityCumulativeX128,
bool initialized
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IUniswapV3PoolActions#swap
/// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
interface IUniswapV3SwapCallback {
/// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
/// @dev In the implementation you must pay the pool tokens owed for the swap.
/// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
/// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
/// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
/// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
/// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
function uniswapV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external;
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.0;
interface IUniswapV3TokenizedLp {
/// Events
event Deposit(address indexed sender, address indexed to, uint256 shares, uint256 amount0, uint256 amount1);
event Withdraw(address indexed sender, address indexed to, uint256 shares, uint256 amount0, uint256 amount1);
event Rebalance(
int24 tick,
uint256 totalAmount0,
uint256 totalAmount1,
uint256 feeAmount0,
uint256 feeAmount1,
uint256 totalSupply
);
event MaxTotalSupply(uint256 newMaxTotalSupply);
event Hysteresis(uint256 newHysteresis);
event DepositMax(uint256 newDeposit0Max, uint256 newDeposit1Max);
event Affiliate(address affiliate);
event ApprovedRebalancer(address rebalancer, bool isApproved);
event FeeUpdate(uint256 newFee);
event FeeRecipient(address newFeeRecipient);
event FeeSplit(uint256 newFeeSplit);
event UsdOracleReferences(address usd0RefOracle, address usd1RefOracle);
event BpsRanges(uint256 newBpsRangeLower, uint256 newBpsRangeUpper);
event ActionBlockDelay(uint256 newBlockWaitTime);
/// Errors
error UniswapV3TokenizedLp_alreadyInitialized();
error UniswapV3TokenizedLp_ZeroAddress();
error UniswapV3TokenizedLp_NoAllowedTokens();
error UniswapV3TokenizedLp_ZeroValue();
error UniswapV3TokenizedLp_Token0NotAllowed();
error UniswapV3TokenizedLp_Token1NotAllowed();
error UniswapV3TokenizedLp_MoreThanMaxDeposit();
error UniswapV3TokenizedLp_MaxTotalSupplyExceeded();
error UniswapV3TokenizedLp_UnexpectedBurn();
error UniswapV3TokenizedLp_BasePositionInvalid();
error UniswapV3TokenizedLp_LimitPositionInvalid();
error UniswapV3TokenizedLp_FeeMustBeLtePrecision();
error UniswapV3TokenizedLp_SplitMustBeLtePrecision();
error UniswapV3TokenizedLp_MustBePool(uint256 instance);
error UniswapV3TokenizedLp_UnsafeCast();
error UniswapV3TokenizedLp_PoolLocked();
error UniswapV3TokenizedLp_failedToQueryPool();
error UniswapV3TokenizedLp_invalidSlot0Size();
error UniswapV3TokenizedLp_InvalidBaseBpsRange();
error UniswapV3TokenizedLp_PositionOutOfRange();
error UniswapV3TokenizedLp_SetBaseTicksViaRebalanceFirst();
error UniswapV3TokenizedLp_NotAllowed();
error UniswapV3TokenizedLp_NoWithdrawOrTransferDuringDelay();
/// View methods
function pool() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function allowToken0() external view returns (bool);
function allowToken1() external view returns (bool);
function tickSpacing() external view returns (int24);
function affiliate() external view returns (address);
function baseLower() external view returns (int24);
function baseUpper() external view returns (int24);
function deposit0Max() external view returns (uint256);
function deposit1Max() external view returns (uint256);
function maxTotalSupply() external view returns (uint256);
function hysteresis() external view returns (uint256);
function currentTick() external view returns (int24 tick);
function getCurrentSqrtPriceX96() external view returns (uint160 sqrtPriceX96);
function getTimeWeightedSqrtPriceX96() external view returns (uint160 sqrtPriceX96);
function fetchSpot(address tokenIn, address tokenOut, uint256 amountIn) external view returns (uint256 amountOut);
function fetchOracle(address tokenIn_, address tokenOut_, uint256 amountIn_)
external
view
returns (uint256 amountOut);
function getTotalAmounts() external view returns (uint256 total0, uint256 total1);
function getBasePosition() external view returns (uint128 liquidity, uint256 amount0, uint256 amount1);
/// Setters
function setUsdOracles(address usdOracle0Ref_, address usdOracle1Ref_) external;
function setMaxTotalSupply(uint256 maxTotalSupply) external;
function setDepositMax(uint256 deposit0Max, uint256 deposit1Max) external;
function setBpsRanges(uint256 baseBpsRangeLower, uint256 baseBpsRangeUpper) external;
function setFeeRecipient(address feeRecipient) external;
function setAffiliate(address affiliate) external;
function setFee(uint256 baseFee) external;
function setFeeSplit(uint256 baseFeeSplit) external;
function setHysteresis(uint256 hysteresis) external;
/// Core methods
function deposit(uint256 deposit0, uint256 deposit1, address receiver) external returns (uint256);
function withdraw(uint256 shares, address receiver) external returns (uint256, uint256);
function autoRebalance(bool useOracleForNewBounds, bool withSwapping)
external
returns (int256 amount0, int256 amount1);
function rebalance(int24 _baseLower, int24 _baseUpper, int256 swapQuantity, int24 tickLimit) external;
function swapIdleAndAddToLiquidity(int256 swapInputAmount, int24 tickLimit, bool addToLiquidity)
external
returns (int256 amount0, int256 amount1);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import '@uniswap/v3-core/contracts/libraries/FullMath.sol';
import '@uniswap/v3-core/contracts/libraries/FixedPoint96.sol';
/// @title Liquidity amount functions
/// @notice Provides functions for computing liquidity amounts from token amounts and prices
library LiquidityAmounts {
/// @notice Downcasts uint256 to uint128
/// @param x The uint258 to be downcasted
/// @return y The passed value, downcasted to uint128
function toUint128(uint256 x) private pure returns (uint128 y) {
require((y = uint128(x)) == x);
}
/// @notice Computes the amount of liquidity received for a given amount of token0 and price range
/// @dev Calculates amount0 * (sqrt(upper) * sqrt(lower)) / (sqrt(upper) - sqrt(lower))
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param amount0 The amount0 being sent in
/// @return liquidity The amount of returned liquidity
function getLiquidityForAmount0(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint256 amount0
) internal pure returns (uint128 liquidity) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
uint256 intermediate = FullMath.mulDiv(sqrtRatioAX96, sqrtRatioBX96, FixedPoint96.Q96);
unchecked {
return toUint128(FullMath.mulDiv(amount0, intermediate, sqrtRatioBX96 - sqrtRatioAX96));
}
}
/// @notice Computes the amount of liquidity received for a given amount of token1 and price range
/// @dev Calculates amount1 / (sqrt(upper) - sqrt(lower)).
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param amount1 The amount1 being sent in
/// @return liquidity The amount of returned liquidity
function getLiquidityForAmount1(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint256 amount1
) internal pure returns (uint128 liquidity) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
unchecked {
return toUint128(FullMath.mulDiv(amount1, FixedPoint96.Q96, sqrtRatioBX96 - sqrtRatioAX96));
}
}
/// @notice Computes the maximum amount of liquidity received for a given amount of token0, token1, the current
/// pool prices and the prices at the tick boundaries
/// @param sqrtRatioX96 A sqrt price representing the current pool prices
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param amount0 The amount of token0 being sent in
/// @param amount1 The amount of token1 being sent in
/// @return liquidity The maximum amount of liquidity received
function getLiquidityForAmounts(
uint160 sqrtRatioX96,
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint256 amount0,
uint256 amount1
) internal pure returns (uint128 liquidity) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
if (sqrtRatioX96 <= sqrtRatioAX96) {
liquidity = getLiquidityForAmount0(sqrtRatioAX96, sqrtRatioBX96, amount0);
} else if (sqrtRatioX96 < sqrtRatioBX96) {
uint128 liquidity0 = getLiquidityForAmount0(sqrtRatioX96, sqrtRatioBX96, amount0);
uint128 liquidity1 = getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioX96, amount1);
liquidity = liquidity0 < liquidity1 ? liquidity0 : liquidity1;
} else {
liquidity = getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioBX96, amount1);
}
}
/// @notice Computes the amount of token0 for a given amount of liquidity and a price range
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param liquidity The liquidity being valued
/// @return amount0 The amount of token0
function getAmount0ForLiquidity(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity
) internal pure returns (uint256 amount0) {
unchecked {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
return
FullMath.mulDiv(
uint256(liquidity) << FixedPoint96.RESOLUTION,
sqrtRatioBX96 - sqrtRatioAX96,
sqrtRatioBX96
) / sqrtRatioAX96;
}
}
/// @notice Computes the amount of token1 for a given amount of liquidity and a price range
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param liquidity The liquidity being valued
/// @return amount1 The amount of token1
function getAmount1ForLiquidity(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity
) internal pure returns (uint256 amount1) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
unchecked {
return FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
}
}
/// @notice Computes the token0 and token1 value for a given amount of liquidity, the current
/// pool prices and the prices at the tick boundaries
/// @param sqrtRatioX96 A sqrt price representing the current pool prices
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param liquidity The liquidity being valued
/// @return amount0 The amount of token0
/// @return amount1 The amount of token1
function getAmountsForLiquidity(
uint160 sqrtRatioX96,
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity
) internal pure returns (uint256 amount0, uint256 amount1) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
if (sqrtRatioX96 <= sqrtRatioAX96) {
amount0 = getAmount0ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity);
} else if (sqrtRatioX96 < sqrtRatioBX96) {
amount0 = getAmount0ForLiquidity(sqrtRatioX96, sqrtRatioBX96, liquidity);
amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioX96, liquidity);
} else {
amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0 <0.9.0;
import '@uniswap/v3-core/contracts/libraries/FullMath.sol';
import '@uniswap/v3-core/contracts/libraries/TickMath.sol';
import '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol';
/// @title Oracle library
/// @notice Provides functions to integrate with V3 pool oracle
library OracleLibrary {
/// @notice Calculates time-weighted means of tick and liquidity for a given Uniswap V3 pool
/// @param pool Address of the pool that we want to observe
/// @param secondsAgo Number of seconds in the past from which to calculate the time-weighted means
/// @return arithmeticMeanTick The arithmetic mean tick from (block.timestamp - secondsAgo) to block.timestamp
/// @return harmonicMeanLiquidity The harmonic mean liquidity from (block.timestamp - secondsAgo) to block.timestamp
function consult(address pool, uint32 secondsAgo)
internal
view
returns (int24 arithmeticMeanTick, uint128 harmonicMeanLiquidity)
{
require(secondsAgo != 0, 'BP');
uint32[] memory secondsAgos = new uint32[](2);
secondsAgos[0] = secondsAgo;
secondsAgos[1] = 0;
(int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) = IUniswapV3Pool(pool)
.observe(secondsAgos);
int56 tickCumulativesDelta = tickCumulatives[1] - tickCumulatives[0];
uint160 secondsPerLiquidityCumulativesDelta = secondsPerLiquidityCumulativeX128s[1] -
secondsPerLiquidityCumulativeX128s[0];
arithmeticMeanTick = int24(tickCumulativesDelta / int56(uint56(secondsAgo)));
// Always round to negative infinity
if (tickCumulativesDelta < 0 && (tickCumulativesDelta % int56(uint56(secondsAgo)) != 0)) arithmeticMeanTick--;
// We are multiplying here instead of shifting to ensure that harmonicMeanLiquidity doesn't overflow uint128
uint192 secondsAgoX160 = uint192(secondsAgo) * type(uint160).max;
harmonicMeanLiquidity = uint128(secondsAgoX160 / (uint192(secondsPerLiquidityCumulativesDelta) << 32));
}
/// @notice Given a tick and a token amount, calculates the amount of token received in exchange
/// @param tick Tick value used to calculate the quote
/// @param baseAmount Amount of token to be converted
/// @param baseToken Address of an ERC20 token contract used as the baseAmount denomination
/// @param quoteToken Address of an ERC20 token contract used as the quoteAmount denomination
/// @return quoteAmount Amount of quoteToken received for baseAmount of baseToken
function getQuoteAtTick(
int24 tick,
uint128 baseAmount,
address baseToken,
address quoteToken
) internal pure returns (uint256 quoteAmount) {
uint160 sqrtRatioX96 = TickMath.getSqrtRatioAtTick(tick);
// Calculate quoteAmount with better precision if it doesn't overflow when multiplied by itself
if (sqrtRatioX96 <= type(uint128).max) {
uint256 ratioX192 = uint256(sqrtRatioX96) * sqrtRatioX96;
quoteAmount = baseToken < quoteToken
? FullMath.mulDiv(ratioX192, baseAmount, 1 << 192)
: FullMath.mulDiv(1 << 192, baseAmount, ratioX192);
} else {
uint256 ratioX128 = FullMath.mulDiv(sqrtRatioX96, sqrtRatioX96, 1 << 64);
quoteAmount = baseToken < quoteToken
? FullMath.mulDiv(ratioX128, baseAmount, 1 << 128)
: FullMath.mulDiv(1 << 128, baseAmount, ratioX128);
}
}
/// @notice Given a pool, it returns the number of seconds ago of the oldest stored observation
/// @param pool Address of Uniswap V3 pool that we want to observe
/// @return secondsAgo The number of seconds ago of the oldest observation stored for the pool
function getOldestObservationSecondsAgo(address pool) internal view returns (uint32 secondsAgo) {
(, , uint16 observationIndex, uint16 observationCardinality, , , ) = IUniswapV3Pool(pool).slot0();
require(observationCardinality > 0, 'NI');
(uint32 observationTimestamp, , , bool initialized) = IUniswapV3Pool(pool).observations(
(observationIndex + 1) % observationCardinality
);
// The next index might not be initialized if the cardinality is in the process of increasing
// In this case the oldest observation is always in index 0
if (!initialized) {
(observationTimestamp, , , ) = IUniswapV3Pool(pool).observations(0);
}
unchecked {
secondsAgo = uint32(block.timestamp) - observationTimestamp;
}
}
/// @notice Given a pool, it returns the tick value as of the start of the current block
/// @param pool Address of Uniswap V3 pool
/// @return The tick that the pool was in at the start of the current block
function getBlockStartingTickAndLiquidity(address pool) internal view returns (int24, uint128) {
(, int24 tick, uint16 observationIndex, uint16 observationCardinality, , , ) = IUniswapV3Pool(pool).slot0();
// 2 observations are needed to reliably calculate the block starting tick
require(observationCardinality > 1, 'NEO');
// If the latest observation occurred in the past, then no tick-changing trades have happened in this block
// therefore the tick in `slot0` is the same as at the beginning of the current block.
// We don't need to check if this observation is initialized - it is guaranteed to be.
(
uint32 observationTimestamp,
int56 tickCumulative,
uint160 secondsPerLiquidityCumulativeX128,
) = IUniswapV3Pool(pool).observations(observationIndex);
if (observationTimestamp != uint32(block.timestamp)) {
return (tick, IUniswapV3Pool(pool).liquidity());
}
uint256 prevIndex = (uint256(observationIndex) + observationCardinality - 1) % observationCardinality;
(
uint32 prevObservationTimestamp,
int56 prevTickCumulative,
uint160 prevSecondsPerLiquidityCumulativeX128,
bool prevInitialized
) = IUniswapV3Pool(pool).observations(prevIndex);
require(prevInitialized, 'ONI');
uint32 delta = observationTimestamp - prevObservationTimestamp;
tick = int24((tickCumulative - int56(uint56(prevTickCumulative))) / int56(uint56(delta)));
uint128 liquidity = uint128(
(uint192(delta) * type(uint160).max) /
(uint192(secondsPerLiquidityCumulativeX128 - prevSecondsPerLiquidityCumulativeX128) << 32)
);
return (tick, liquidity);
}
/// @notice Information for calculating a weighted arithmetic mean tick
struct WeightedTickData {
int24 tick;
uint128 weight;
}
/// @notice Given an array of ticks and weights, calculates the weighted arithmetic mean tick
/// @param weightedTickData An array of ticks and weights
/// @return weightedArithmeticMeanTick The weighted arithmetic mean tick
/// @dev Each entry of `weightedTickData` should represents ticks from pools with the same underlying pool tokens. If they do not,
/// extreme care must be taken to ensure that ticks are comparable (including decimal differences).
/// @dev Note that the weighted arithmetic mean tick corresponds to the weighted geometric mean price.
function getWeightedArithmeticMeanTick(WeightedTickData[] memory weightedTickData)
internal
pure
returns (int24 weightedArithmeticMeanTick)
{
// Accumulates the sum of products between each tick and its weight
int256 numerator;
// Accumulates the sum of the weights
uint256 denominator;
// Products fit in 152 bits, so it would take an array of length ~2**104 to overflow this logic
for (uint256 i; i < weightedTickData.length; i++) {
numerator += weightedTickData[i].tick * int256(uint256(weightedTickData[i].weight));
denominator += weightedTickData[i].weight;
}
weightedArithmeticMeanTick = int24(numerator / int256(denominator));
// Always round to negative infinity
if (numerator < 0 && (numerator % int256(denominator) != 0)) weightedArithmeticMeanTick--;
}
/// @notice Returns the "synthetic" tick which represents the price of the first entry in `tokens` in terms of the last
/// @dev Useful for calculating relative prices along routes.
/// @dev There must be one tick for each pairwise set of tokens.
/// @param tokens The token contract addresses
/// @param ticks The ticks, representing the price of each token pair in `tokens`
/// @return syntheticTick The synthetic tick, representing the relative price of the outermost tokens in `tokens`
function getChainedPrice(address[] memory tokens, int24[] memory ticks)
internal
pure
returns (int256 syntheticTick)
{
require(tokens.length - 1 == ticks.length, 'DL');
for (uint256 i = 1; i <= ticks.length; i++) {
// check the tokens for address sort order, then accumulate the
// ticks into the running synthetic tick, ensuring that intermediate tokens "cancel out"
tokens[i - 1] < tokens[i] ? syntheticTick += ticks[i - 1] : syntheticTick -= ticks[i - 1];
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
error T();
error R();
/// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
int24 internal constant MIN_TICK = -887272;
/// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
int24 internal constant MAX_TICK = -MIN_TICK;
/// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
uint160 internal constant MIN_SQRT_RATIO = 4295128739;
/// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
/// @notice Calculates sqrt(1.0001^tick) * 2^96
/// @dev Throws if |tick| > max tick
/// @param tick The input tick for the above formula
/// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
/// at the given tick
function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
unchecked {
uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
if (absTick > uint256(int256(MAX_TICK))) revert T();
uint256 ratio = absTick & 0x1 != 0
? 0xfffcb933bd6fad37aa2d162d1a594001
: 0x100000000000000000000000000000000;
if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
if (tick > 0) ratio = type(uint256).max / ratio;
// this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
// we then downcast because we know the result always fits within 160 bits due to our tick input constraint
// we round up in the division so getTickAtSqrtRatio of the output price is always consistent
sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
}
}
/// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
/// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
/// ever return.
/// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
/// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
unchecked {
// second inequality must be < because the price can never reach the price at the max tick
if (!(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO)) revert R();
uint256 ratio = uint256(sqrtPriceX96) << 32;
uint256 r = ratio;
uint256 msb = 0;
assembly {
let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(5, gt(r, 0xFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(4, gt(r, 0xFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(3, gt(r, 0xFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(2, gt(r, 0xF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(1, gt(r, 0x3))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := gt(r, 0x1)
msb := or(msb, f)
}
if (msb >= 128) r = ratio >> (msb - 127);
else r = ratio << (127 - msb);
int256 log_2 = (int256(msb) - 128) << 64;
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(63, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(62, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(61, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(60, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(59, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(58, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(57, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(56, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(55, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(54, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(53, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(52, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(51, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(50, f))
}
int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
}
}
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.0;
import {TickMath} from "@uniswap-v3-core/libraries/TickMath.sol";
import {LiquidityAmounts} from "@uniswap-v3-periphery/libraries/LiquidityAmounts.sol";
import {OracleLibrary} from "@uniswap-v3-periphery/libraries/OracleLibrary.sol";
import {Math} from "@openzeppelin/utils/math/Math.sol";
library UniV3MathHelper {
/// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
uint160 public constant MIN_SQRT_RATIO = 4295128739;
/// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
uint160 public constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
/// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
int24 public constant MIN_TICK = -887272;
/// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
int24 public constant MAX_TICK = -MIN_TICK;
error UnsafeCast();
/**
*
* Tick Math
*
*/
function getSqrtRatioAtTick(int24 currentTick) public pure returns (uint160 sqrtPriceX96) {
sqrtPriceX96 = TickMath.getSqrtRatioAtTick(currentTick);
}
function getTickAtSqrtRatio(uint160 sqrtPriceX96) public pure returns (int24 currentTick) {
currentTick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);
}
/**
*
* LiquidityAmounts
*
*/
function getAmountsForLiquidity(
uint160 sqrtRatioX96,
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity
) public pure returns (uint256 amount0, uint256 amount1) {
(amount0, amount1) =
LiquidityAmounts.getAmountsForLiquidity(sqrtRatioX96, sqrtRatioAX96, sqrtRatioBX96, liquidity);
}
function getLiquidityForAmounts(
uint160 sqrtRatioX96,
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint256 amount0,
uint256 amount1
) public pure returns (uint128 liquidity) {
liquidity =
LiquidityAmounts.getLiquidityForAmounts(sqrtRatioX96, sqrtRatioAX96, sqrtRatioBX96, amount0, amount1);
}
/**
*
* OracleLibrary
*
*/
function consult(address _pool, uint32 _twapPeriod) public view returns (int24 timeWeightedAverageTick) {
(timeWeightedAverageTick,) = OracleLibrary.consult(_pool, _twapPeriod);
}
function getQuoteAtTick(int24 tick, uint128 baseAmount, address baseToken, address quoteToken)
public
pure
returns (uint256 quoteAmount)
{
quoteAmount = OracleLibrary.getQuoteAtTick(tick, baseAmount, baseToken, quoteToken);
}
/**
*
* General
*
*/
/**
* @dev Encodes two reserve amounts into approx ~sqrtPriceX96.
* Precision cannot be matched with the actual sqrtPriceX96 obtained in JS with BigNumbers.
* Higher precision could also lead to overflow.
*/
function encodePriceSqrtX96(uint256 reserve0, uint256 reserve1) public pure returns (uint160) {
uint160 precisionHelper = 1;
if (reserve1 < reserve0) {
precisionHelper = 1 ether;
reserve1 = reserve1 * precisionHelper ** 2;
}
return uint160Safe((Math.sqrt(reserve1 / reserve0)) * 2 ** 96) / precisionHelper;
}
/**
* @dev Rounds a tick to the nearest multiple of the tickSpacing by always
* reducing range (i.e. moving towards zero).
*/
function roundTick(int24 tick, int24 tickSpacing) public pure returns (int24) {
return tick < 0 ? tick + (-tick % tickSpacing) : tick - (tick % tickSpacing);
}
/**
* @notice Unit256 to uint128 safe function
* @param x input value
*/
function uint128Safe(uint256 x) public pure returns (uint128) {
if (x > type(uint128).max) revert UnsafeCast();
return uint128(x);
}
/**
* @notice Unit256 to uint160 safe function
* @param x input value
*/
function uint160Safe(uint256 x) public pure returns (uint160) {
if (x > type(uint160).max) revert UnsafeCast();
return uint160(x);
}
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.0;
// ──────▄▀▀▄────────────────▄▀▀▄────
// ─────▐▒▒▒▒▌──────────────▌▒▒▒▒▌───
// ─────▌▒▒▒▒▐─────────────▐▒▒▒▒▒▐───
// ────▐▒▒▒▒▒▒▌─▄▄▄▀▀▀▀▄▄▄─▌▒▒▒▒▒▒▌──
// ───▄▌▒▒▒▒▒▒▒▀▒▒▒▒▒▒▒▒▒▒▀▒▒▒▒▒▒▐───
// ─▄▀▒▐▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▌───
// ▐▒▒▒▌▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▐───
// ▌▒▒▌▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▌──
// ▒▒▐▒▒▒▒▒▒▒▒▒▄▀▀▀▀▄▒▒▒▒▒▄▀▀▀▀▄▒▒▐──
// ▒▒▌▒▒▒▒▒▒▒▒▐▌─▄▄─▐▌▒▒▒▐▌─▄▄─▐▌▒▒▌─
// ▒▐▒▒▒▒▒▒▒▒▒▐▌▐█▄▌▐▌▒▒▒▐▌▐█▄▌▐▌▒▒▐─
// ▒▌▒▒▒▒▒▒▒▒▒▐▌─▀▀─▐▌▒▒▒▐▌─▀▀─▐▌▒▒▒▌
// ▒▌▒▒▒▒▒▒▒▒▒▒▀▄▄▄▄▀▒▒▒▒▒▀▄▄▄▄▀▒▒▒▒▐
// ▒▌▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▄▄▄▒▒▒▒▒▒▒▒▒▒▒▐
// ▒▌▒▒▒▒▒▒▒▒▒▒▒▒▀▒▀▒▒▒▀▒▒▒▀▒▀▒▒▒▒▒▒▐
// ▒▌▒▒▒▒▒▒▒▒▒▒▒▒▒▀▒▒▒▄▀▄▒▒▒▀▒▒▒▒▒▒▒▐
// ▒▐▒▒▒▒▒▒▒▒▒▒▀▄▒▒▒▄▀▒▒▒▀▄▒▒▒▄▀▒▒▒▒▐
// ▒▓▌▒▒▒▒▒▒▒▒▒▒▒▀▀▀▒▒▒▒▒▒▒▀▀▀▒▒▒▒▒▒▐
// ▒▓▓▌▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▌
// ▒▒▓▐▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▌─
// ▒▒▓▓▀▀▄▄▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▐──
// ▒▒▒▓▓▓▓▓▀▀▄▄▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▄▄▀▀▒▌─
// ▒▒▒▒▒▓▓▓▓▓▓▓▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▒▒▒▒▒▐─
// ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▌
import {IUniswapV3TokenizedLp} from "./interfaces/IUniswapV3TokenizedLp.sol";
import {IUniswapV3MintCallback} from "@uniswap-v3-core/interfaces/callback/IUniswapV3MintCallback.sol";
import {IUniswapV3SwapCallback} from "@uniswap-v3-core/interfaces/callback/IUniswapV3SwapCallback.sol";
import {IUniswapV3Pool, IUniswapV3PoolActions} from "@uniswap-v3-core/interfaces/IUniswapV3Pool.sol";
import {UniV3MathHelper} from "./libraries/UniV3MathHelper.sol";
import {ERC20, IERC20Metadata} from "@openzeppelin/token/ERC20/ERC20.sol";
import {SafeERC20, IERC20} from "@openzeppelin/token/ERC20/utils/SafeERC20.sol";
import {Math} from "@openzeppelin/utils/math/Math.sol";
import {ReentrancyGuard} from "@openzeppelin/utils/ReentrancyGuard.sol";
import {Ownable} from "@openzeppelin/access/Ownable.sol";
import {IPriceFeed} from "./interfaces/IPriceFeed.sol";
contract UniswapV3TokenizedLp is
IUniswapV3TokenizedLp,
IUniswapV3MintCallback,
IUniswapV3SwapCallback,
ERC20,
ReentrancyGuard,
Ownable
{
using SafeERC20 for IERC20;
uint256 private constant ICLPOOL_SLOT0_SIZE = 192;
uint256 private constant IUNISWAPV3POOL_SLOT0_SIZE = 224;
uint16 private constant CARDINALITY = 1000;
uint32 private constant SPOT_TIME_WEIGHT_PERIOD = 5 minutes;
string private constant NEXT_BLOCK = "try next block";
uint256 public constant PRECISION = 10 ** 18;
uint256 public constant FULL_PERCENT = 10000;
address public constant NULL_ADDRESS = address(0);
uint256 public constant DEFAULT_BASE_FEE = 10 ** 17; // 10%
uint256 public constant DEFAULT_BASE_FEE_SPLIT = 5 * 10 ** 17; // 50%
bool public allowToken0;
bool public allowToken1;
int24 public tickSpacing;
int24 public baseLower;
int24 public baseUpper;
address public pool;
address public token0;
address public token1;
IPriceFeed public usdOracle0Ref;
IPriceFeed public usdOracle1Ref;
uint256 public bpsRangeLower;
uint256 public bpsRangeUpper;
uint256 public hysteresis;
uint256 public deposit0Max;
uint256 public deposit1Max;
uint256 public maxTotalSupply;
uint256 public fee;
uint256 public feeSplit;
address public feeRecipient;
address public override affiliate;
string private _name;
string private _symbol;
mapping(address => uint256) private _callerDelayAction;
mapping(address => bool) public approvedRebalancer;
uint256 public actionBlockDelay;
modifier isRebalancer() {
if (!approvedRebalancer[msg.sender]) {
revert UniswapV3TokenizedLp_NotAllowed();
}
_;
}
modifier checkLastBlockAction() {
{
uint256 permittedBlock = _callerDelayAction[msg.sender];
if (permittedBlock != 0 && permittedBlock > block.number) {
revert UniswapV3TokenizedLp_NoWithdrawOrTransferDuringDelay();
}
}
_;
_callerDelayAction[msg.sender] = block.number + actionBlockDelay;
}
/**
* @notice Initializes this instance of {UniV3TokenizedLp} based on the `_pool`.
* @param _pool Uniswap V3 pool for which liquidity is managed
* @param _allowToken0 flag that indicates whether token0 is accepted during deposit
* @param _allowToken1 flag that indicates whether token1 is accepted during deposit
* @param _usdOracle0Ref address of token0 USD oracle
* @param _usdOracle1Ref address of token1 USD oracle
* @dev `allowTokenX` params control whether this {UniV3TokenizedLp} allows one-sided or
* two-sided liquidity provision.
* NOTE: This contract must be initialized preferably along an atomic deposit(...)` call.
*/
constructor(address _pool, bool _allowToken0, bool _allowToken1, address _usdOracle0Ref, address _usdOracle1Ref)
ERC20("", "")
Ownable(msg.sender)
{
if (!_allowToken0 && !_allowToken1) {
revert UniswapV3TokenizedLp_NoAllowedTokens();
}
pool = _pool;
token0 = IUniswapV3Pool(_pool).token0();
token1 = IUniswapV3Pool(_pool).token1();
string memory token0Symbol = ERC20(token0).symbol();
string memory token1Symbol = ERC20(token1).symbol();
_name = string(abi.encodePacked("LpToken: ", token0Symbol, "-", token1Symbol));
_symbol = string(abi.encodePacked("Lp-", token0Symbol, "-", token1Symbol));
allowToken0 = _allowToken0;
allowToken1 = _allowToken1;
tickSpacing = IUniswapV3Pool(_pool).tickSpacing();
// increase pool observation cardinality
IUniswapV3Pool(_pool).increaseObservationCardinalityNext(CARDINALITY);
// default 1% threshold
hysteresis = (100 * PRECISION) / FULL_PERCENT;
// default 12.5% range around the current price for base position
bpsRangeLower = bpsRangeUpper = 1250;
deposit0Max = deposit1Max = type(uint256).max; // max uint256
feeRecipient = msg.sender;
fee = DEFAULT_BASE_FEE;
feeSplit = DEFAULT_BASE_FEE_SPLIT;
actionBlockDelay = type(uint8).max;
usdOracle0Ref = IPriceFeed(_usdOracle0Ref);
usdOracle1Ref = IPriceFeed(_usdOracle1Ref);
approvedRebalancer[msg.sender] = true;
emit ApprovedRebalancer(msg.sender, true);
}
/// Common functions
/**
* @notice Distributes shares to depositor equal to the token1 value of his deposit multiplied by
* the ratio of total lp shares issued divided by the pool's AUM measured in token1 value.
* @param deposit0 Amount of token0 transferred from sender
* @param deposit1 Amount of token1 transferred from sender
* @param to Address to which lp tokens are minted
* @param shares Quantity of lp tokens minted as a result of deposit
*/
function deposit(uint256 deposit0, uint256 deposit1, address to)
external
override
nonReentrant
returns (uint256 shares)
{
if (!allowToken0 && deposit0 > 0) {
revert UniswapV3TokenizedLp_Token0NotAllowed();
}
if (!allowToken1 && deposit1 > 0) {
revert UniswapV3TokenizedLp_Token1NotAllowed();
}
if (deposit0 == 0 && deposit1 == 0) {
revert UniswapV3TokenizedLp_ZeroValue();
}
if (deposit0 > deposit0Max || deposit1 > deposit1Max) {
revert UniswapV3TokenizedLp_MoreThanMaxDeposit();
}
if (to == NULL_ADDRESS) revert UniswapV3TokenizedLp_ZeroAddress();
// Updates pending fees in pool state for inclusion when calling `getTotalAmounts()`
{
(uint128 baseLiquidity,,) = _position(baseLower, baseUpper);
if (baseLiquidity > 0) {
// Update fee state at pool
(uint256 burn0, uint256 burn1) = _callBurnAtPool(baseLower, baseUpper, 0);
if (burn0 != 0 || burn1 != 0) {
revert UniswapV3TokenizedLp_UnexpectedBurn();
}
}
}
// Check if price has not been manipulated in this block.
(, uint256 oraclePrice) = _checkPriceDelta();
(uint256 pool0, uint256 pool1) = _getTotalAmounts();
// Price the `deposit0` amount in token1 at oracle price
uint256 deposit0PricedInToken1 = (deposit0 * oraclePrice) / PRECISION;
if (deposit0 > 0) {
IERC20(token0).safeTransferFrom(msg.sender, address(this), deposit0);
}
if (deposit1 > 0) {
IERC20(token1).safeTransferFrom(msg.sender, address(this), deposit1);
}
// Shares in value of token1
shares = deposit1 + deposit0PricedInToken1;
uint256 totalSupply_ = totalSupply();
if (totalSupply_ != 0) {
// Price the pool0 in token1 at oracle price
uint256 pool0PricedInToken1 = (pool0 * oraclePrice) / PRECISION;
// Compute ratio of total shares to pool AUM in token1
shares = (shares * totalSupply_) / (pool0PricedInToken1 + pool1);
if (shares + totalSupply_ > maxTotalSupply) revert UniswapV3TokenizedLp_MaxTotalSupplyExceeded();
}
// Set a delay guard for `to` attempting a withdraw action
_callerDelayAction[to] = block.number + actionBlockDelay;
_mint(to, shares);
emit Deposit(msg.sender, to, shares, deposit0, deposit1);
// If bounds are defined, mint max liquidity in the pool
if (baseLower != 0 || baseUpper != 0) {
_mintLiquidityFromIdleBalances();
}
}
/**
* @notice Redeems shares by sending out a portion of the UniV3TokenizedLp's AUM.
* This portion is equal to the percentage ownership of total issued shares represented by the redeemed shares.
* NOTE: Amounts close to one-wei-unit (or equivalent) may be lost due to division precision in
* favor of all remaining depositors.
* @param shares Number of liquidity tokens to redeem as pool assets
* @param to Address to which redeemed pool assets are sent
* @param amount0 Amount of token0 redeemed by the submitted liquidity tokens
* @param amount1 Amount of token1 redeemed by the submitted liquidity tokens
*/
function withdraw(uint256 shares, address to)
external
override
nonReentrant
checkLastBlockAction
returns (uint256 amount0, uint256 amount1)
{
if (shares == 0) revert UniswapV3TokenizedLp_ZeroValue();
if (to == NULL_ADDRESS) revert UniswapV3TokenizedLp_ZeroAddress();
// Collect all fees from Uniswap pool
_updatePoolCollectAndDistributeFees(true);
// Withdraw share amount of liquidity from the Uniswap pool and collect `to`
(uint256 base0, uint256 base1) =
_burnLiquidity(baseLower, baseUpper, _liquidityForShares(baseLower, baseUpper, shares));
IUniswapV3Pool(pool).collect(
to, baseLower, baseUpper, UniV3MathHelper.uint128Safe(base0), UniV3MathHelper.uint128Safe(base1)
);
// Compute proportion of unused balances in this contract relative to `shares`
// Note: Sending tokens directly to alter the balances of this address will result in a loss to the sender-caller.
uint256 _totalSupply = totalSupply();
uint256 unusedAmount0 = (_callBalanceOfThis(token0) * (shares)) / _totalSupply;
uint256 unusedAmount1 = (_callBalanceOfThis(token1) * (shares)) / _totalSupply;
if (unusedAmount0 > 0) IERC20(token0).safeTransfer(to, unusedAmount0);
if (unusedAmount1 > 0) IERC20(token1).safeTransfer(to, unusedAmount1);
amount0 = base0 + unusedAmount0;
amount1 = base1 + unusedAmount1;
_burn(msg.sender, shares);
emit Withdraw(msg.sender, to, shares, amount0, amount1);
}
/// Setter Functions
/**
* @notice Sets the usdOracle0Ref and usdOracle1Ref addresses
* @param usdOracle0Ref_ address of token0 USD oracle
* @param usdOracle1Ref_ address of token1 USD oracle
*/
function setUsdOracles(address usdOracle0Ref_, address usdOracle1Ref_) external onlyOwner {
if (usdOracle0Ref_ == NULL_ADDRESS || usdOracle1Ref_ == NULL_ADDRESS) {
revert UniswapV3TokenizedLp_ZeroAddress();
}
usdOracle0Ref = IPriceFeed(usdOracle0Ref_);
usdOracle1Ref = IPriceFeed(usdOracle1Ref_);
emit UsdOracleReferences(usdOracle0Ref_, usdOracle1Ref_);
}
/**
* @notice Sets the bpsRangeLower and bpsRangeUpper values
* @param _bpsRangeLower lower bound percent below the target price
* @param _bpsRangeUpper upper bound percent above the target price
* @dev _bpsRangeLower and _bpsRangeUpper should be in the range [1, 10000]
*/
function setBpsRanges(uint256 _bpsRangeLower, uint256 _bpsRangeUpper) external onlyOwner {
if (
_bpsRangeLower > FULL_PERCENT || _bpsRangeUpper > FULL_PERCENT || _bpsRangeLower == 0 || _bpsRangeUpper == 0
) {
revert UniswapV3TokenizedLp_InvalidBaseBpsRange();
}
bpsRangeLower = _bpsRangeLower;
bpsRangeUpper = _bpsRangeUpper;
emit BpsRanges(_bpsRangeLower, _bpsRangeUpper);
}
/**
* @notice Sets the fee recipient account address, where portion of the collected swap fees will be distributed
* @param _feeRecipient The fee recipient account address
*/
function setFeeRecipient(address _feeRecipient) external onlyOwner {
if (_feeRecipient == address(0)) {
revert UniswapV3TokenizedLp_ZeroAddress();
}
// Settle outstanding fees
_updatePoolCollectAndDistributeFees(true);
feeRecipient = _feeRecipient;
emit FeeRecipient(_feeRecipient);
}
/**
* @notice Sets the fee percentage to be taken from the accumulated pool's swap fees.
* This percentage is distributed between the feeRecipient and affiliate accounts
* @param _fee The fee percentage to be taken from the accumulated pool's swap fee
*/
function setFee(uint256 _fee) external onlyOwner {
if (_fee > PRECISION) {
revert UniswapV3TokenizedLp_FeeMustBeLtePrecision();
}
// Settle outstanding fees
_updatePoolCollectAndDistributeFees(true);
fee = _fee;
emit FeeUpdate(_fee);
}
/**
* @notice Sets the fee split ratio between feeRecipient and affiliate accounts.
* @param _feeSplit The fee split ratio for feeRecipient
* @dev _feeSplit should be less than PRECISION (100%)
* Example
* If `feeRecipient` should receive 80% of the collected swap fees,
* then `_feeSplit` should be 8e17 (80% of 1e18)
*/
function setFeeSplit(uint256 _feeSplit) external onlyOwner {
if (_feeSplit > PRECISION) {
revert UniswapV3TokenizedLp_SplitMustBeLtePrecision();
}
// Settle outstanding fees
_updatePoolCollectAndDistributeFees(true);
feeSplit = _feeSplit;
emit FeeSplit(_feeSplit);
}
/**
* @notice Sets the hysteresis threshold (in percentage from 1 ether unit, example: 10**16 = 1%).
* When difference between spot price and external Oracle exceeds the threshold, a check for a flashloan attack is executed during deposits
* and triggers autoRebalance position change.
* @param _hysteresis hysteresis threshold
* @dev _hysteresis should be less than PRECISION (100%)
*/
function setHysteresis(uint256 _hysteresis) external onlyOwner {
if (_hysteresis >= PRECISION) {
revert UniswapV3TokenizedLp_FeeMustBeLtePrecision();
}
hysteresis = _hysteresis;
emit Hysteresis(_hysteresis);
}
/**
* @notice Sets the affiliate account address where portion of the collected swap fees will be distributed
* @param _affiliate The affiliate account address
* @dev If `affiliate` is set to the zero address, 100% of the fee will go to the `feeRecipient`
*/
function setAffiliate(address _affiliate) external override onlyOwner {
// Settle outstanding fees
_updatePoolCollectAndDistributeFees(true);
affiliate = _affiliate;
emit Affiliate(_affiliate);
}
/**
* @notice Sets the account address to be approved or not for rebalancing the position
*/
function setApprovedRebalancer(address account, bool approved) external onlyOwner {
if (account == NULL_ADDRESS) revert UniswapV3TokenizedLp_ZeroAddress();
approvedRebalancer[account] = approved;
emit ApprovedRebalancer(account, approved);
}
/**
* @notice Sets the maximum token0 and token1 amounts the contract allows in a deposit call.
* @param _deposit0Max The maximum amount of token0 allowed in a deposit
* @param _deposit1Max The maximum amount of token1 allowed in a deposit
* @dev Use this to control incoming size and ratios of token0 and token1
*/
function setDepositMax(uint256 _deposit0Max, uint256 _deposit1Max) external override onlyOwner {
deposit0Max = _deposit0Max;
deposit1Max = _deposit1Max;
emit DepositMax(_deposit0Max, _deposit1Max);
}
/**
* @notice Sets the maximum total supply of the UniswapV3TokenizedLp token
*/
function setMaxTotalSupply(uint256 _maxTotalSupply) external onlyOwner {
maxTotalSupply = _maxTotalSupply;
emit MaxTotalSupply(_maxTotalSupply);
}
/**
* @notice Sets the `actionBlockDelay` that guards against continuos `deposit()` and / or `withdraw()` calls.
* @param _blockWaitTime defined
* @dev Must NEVER be zero.
*/
function setActionBlockDelay(uint256 _blockWaitTime) external onlyOwner {
if (_blockWaitTime == 0) revert UniswapV3TokenizedLp_ZeroValue();
actionBlockDelay = _blockWaitTime;
emit ActionBlockDelay(_blockWaitTime);
}
/// View (or same as "view" intended) functions
/**
* @inheritdoc IERC20Metadata
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @inheritdoc IERC20Metadata
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @notice Public method that calculates total quantity of token0 and token1 (AUM) of this UniV3TokenizedLp.
* NOTE: This method is an approximate and does not include the latest fees collected in the position as from
* the last "Deposit", "Withdraw", or "Rebalance" event.
* @dev Checks price has not been manipulated in this block
* @return total0 Quantity of token0 in both positions (and unused)
* @return total1 Quantity of token1 in both positions (and unused)
*/
function getTotalAmounts() public view override returns (uint256 total0, uint256 total1) {
_checkPriceDelta();
(total0, total1) = _getTotalAmounts();
}
/**
* @notice Optional non-view method that can be used to get the latest totalAmounts including fees
* This method updates the state of fees at the pool.
*/
function getTotalAmountsFeeAccumulated() external returns (uint256 total0, uint256 total1) {
_callBurnAtPool(baseLower, baseUpper, 0);
(total0, total1) = _getTotalAmounts();
}
/**
* @notice External method that calculates amount of total liquidity in the base position
* @dev Checks price has not been manipulated in this block beyond `hysteresis`.
* NOTE: This method is an approximate and does not include the latest fees collected in the position as from
* the last "Deposit", "Withdraw", or "Rebalance" event.
* @return liquidity Amount of total "virtual" liquidity in the base position
* @return amount0 Estimated amount of token0 that could be collected by burning the base position
* @return amount1 Estimated amount of token1 that could be collected by burning the base position
*/
function getBasePosition() public view returns (uint128 liquidity, uint256 amount0, uint256 amount1) {
_checkPriceDelta();
(liquidity, amount0, amount1) = _getBasePosition();
}
/**
* @notice Optional non-view method that can be used to get the latest base position including fees
* This method updates the state of fees at the pool.
*/
function getBasePositionFeeAccumulated() external returns (uint128 liquidity, uint256 amount0, uint256 amount1) {
_callBurnAtPool(baseLower, baseUpper, 0);
(liquidity, amount0, amount1) = getBasePosition();
}
/**
* @notice Returns current price tick
* @param tick Uniswap pool's current price tick
*/
function currentTick() public view returns (int24 tick) {
(, int24 tick_,, bool unlocked_) = _queryPoolSlot0();
if (!unlocked_) revert UniswapV3TokenizedLp_PoolLocked();
tick = tick_;
}
/**
* @notice Returns current sqrtPriceX96 of the pool
*/
function getCurrentSqrtPriceX96() public view returns (uint160 sqrtPriceX96) {
(uint160 sqrtPriceX96_,,, bool unlocked_) = _queryPoolSlot0();
if (!unlocked_) revert UniswapV3TokenizedLp_PoolLocked();
sqrtPriceX96 = sqrtPriceX96_;
}
/**
* @notice Returns the time weighted sqrtPriceX96 of the pool at `SPOT_TIME_WEIGHT_PERIOD` ago
*/
function getTimeWeightedSqrtPriceX96() public view returns (uint160 sqrtPriceX96) {
(,,, bool unlocked_) = _queryPoolSlot0();
if (!unlocked_) revert UniswapV3TokenizedLp_PoolLocked();
int24 timeWeightedAverageTick = UniV3MathHelper.consult(pool, SPOT_TIME_WEIGHT_PERIOD);
sqrtPriceX96 = UniV3MathHelper.getSqrtRatioAtTick(timeWeightedAverageTick);
}
/**
* @notice returns approximate _tokenOut for _amountIn, _tokenIn
* using `SPOT_TIME_WEIGHT_PERIOD` pool price
* @param _tokenIn token the input amount is in
* @param _tokenOut token for the output amount
* @param _amountIn amount in _tokenIn
* @param amountOut equivalent amount in _tokenOut
*/
function fetchSpot(address _tokenIn, address _tokenOut, uint256 _amountIn)
public
view
returns (uint256 amountOut)
{
int24 timeWeightedAverageTick = UniV3MathHelper.consult(pool, SPOT_TIME_WEIGHT_PERIOD);
return UniV3MathHelper.getQuoteAtTick(
timeWeightedAverageTick, UniV3MathHelper.uint128Safe(_amountIn), _tokenIn, _tokenOut
);
}
/**
* @notice returns equivalent _tokenOut for _amountIn, _tokenIn using external oracle price
* @param tokenIn_ token the input amount is in
* @param tokenOut_ token for the output amount
* @param amountIn_ amount in _tokenIn
* @param amountOut equivalent amount in _tokenOut
*/
function fetchOracle(address tokenIn_, address tokenOut_, uint256 amountIn_)
public
view
returns (uint256 amountOut)
{
// Kept `usdNormalizedX` stack vars for readability.
(uint256 usdNormalizedIn, uint256 usdNormalizedOut) = tokenIn_ == token0
? (_getUsdValue(usdOracle0Ref), _getUsdValue(usdOracle1Ref))
: (_getUsdValue(usdOracle1Ref), _getUsdValue(usdOracle0Ref));
amountOut = (amountIn_ * usdNormalizedIn * 10 ** uint256(ERC20(tokenOut_).decimals()))
/ (usdNormalizedOut * 10 ** uint256(ERC20(tokenIn_).decimals()));
}
/**
* @notice Rebalance the lp position around the target external oracle price.
* The base position is updated to be `bpsRangeLower` percent and `bpsRangeUpper` percent around the external oracle price.
* If `withSwapping` is true, and the difference between the spot price and the external oracle price is larger than `hysteresis`
* the call will attempt to swap either side of the AUM tokens as required to match the target price.
* Fees are collected and distributed in the process.
* @dev If `withSwapping` is true and there is not external liquidity in the pool to swap the required amount
* to establish sqrtPriceX96 to the target oracle price in range, this call will revert.
* This is an issue if this contract is not a majority holder of the `pool`'s liquidity,
* @param useOracleForNewBounds if true, new bounds are set around `oraclePrice`, otherwise around the `spotTimeWeightedPrice`
* @param withSwapping If true, the contract will attempt to swap tokens to reach the target price
* @return amount0 Amount of token0 swapped
* @return amount1 Amount of token1 swapped
*/
function autoRebalance(bool useOracleForNewBounds, bool withSwapping)
public
nonReentrant
isRebalancer
returns (int256 amount0, int256 amount1)
{
if (baseLower == 0 && baseUpper == 0) {
revert UniswapV3TokenizedLp_SetBaseTicksViaRebalanceFirst();
}
(uint256 token0Bal, uint256 token1Bal) = _updateAndBurnAllPosition();
// Get spot and external oracle prices
uint256 spotTimeWeightedPrice = fetchSpot(token0, token1, PRECISION);
uint256 oraclePrice = fetchOracle(token0, token1, PRECISION);
// Check if difference between spot and oraclePrice is too big
uint256 delta = (spotTimeWeightedPrice > oraclePrice)
? ((spotTimeWeightedPrice - oraclePrice) * PRECISION) / oraclePrice
: ((oraclePrice - spotTimeWeightedPrice) * PRECISION) / oraclePrice;
uint256 priceRefForBounds = useOracleForNewBounds ? oraclePrice : spotTimeWeightedPrice;
// Calculate the new baseLower and baseUpper ticks. It is required to encode the price into sqrtPriceX96
int24 baseLower_ = UniV3MathHelper.roundTick(
UniV3MathHelper.getTickAtSqrtRatio(
UniV3MathHelper.encodePriceSqrtX96(
PRECISION, ((priceRefForBounds * (FULL_PERCENT - bpsRangeLower)) / FULL_PERCENT)
)
),
tickSpacing
);
int24 baseUpper_ = UniV3MathHelper.roundTick(
UniV3MathHelper.getTickAtSqrtRatio(
UniV3MathHelper.encodePriceSqrtX96(
PRECISION, ((priceRefForBounds * (FULL_PERCENT + bpsRangeUpper)) / FULL_PERCENT)
)
),
tickSpacing
);
// Set the new baseLower and baseUpper ticks
baseLower = baseLower_;
baseUpper = baseUpper_;
uint128 baseLiquidity = _liquidityForAmounts(baseLower, baseUpper, token0Bal, token1Bal);
if ((withSwapping && (delta > hysteresis)) || baseLower != baseLower_ || baseUpper != baseUpper_) {
// Swap tokens if required to reach the target price
uint160 sqrtPriceRefX96 = getCurrentSqrtPriceX96();
uint160 sqrtPriceTargetX96 = UniV3MathHelper.encodePriceSqrtX96(PRECISION, priceRefForBounds);
if (sqrtPriceRefX96 != sqrtPriceTargetX96) {
// Determine if it is a token0-to-token1 or opposite swap
bool zeroToOne = sqrtPriceRefX96 > sqrtPriceTargetX96;
(amount0, amount1) = IUniswapV3Pool(pool).swap(
address(this),
zeroToOne,
zeroToOne ? int256(token0Bal) : int256(token1Bal),
sqrtPriceTargetX96, // Swap through ticks until the target price is reached or run out of tokens
abi.encode(address(this))
);
if (!_checkPositionIsInRange(currentTick())) {
revert UniswapV3TokenizedLp_PositionOutOfRange();
}
}
// Recalculate `baseLiquidity` after swapping
baseLiquidity =
_liquidityForAmounts(baseLower, baseUpper, _callBalanceOfThis(token0), _callBalanceOfThis(token1));
}
_mintLiquidity(baseLower, baseUpper, baseLiquidity);
}
/**
* @notice Updates "force" the UniV3TokenizedLp's LP position at the specified ticks
* and performs the indicated swap with an optional limit price.
* @param _baseLower The lower tick of the base position
* @param _baseUpper The upper tick of the base position
* @param swapQuantity Quantity of tokens to swap; if quantity is positive, `swapQuantity` token0 are
* swapped for token1, if negative, `swapQuantity` token1 is swapped for token0
* @param tickLimit tick limit (converted internally to sqrtPriceX96) to protect against slippage of the `swapQuantity`.
* Pass `type(int24).max` to swap through the ticks until the `swapQuantity` is exhausted.
* Beware that passing `tickLimit` == type(int24).max is a slippage unprotected swap.
* @dev Refer to {IUniswapV3PoolActions.swap(...)} for more details on the `limit` parameter.
*/
function rebalance(int24 _baseLower, int24 _baseUpper, int256 swapQuantity, int24 tickLimit)
public
nonReentrant
isRebalancer
{
if (_baseLower >= _baseUpper || _baseLower % tickSpacing != 0 || _baseUpper % tickSpacing != 0) {
revert UniswapV3TokenizedLp_BasePositionInvalid();
}
(uint256 token0Bal, uint256 token1Bal) = _updateAndBurnAllPosition();
// Swap tokens if required as specified by `swapQuantity`
if (swapQuantity != 0) {
uint160 sqrtPriceX96Limit = tickLimit == type(int24).max ? 0 : UniV3MathHelper.getSqrtRatioAtTick(tickLimit);
// If no limit on the price, swap through the ticks, until the `swapQuantity` is exhausted
uint160 swapLimit = sqrtPriceX96Limit != 0
? sqrtPriceX96Limit
: swapQuantity > 0 ? UniV3MathHelper.MIN_SQRT_RATIO + 1 : UniV3MathHelper.MAX_SQRT_RATIO - 1;
IUniswapV3Pool(pool).swap(
address(this),
swapQuantity > 0, // zeroToOne == true if swapQuantity is positive
swapQuantity > 0 ? swapQuantity : -swapQuantity,
swapLimit,
abi.encode(address(this))
);
// Read balances after swap
token0Bal = _callBalanceOfThis(token0);
token1Bal = _callBalanceOfThis(token1);
}
baseLower = _baseLower;
baseUpper = _baseUpper;
// Mint liquidity at the new baseLower and baseUpper ticks
uint128 baseLiquidity = _liquidityForAmounts(baseLower, baseUpper, token0Bal, token1Bal);
_mintLiquidity(baseLower, baseUpper, baseLiquidity);
}
/**
* @notice Swaps idle tokens including this contract's own liquidity and if `addToLiquidity` the new idle amounts
* are deployed to the base position
* @param swapInputAmount Quantity of tokens to swap; if quantity is positive, `swapInputAmount` token0 are
* swapped for token1, if negative, `swapInputAmount` token1 is swapped for token0
* @param tickLimit tick limit (converted internally to sqrtPriceX96) to protect against slippage of the `swapQuantity`.
* Pass `type(int24).max` to swap through the ticks until the `swapQuantity` is exhausted.
* Beware that passing `tickLimit` == type(int24).max is a slippage unprotected swap.
* @param addToLiquidity If true, the contract will attempt to add the new idle liquidity to the pool at the base position
* @dev Refer to {IUniswapV3PoolActions.swap(...)} for more details on the `limit` parameter.
* If `swapInputAmount` is greater than the idle balance of the token, the swap will be limited to the idle balance.
*/
function swapIdleAndAddToLiquidity(int256 swapInputAmount, int24 tickLimit, bool addToLiquidity)
public
nonReentrant
isRebalancer
returns (int256 amount0, int256 amount1)
{
if (baseLower == 0 && baseUpper == 0) {
revert UniswapV3TokenizedLp_SetBaseTicksViaRebalanceFirst();
}
if (swapInputAmount == 0) revert UniswapV3TokenizedLp_ZeroValue();
int256 effectiveSwapQty;
{
if (swapInputAmount > 0) {
uint256 token0Bal = _callBalanceOfThis(token0);
// It is safe to directly cast because we know `swapQuantity` is positive
effectiveSwapQty = uint256(swapInputAmount) > token0Bal ? int256(token0Bal) : swapInputAmount;
} else {
uint256 token1Bal = _callBalanceOfThis(token1);
// It is safe to directly cast because we convert known negative `swapQuantity` value to positive
effectiveSwapQty = uint256(-swapInputAmount) > token1Bal ? -int256(token1Bal) : swapInputAmount;
}
}
// If no limit on the price, swap through the ticks, until the `swapQuantity` is exhausted
uint160 sqrtPriceX96Limit = tickLimit == type(int24).max ? 0 : UniV3MathHelper.getSqrtRatioAtTick(tickLimit);
uint160 swapLimit = sqrtPriceX96Limit != 0
? sqrtPriceX96Limit
: effectiveSwapQty > 0 ? UniV3MathHelper.MIN_SQRT_RATIO + 1 : UniV3MathHelper.MAX_SQRT_RATIO - 1;
(amount0, amount1) = IUniswapV3Pool(pool).swap(
address(this),
effectiveSwapQty > 0, // zeroToOne == true if swapQuantity is positive
effectiveSwapQty > 0 ? effectiveSwapQty : -effectiveSwapQty,
swapLimit,
abi.encode(address(this))
);
if (addToLiquidity) {
_mintLiquidityFromIdleBalances();
}
}
/// Internal functions
/**
* @dev Mints liquidity with the available idle balances of this contract at
* the existing baseLower and baseUpper ticks.
*/
function _mintLiquidityFromIdleBalances() internal {
uint128 baseLiquidity =
_liquidityForAmounts(baseLower, baseUpper, _callBalanceOfThis(token0), _callBalanceOfThis(token1));
_mintLiquidity(baseLower, baseUpper, baseLiquidity);
}
/**
* @dev Checks if the price has been manipulated in this block
*/
function _checkPriceDelta() internal view returns (uint256 spotPrice, uint256 oraclePrice) {
// Current spot price of token1/token0 at pool
spotPrice =
UniV3MathHelper.getQuoteAtTick(currentTick(), UniV3MathHelper.uint128Safe(PRECISION), token0, token1);
// External oracle price of token1/token0
oraclePrice = fetchOracle(token0, token1, PRECISION);
// If difference between spot and oracle is bigger than `hysteresis`, it
// checks the timestamp of the last `observation` at the pool
// to confirm if price has been manipulated in this block
uint256 delta = (spotPrice > oraclePrice)
? ((spotPrice - oraclePrice) * PRECISION) / spotPrice
: ((oraclePrice - spotPrice) * PRECISION) / oraclePrice;
if (delta > hysteresis) require(_checkHysteresis(), NEXT_BLOCK);
}
/**
* @dev Query the pool's slot0 and this address balances at the pool's spot sqrtPriceX96
*/
function _getTotalAmounts() internal view returns (uint256 total0, uint256 total1) {
(, uint256 base0, uint256 base1) = _getBasePosition();
total0 = _callBalanceOfThis(token0) + base0;
total1 = _callBalanceOfThis(token1) + base1;
}
/**
* @dev Query the pool's base position at the pool's spot sqrtPriceX96
*/
function _getBasePosition() internal view returns (uint128 liquidity, uint256 amount0, uint256 amount1) {
(uint128 positionLiquidity, uint128 tokensOwed0, uint128 tokensOwed1) = _position(baseLower, baseUpper);
(amount0, amount1) = _amountsForLiquidity(baseLower, baseUpper, positionLiquidity);
liquidity = positionLiquidity;
amount0 = amount0 + uint256(tokensOwed0);
amount1 = amount1 + uint256(tokensOwed1);
}
/**
* @dev Common snippet to call the {IUniswapV3Pool.burn(...)} method
* NOTE: Passing `liquidityAmount` == 0 can be used to update the state of fees at the pool.
* See IUniswapV3PoolActions.burn(...) interface docs
*/
function _callBurnAtPool(int24 tickLower, int24 tickUpper, uint128 liquidityAmount)
internal
returns (uint256 owed0, uint256 owed1)
{
(owed0, owed1) = IUniswapV3Pool(pool).burn(tickLower, tickUpper, liquidityAmount);
}
/**
* @dev Common snippet to call the {IERC20.balanceOf(address(this))} method
* Used across multiple places.
*/
function _callBalanceOfThis(address token) internal view returns (uint256) {
return IERC20(token).balanceOf(address(this));
}
/**
* @dev Updates the state of the pool, and if indicated distributes fees.
* Use `distributeNow == true` when calling in `withdraw()`
* Use `distributeNow == false` when calling in `_updateAndBurnAllPosition()`
*/
function _updatePoolCollectAndDistributeFees(bool distributeNow)
internal
returns (uint128 fees0, uint128 fees1, uint128 baseLiquidity)
{
// Update fee state at pool
(baseLiquidity,,) = _position(baseLower, baseUpper);
if (baseLiquidity > 0) {
_callBurnAtPool(baseLower, baseUpper, 0);
}
// Get now the collectable fees from Uniswap pool
(, fees0, fees1) = _position(baseLower, baseUpper);
if (distributeNow) {
if (fees0 > 0 || fees1 > 0) {
IUniswapV3Pool(pool).collect(address(this), baseLower, baseUpper, fees0, fees1);
}
_distributeFees(fees0, fees1);
}
}
/**
* @dev Contains the common flow between rebalance and autoRebalance functions
* - Updates fees
* - Burns all liquidity
* - Collects all the liquidity
* - Distributes fees
* - Returns token0 and token1 balances
* @return token0Bal Amount of token0
* @return token1Bal Amount of token1
*/
function _updateAndBurnAllPosition() internal returns (uint256, uint256) {
(uint256 feesBase0, uint256 feesBase1, uint128 baseLiquidity) = _updatePoolCollectAndDistributeFees(false);
// Withdraw all liquidity
_burnLiquidity(baseLower, baseUpper, baseLiquidity);
IUniswapV3Pool(pool).collect(address(this), baseLower, baseUpper, type(uint128).max, type(uint128).max);
_distributeFees(feesBase0, feesBase1);
uint256 token0Bal = _callBalanceOfThis(token0);
uint256 token1Bal = _callBalanceOfThis(token1);
emit Rebalance(currentTick(), token0Bal, token1Bal, feesBase0, feesBase1, totalSupply());
return (token0Bal, token1Bal);
}
/**
* @notice Sends portion of swap fees to feeRecipient and affiliate.
* @param fees0 fees for token0
* @param fees1 fees for token1
*/
function _distributeFees(uint256 fees0, uint256 fees1) internal {
// if there is no affiliate 100% of the fee should go to feeRecipient
uint256 feeSplit_ = (affiliate == NULL_ADDRESS) ? PRECISION : feeSplit;
if (feeRecipient == NULL_ADDRESS) revert UniswapV3TokenizedLp_ZeroAddress();
if (fee > 0) {
if (fees0 > 0) {
uint256 totalFee = (fees0 * fee) / PRECISION;
uint256 toRecipient = (totalFee * feeSplit_) / PRECISION;
uint256 toAffiliate = totalFee - toRecipient;
IERC20(token0).safeTransfer(feeRecipient, toRecipient);
if (toAffiliate > 0) {
IERC20(token0).safeTransfer(affiliate, toAffiliate);
}
}
if (fees1 > 0) {
uint256 totalFee = (fees1 * fee) / PRECISION;
uint256 toRecipient = (totalFee * feeSplit_) / PRECISION;
uint256 toAffiliate = totalFee - toRecipient;
IERC20(token1).safeTransfer(feeRecipient, toRecipient);
if (toAffiliate > 0) {
IERC20(token1).safeTransfer(affiliate, toAffiliate);
}
}
}
}
/**
* @notice Mint liquidity in Uniswap V3 pool.
* @param tickLower The lower tick of the liquidity position
* @param tickUpper The upper tick of the liquidity position
* @param liquidity Amount of liquidity to mint
* @param amount0 Used amount of token0
* @param amount1 Used amount of token1
*/
function _mintLiquidity(int24 tickLower, int24 tickUpper, uint128 liquidity)
internal
returns (uint256 amount0, uint256 amount1)
{
if (liquidity > 0) {
(amount0, amount1) =
IUniswapV3Pool(pool).mint(address(this), tickLower, tickUpper, liquidity, abi.encode(address(this)));
}
}
/**
* @notice Burn liquidity in Uniswap V3 pool.
* @param tickLower The lower tick of the liquidity position
* @param tickUpper The upper tick of the liquidity position
* @param liquidity amount of liquidity to burn
* @param owed0 released amount of token0
* @param owed1 released amount of token1
*/
function _burnLiquidity(int24 tickLower, int24 tickUpper, uint128 liquidity)
internal
returns (uint256 owed0, uint256 owed1)
{
if (liquidity > 0) {
// Burn liquidity
(owed0, owed1) = _callBurnAtPool(tickLower, tickUpper, liquidity);
}
}
/**
* @notice Calculates the "virtual" liquidity amount for the given shares.
* @param tickLower The lower tick of the liquidity position
* @param tickUpper The upper tick of the liquidity position
* @param shares number of shares
*/
function _liquidityForShares(int24 tickLower, int24 tickUpper, uint256 shares) internal view returns (uint128) {
(uint128 position,,) = _position(tickLower, tickUpper);
return UniV3MathHelper.uint128Safe((uint256(position) * shares) / totalSupply());
}
/**
* @notice Returns information about the liquidity position.
* @param tickLower The lower tick of the liquidity position
* @param tickUpper The upper tick of the liquidity position
* @param liquidity virtual liquidity amount
* @param tokensOwed0 amount of token0 owed to the owner of the position
* @param tokensOwed1 amount of token1 owed to the owner of the position
*/
function _position(int24 tickLower, int24 tickUpper)
internal
view
returns (uint128 liquidity, uint128 tokensOwed0, uint128 tokensOwed1)
{
bytes32 positionKey = keccak256(abi.encodePacked(address(this), tickLower, tickUpper));
(liquidity,,, tokensOwed0, tokensOwed1) = IUniswapV3Pool(pool).positions(positionKey);
}
/**
* @notice Checks if the last price change happened in the current block
*/
function _checkHysteresis() private view returns (bool) {
(,, uint16 observationIndex,) = _queryPoolSlot0();
(uint32 blockTimestamp,,,) = IUniswapV3Pool(pool).observations(observationIndex);
return (block.timestamp != blockTimestamp);
}
/**
* @notice Checks if the `refTick` is within pool's defined
* baseLower and baseUpper ticks
*/
function _checkPositionIsInRange(int24 refTick) private view returns (bool) {
if (refTick >= baseLower && refTick <= baseUpper) return true;
else return false;
}
/**
* @notice Calculates token0 and token1 amounts for virtual liquidity in a position
* @param tickLower The lower tick of the liquidity position
* @param tickUpper The upper tick of the liquidity position
* @param liquidity Amount of virtual liquidity in the position
*/
function _amountsForLiquidity(int24 tickLower, int24 tickUpper, uint128 liquidity)
internal
view
returns (uint256, uint256)
{
uint160 sqrtRatioRefX96 = getCurrentSqrtPriceX96();
return UniV3MathHelper.getAmountsForLiquidity(
sqrtRatioRefX96,
UniV3MathHelper.getSqrtRatioAtTick(tickLower),
UniV3MathHelper.getSqrtRatioAtTick(tickUpper),
liquidity
);
}
/**
* @notice Calculates amount of liquidity in a position for given token0 and token1 amounts
* @param tickLower The lower tick of the liquidity position
* @param tickUpper The upper tick of the liquidity position
* @param amount0 token0 amount
* @param amount1 token1 amount
*/
function _liquidityForAmounts(int24 tickLower, int24 tickUpper, uint256 amount0, uint256 amount1)
internal
view
returns (uint128)
{
uint160 sqrtPriceRefX96 = getCurrentSqrtPriceX96();
return UniV3MathHelper.getLiquidityForAmounts(
sqrtPriceRefX96,
UniV3MathHelper.getSqrtRatioAtTick(tickLower),
UniV3MathHelper.getSqrtRatioAtTick(tickUpper),
amount0,
amount1
);
}
/**
* @notice Calculates normalized USD value of token referenced in `usdOracle_`
* @param usdOracle_ oracle to get price
*/
function _getUsdValue(IPriceFeed usdOracle_) internal view returns (uint256) {
return (PRECISION * uint256(usdOracle_.latestAnswer())) / 10 ** usdOracle_.decimals();
}
/**
* @dev Internal method that queries the pool slot0 state
* Note: Since the pool can be either IUniswapV3Pool or ICLPool, it tries to query both
* @return sqrtPriceX96 The current sqrtPriceX96
* @return tick The current tick
* @return observationIndex The current observation index
* @return unlocked The pool's unlocked status
*/
function _queryPoolSlot0()
internal
view
returns (uint160 sqrtPriceX96, int24 tick, uint16 observationIndex, bool unlocked)
{
(bool success, bytes memory returnedData) = pool.staticcall(abi.encodeWithSignature("slot0()"));
if (!success) revert UniswapV3TokenizedLp_failedToQueryPool();
if (returnedData.length == ICLPOOL_SLOT0_SIZE) {
(sqrtPriceX96, tick, observationIndex,,, unlocked) =
abi.decode(returnedData, (uint160, int24, uint16, uint16, uint16, bool));
} else if (returnedData.length == IUNISWAPV3POOL_SLOT0_SIZE) {
(sqrtPriceX96, tick, observationIndex,,,, unlocked) =
abi.decode(returnedData, (uint160, int24, uint16, uint16, uint16, uint8, bool));
} else {
revert UniswapV3TokenizedLp_invalidSlot0Size();
}
}
/// Hooks
/// @inheritdoc ERC20
function _update(address from, address to, uint256 value) internal override {
super._update(from, to, value);
_afterTokenTransfer(from, to, value);
}
/**
* @dev Carry block delay guard for all transfers except for `approvedRebalancers`
*/
function _afterTokenTransfer(address from, address, uint256 amount) internal view {
if (from != address(0) && amount != 0) {
uint256 permittedBlock = _callerDelayAction[from];
if (!approvedRebalancer[from] && permittedBlock != 0 && permittedBlock > block.number) {
revert UniswapV3TokenizedLp_NoWithdrawOrTransferDuringDelay();
}
}
}
/// Uniswap V3 callback functions
/**
* @notice Callback function required by the UniswapV3 pool for minting a position
* @dev this is where the payer transfers required token0 and token1 amounts
* @param amount0 required amount of token0
* @param amount1 required amount of token1
* @param data encoded payer's address
*/
function uniswapV3MintCallback(uint256 amount0, uint256 amount1, bytes calldata data) external override {
if (msg.sender != address(pool)) {
revert UniswapV3TokenizedLp_MustBePool(1);
}
address payer = abi.decode(data, (address));
if (payer == address(this)) {
if (amount0 > 0) IERC20(token0).safeTransfer(msg.sender, amount0);
if (amount1 > 0) IERC20(token1).safeTransfer(msg.sender, amount1);
} else {
if (amount0 > 0) {
IERC20(token0).safeTransferFrom(payer, msg.sender, amount0);
}
if (amount1 > 0) {
IERC20(token1).safeTransferFrom(payer, msg.sender, amount1);
}
}
}
/**
* @notice Callback function required by the UniswapV3 pool for executing a swap
* @dev this is where the payer transfers required token0 and token1 amounts
* @param amount0Delta required amount of token0
* @param amount1Delta required amount of token1
* @param data encoded payer's address
*/
function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external override {
if (msg.sender != address(pool)) {
revert UniswapV3TokenizedLp_MustBePool(2);
}
address payer = abi.decode(data, (address));
if (amount0Delta > 0) {
if (payer == address(this)) {
IERC20(token0).safeTransfer(msg.sender, uint256(amount0Delta));
} else {
IERC20(token0).safeTransferFrom(payer, msg.sender, uint256(amount0Delta));
}
} else if (amount1Delta > 0) {
if (payer == address(this)) {
IERC20(token1).safeTransfer(msg.sender, uint256(amount1Delta));
} else {
IERC20(token1).safeTransferFrom(payer, msg.sender, uint256(amount1Delta));
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
{
"compilationTarget": {
"src/UniswapV3TokenizedLp.sol": "UniswapV3TokenizedLp"
},
"evmVersion": "shanghai",
"libraries": {
"src/libraries/UniV3MathHelper.sol:UniV3MathHelper": "0x2d4f1a72e51c586a580315631f885f5f307e5b57"
},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 10000
},
"remappings": [
":@openzeppelin-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
":@openzeppelin/=lib/openzeppelin-contracts/contracts/",
":@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
":@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
":@uniswap-v3-core/=lib/uniswap-v3-core/contracts/",
":@uniswap-v3-periphery/=lib/uniswap-v3-periphery/contracts/",
":@uniswap/v3-core/contracts/=lib/uniswap-v3-core/contracts/",
":ds-test/=lib/openzeppelin-contracts-upgradeable/lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
":uniswap-v3-core/=lib/uniswap-v3-core/contracts/",
":uniswap-v3-periphery/=lib/uniswap-v3-periphery/contracts/"
]
}
[{"inputs":[{"internalType":"address","name":"_pool","type":"address"},{"internalType":"bool","name":"_allowToken0","type":"bool"},{"internalType":"bool","name":"_allowToken1","type":"bool"},{"internalType":"address","name":"_usdOracle0Ref","type":"address"},{"internalType":"address","name":"_usdOracle1Ref","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_BasePositionInvalid","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_FeeMustBeLtePrecision","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_InvalidBaseBpsRange","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_LimitPositionInvalid","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_MaxTotalSupplyExceeded","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_MoreThanMaxDeposit","type":"error"},{"inputs":[{"internalType":"uint256","name":"instance","type":"uint256"}],"name":"UniswapV3TokenizedLp_MustBePool","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_NoAllowedTokens","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_NoWithdrawOrTransferDuringDelay","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_NotAllowed","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_PoolLocked","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_PositionOutOfRange","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_SetBaseTicksViaRebalanceFirst","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_SplitMustBeLtePrecision","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_Token0NotAllowed","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_Token1NotAllowed","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_UnexpectedBurn","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_UnsafeCast","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_ZeroAddress","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_ZeroValue","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_alreadyInitialized","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_failedToQueryPool","type":"error"},{"inputs":[],"name":"UniswapV3TokenizedLp_invalidSlot0Size","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newBlockWaitTime","type":"uint256"}],"name":"ActionBlockDelay","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"affiliate","type":"address"}],"name":"Affiliate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"rebalancer","type":"address"},{"indexed":false,"internalType":"bool","name":"isApproved","type":"bool"}],"name":"ApprovedRebalancer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newBpsRangeLower","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newBpsRangeUpper","type":"uint256"}],"name":"BpsRanges","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newDeposit0Max","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newDeposit1Max","type":"uint256"}],"name":"DepositMax","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newFeeRecipient","type":"address"}],"name":"FeeRecipient","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newFeeSplit","type":"uint256"}],"name":"FeeSplit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newFee","type":"uint256"}],"name":"FeeUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newHysteresis","type":"uint256"}],"name":"Hysteresis","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newMaxTotalSupply","type":"uint256"}],"name":"MaxTotalSupply","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"int24","name":"tick","type":"int24"},{"indexed":false,"internalType":"uint256","name":"totalAmount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalAmount1","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"feeAmount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"feeAmount1","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalSupply","type":"uint256"}],"name":"Rebalance","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"usd0RefOracle","type":"address"},{"indexed":false,"internalType":"address","name":"usd1RefOracle","type":"address"}],"name":"UsdOracleReferences","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"DEFAULT_BASE_FEE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_BASE_FEE_SPLIT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FULL_PERCENT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"NULL_ADDRESS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRECISION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"actionBlockDelay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"affiliate","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"allowToken0","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"allowToken1","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"approvedRebalancer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"useOracleForNewBounds","type":"bool"},{"internalType":"bool","name":"withSwapping","type":"bool"}],"name":"autoRebalance","outputs":[{"internalType":"int256","name":"amount0","type":"int256"},{"internalType":"int256","name":"amount1","type":"int256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseLower","outputs":[{"internalType":"int24","name":"","type":"int24"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseUpper","outputs":[{"internalType":"int24","name":"","type":"int24"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bpsRangeLower","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bpsRangeUpper","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentTick","outputs":[{"internalType":"int24","name":"tick","type":"int24"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"deposit0","type":"uint256"},{"internalType":"uint256","name":"deposit1","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"deposit0Max","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"deposit1Max","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeSplit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn_","type":"address"},{"internalType":"address","name":"tokenOut_","type":"address"},{"internalType":"uint256","name":"amountIn_","type":"uint256"}],"name":"fetchOracle","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_tokenIn","type":"address"},{"internalType":"address","name":"_tokenOut","type":"address"},{"internalType":"uint256","name":"_amountIn","type":"uint256"}],"name":"fetchSpot","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBasePosition","outputs":[{"internalType":"uint128","name":"liquidity","type":"uint128"},{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBasePositionFeeAccumulated","outputs":[{"internalType":"uint128","name":"liquidity","type":"uint128"},{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getCurrentSqrtPriceX96","outputs":[{"internalType":"uint160","name":"sqrtPriceX96","type":"uint160"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTimeWeightedSqrtPriceX96","outputs":[{"internalType":"uint160","name":"sqrtPriceX96","type":"uint160"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalAmounts","outputs":[{"internalType":"uint256","name":"total0","type":"uint256"},{"internalType":"uint256","name":"total1","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalAmountsFeeAccumulated","outputs":[{"internalType":"uint256","name":"total0","type":"uint256"},{"internalType":"uint256","name":"total1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"hysteresis","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxTotalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"int24","name":"_baseLower","type":"int24"},{"internalType":"int24","name":"_baseUpper","type":"int24"},{"internalType":"int256","name":"swapQuantity","type":"int256"},{"internalType":"int24","name":"tickLimit","type":"int24"}],"name":"rebalance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_blockWaitTime","type":"uint256"}],"name":"setActionBlockDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_affiliate","type":"address"}],"name":"setAffiliate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovedRebalancer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_bpsRangeLower","type":"uint256"},{"internalType":"uint256","name":"_bpsRangeUpper","type":"uint256"}],"name":"setBpsRanges","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_deposit0Max","type":"uint256"},{"internalType":"uint256","name":"_deposit1Max","type":"uint256"}],"name":"setDepositMax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"setFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_feeRecipient","type":"address"}],"name":"setFeeRecipient","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_feeSplit","type":"uint256"}],"name":"setFeeSplit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_hysteresis","type":"uint256"}],"name":"setHysteresis","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_maxTotalSupply","type":"uint256"}],"name":"setMaxTotalSupply","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"usdOracle0Ref_","type":"address"},{"internalType":"address","name":"usdOracle1Ref_","type":"address"}],"name":"setUsdOracles","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"int256","name":"swapInputAmount","type":"int256"},{"internalType":"int24","name":"tickLimit","type":"int24"},{"internalType":"bool","name":"addToLiquidity","type":"bool"}],"name":"swapIdleAndAddToLiquidity","outputs":[{"internalType":"int256","name":"amount0","type":"int256"},{"internalType":"int256","name":"amount1","type":"int256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tickSpacing","outputs":[{"internalType":"int24","name":"","type":"int24"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token0","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token1","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"uniswapV3MintCallback","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"int256","name":"amount0Delta","type":"int256"},{"internalType":"int256","name":"amount1Delta","type":"int256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"uniswapV3SwapCallback","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"usdOracle0Ref","outputs":[{"internalType":"contract IPriceFeed","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"usdOracle1Ref","outputs":[{"internalType":"contract IPriceFeed","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]