// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.17;
// libraries
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/math/SafeCast.sol";
import "../core/libraries/SmardexLibrary.sol";
import "../periphery/libraries/Path.sol";
// interfaces
import "../core/interfaces/ISmardexPair.sol";
import "./interfaces/IAutoSwapper.sol";
/**
* @title AutoSwapper
* @notice AutoSwapper makes it automatic and/or public to get fees from Smardex and convert it to tokens for staking
*/
contract AutoSwapper is IAutoSwapper {
using SafeERC20 for IERC20;
using SafeCast for uint256;
using SafeCast for int256;
using Path for bytes;
/**
* @notice callback data for swap from SmardexRouter
* @param path path of the swap, array of token addresses tightly packed
* @param payer address of the payer for the swap
*/
struct SwapCallbackData {
bytes path;
address payer;
}
/**
* @notice swap parameters used by function _swapAndSend
* @param zeroForOne true if we swap the token0 with token1, false otherwise
* @param balanceIn balance of in-token to be swapped
* @param pair pair address
* @param fictiveReserve0 fictive reserve of token0 of the pair
* @param fictiveReserve1 fictive reserve of token1 of the pair
* @param oldPriceAv0 priceAverage of token0 of the pair before the swap
* @param oldPriceAv1 priceAverage of token1 of the pair before the swap
* @param oldPriceAvTimestamp priceAverageLastTimestamp of the pair before the swap
* @param newPriceAvIn priceAverage of token0 of the pair after the swap
* @param newPriceAvOut priceAverage of token1 of the pair after the swap
*/
struct SwapCallParams {
bool zeroForOne;
uint256 balanceIn;
ISmardexPair pair;
uint256 fictiveReserve0;
uint256 fictiveReserve1;
uint256 oldPriceAv0;
uint256 oldPriceAv1;
uint256 oldPriceAvTimestamp;
uint256 newPriceAvIn;
uint256 newPriceAvOut;
}
bytes4 private constant SWAP_SELECTOR = bytes4(keccak256(bytes("swap(address,bool,int256,bytes)")));
uint256 private constant AUTOSWAP_SLIPPAGE = 2; // 2%
uint256 private constant AUTOSWAP_SLIPPAGE_BASE = 100;
ISmardexFactory public immutable factory;
address public immutable stakingAddress;
IERC20 public immutable smardexToken;
ISmardexPair private constant DEFAULT_CACHED_PAIR = ISmardexPair(address(0));
ISmardexPair private cachedPair = DEFAULT_CACHED_PAIR;
constructor(ISmardexFactory _factory, IERC20 _smardexToken, address _stakingAddress) {
factory = _factory;
smardexToken = _smardexToken;
stakingAddress = _stakingAddress;
}
/// @inheritdoc IAutoSwapper
function executeWork(IERC20 _token0, IERC20 _token1) external {
_swapAndSend(_token0);
_swapAndSend(_token1);
transferTokens();
}
/// @inheritdoc IAutoSwapper
function transferTokens() public {
uint256 _balance = smardexToken.balanceOf(address(this));
if (_balance == 0) return;
smardexToken.safeTransfer(stakingAddress, _balance);
}
/**
* @notice private function to swap token in SDEX and send it to the staking address
* @param _token address of the token to swap into sdex
*/
function _swapAndSend(IERC20 _token) private {
if (_token == smardexToken) return;
SwapCallParams memory _params = SwapCallParams({
zeroForOne: _token < smardexToken,
balanceIn: _token.balanceOf(address(this)),
pair: ISmardexPair(factory.getPair(address(_token), address(smardexToken))),
fictiveReserve0: 0,
fictiveReserve1: 0,
oldPriceAv0: 0,
oldPriceAv1: 0,
oldPriceAvTimestamp: 0,
newPriceAvIn: 0,
newPriceAvOut: 0
});
// basic check on input data
if (_params.balanceIn == 0 || address(_params.pair) == address(0)) return;
// get reserves and pricesAv
(_params.fictiveReserve0, _params.fictiveReserve1) = _params.pair.getFictiveReserves();
(_params.oldPriceAv0, _params.oldPriceAv1, _params.oldPriceAvTimestamp) = _params.pair.getPriceAverage();
if (_params.oldPriceAv0 == 0 || _params.oldPriceAv1 == 0) {
(_params.oldPriceAv0, _params.oldPriceAv1) = (_params.fictiveReserve0, _params.fictiveReserve1);
}
if (_params.zeroForOne) {
(_params.newPriceAvIn, _params.newPriceAvOut) = SmardexLibrary.getUpdatedPriceAverage(
_params.fictiveReserve0,
_params.fictiveReserve1,
_params.oldPriceAvTimestamp,
_params.oldPriceAv0,
_params.oldPriceAv1,
block.timestamp
);
} else {
(_params.newPriceAvIn, _params.newPriceAvOut) = SmardexLibrary.getUpdatedPriceAverage(
_params.fictiveReserve1,
_params.fictiveReserve0,
_params.oldPriceAvTimestamp,
_params.oldPriceAv1,
_params.oldPriceAv0,
block.timestamp
);
}
// we allow for 2% slippage from previous swaps in block
uint256 _amountOutWithSlippage = (_params.balanceIn *
_params.newPriceAvOut *
(AUTOSWAP_SLIPPAGE_BASE - AUTOSWAP_SLIPPAGE)) / (_params.newPriceAvIn * AUTOSWAP_SLIPPAGE_BASE);
require(_amountOutWithSlippage > 0, "AutoSwapper: slippage calculation failed");
cachedPair = _params.pair;
// we dont check for success as we dont want to revert the whole tx if the swap fails
address(_params.pair).call(
abi.encodeWithSelector(
SWAP_SELECTOR,
stakingAddress,
_token < smardexToken,
_params.balanceIn.toInt256(),
abi.encode(
SwapCallbackData({ path: abi.encodePacked(_token, smardexToken), payer: address(this) }),
_amountOutWithSlippage
)
)
);
cachedPair = DEFAULT_CACHED_PAIR;
}
/// @inheritdoc ISmardexSwapCallback
function smardexSwapCallback(int256 _amount0Delta, int256 _amount1Delta, bytes calldata _dataFromPair) external {
require(_amount0Delta > 0 || _amount1Delta > 0, "SmardexRouter: Callback Invalid amount");
(SwapCallbackData memory _data, uint256 _amountOutWithSlippage) = abi.decode(
_dataFromPair,
(SwapCallbackData, uint256)
);
(address _tokenIn, ) = _data.path.decodeFirstPool();
require(msg.sender == address(cachedPair), "SmarDexRouter: INVALID_PAIR"); // ensure that msg.sender is a pair
// ensure that the trade gives at least the minimum amount of output token (negative delta)
require(
(_amount0Delta < 0 ? uint256(-_amount0Delta) : (-_amount1Delta).toUint256()) >= _amountOutWithSlippage,
"SmardexAutoSwapper: Invalid price"
);
// send positive delta to pair
IERC20(_tokenIn).safeTransfer(
msg.sender,
_amount0Delta > 0 ? uint256(_amount0Delta) : _amount1Delta.toUint256()
);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.17;
/**
* @title Solidity Bytes Arrays Utils
* @author Gonçalo Sá <goncalo.sa@consensys.net>
* @custom:url https://github.com/GNSPS/solidity-bytes-utils/blob/master/contracts/BytesLib.sol
*
* @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity.
* The library lets you concatenate, slice and type cast bytes arrays both in memory and storage.
*/
library BytesLib {
function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
require(_length + 31 >= _length, "slice_overflow");
require(_start + _length >= _start, "slice_overflow");
require(_bytes.length >= _start + _length, "slice_outOfBounds");
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
require(_start + 20 >= _start, "toAddress_overflow");
require(_bytes.length >= _start + 20, "toAddress_outOfBounds");
address tempAddress;
assembly {
tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
}
return tempAddress;
}
function toUint24(bytes memory _bytes, uint256 _start) internal pure returns (uint24) {
require(_start + 3 >= _start, "toUint24_overflow");
require(_bytes.length >= _start + 3, "toUint24_outOfBounds");
uint24 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x3), _start))
}
return tempUint;
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.17;
// interfaces
import "@openzeppelin/contracts/interfaces/IERC20.sol";
import "../../core/interfaces/ISmardexFactory.sol";
import "../../core/interfaces/ISmardexSwapCallback.sol";
interface IAutoSwapper is ISmardexSwapCallback {
/**
* @notice public function for executing swaps on tokens and send them to staking contract will be called from a
* Smardex Pair on mint and burn, and can be forced call by anyone
* @param _token0 token to be converted to sdex
* @param _token1 token to be converted to sdex
*/
function executeWork(IERC20 _token0, IERC20 _token1) external;
/**
* @notice transfer SDEX from here to staking contract
*/
function transferTokens() external;
/**
* @notice return the factory address
* @return factory address
*/
function factory() external view returns (ISmardexFactory);
/**
* @notice return the staking address
* @return staking address
*/
function stakingAddress() external view returns (address);
/**
* @notice return the smardexToken address
* @return smardexToken address
*/
function smardexToken() external view returns (IERC20);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)
pragma solidity ^0.8.0;
import "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.8.17;
interface ISmardexFactory {
/**
* @notice emitted at each SmardexPair created
* @param token0 address of the token0
* @param token1 address of the token1
* @param pair address of the SmardexPair created
* @param totalPair number of SmardexPair created so far
*/
event PairCreated(address indexed token0, address indexed token1, address pair, uint256 totalPair);
/**
* @notice return which address fees will be transferred
*/
function feeTo() external view returns (address);
/**
* @notice return which address can update feeTo
*/
function feeToSetter() external view returns (address);
/**
* @notice return the address of the pair of 2 tokens
*/
function getPair(address _tokenA, address _tokenB) external view returns (address pair_);
/**
* @notice return the address of the pair at index
* @param _index index of the pair
* @return pair_ address of the pair
*/
function allPairs(uint256 _index) external view returns (address pair_);
/**
* @notice return the quantity of pairs
* @return quantity in uint256
*/
function allPairsLength() external view returns (uint256);
/**
* @notice create pair with 2 address
* @param _tokenA address of tokenA
* @param _tokenB address of tokenB
* @return pair_ address of the pair created
*/
function createPair(address _tokenA, address _tokenB) external returns (address pair_);
/**
* @notice set the address who will receive fees, can only be call by feeToSetter
* @param _feeTo address to replace
*/
function setFeeTo(address _feeTo) external;
/**
* @notice set the address who can update feeTo, can only be call by feeToSetter
* @param _feeToSetter address to replace
*/
function setFeeToSetter(address _feeToSetter) external;
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.17;
// interfaces
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
interface ISmardexPair is IERC20, IERC20Permit {
/**
* @notice emitted at each mint
* @param sender address calling the mint function (usualy the Router contract)
* @param to address that receives the LP-tokens
* @param amount0 amount of token0 to be added in liquidity
* @param amount1 amount of token1 to be added in liquidity
* @dev the amount of LP-token sent can be caught using the transfer event of the pair
*/
event Mint(address indexed sender, address indexed to, uint256 amount0, uint256 amount1);
/**
* @notice emitted at each burn
* @param sender address calling the burn function (usualy the Router contract)
* @param to address that receives the tokens
* @param amount0 amount of token0 to be withdrawn
* @param amount1 amount of token1 to be withdrawn
* @dev the amount of LP-token sent can be caught using the transfer event of the pair
*/
event Burn(address indexed sender, address indexed to, uint256 amount0, uint256 amount1);
/**
* @notice emitted at each swap
* @param sender address calling the swap function (usualy the Router contract)
* @param to address that receives the out-tokens
* @param amount0 amount of token0 to be swapped
* @param amount1 amount of token1 to be swapped
* @dev one of the 2 amount is always negative, the other one is always positive. The positive one is the one that
* the user send to the contract, the negative one is the one that the contract send to the user.
*/
event Swap(address indexed sender, address indexed to, int256 amount0, int256 amount1);
/**
* @notice emitted each time the fictive reserves are changed (mint, burn, swap)
* @param reserve0 the new reserve of token0
* @param reserve1 the new reserve of token1
* @param fictiveReserve0 the new fictive reserve of token0
* @param fictiveReserve1 the new fictive reserve of token1
* @param priceAverage0 the new priceAverage of token0
* @param priceAverage1 the new priceAverage of token1
*/
event Sync(
uint256 reserve0,
uint256 reserve1,
uint256 fictiveReserve0,
uint256 fictiveReserve1,
uint256 priceAverage0,
uint256 priceAverage1
);
/**
* @notice get the factory address
* @return address of the factory
*/
function factory() external view returns (address);
/**
* @notice get the token0 address
* @return address of the token0
*/
function token0() external view returns (address);
/**
* @notice get the token1 address
* @return address of the token1
*/
function token1() external view returns (address);
/**
* @notice called once by the factory at time of deployment
* @param _token0 address of token0
* @param _token1 address of token1
*/
function initialize(address _token0, address _token1) external;
/**
* @notice return current Reserves of both token in the pair,
* corresponding to token balance - pending fees
* @return reserve0_ current reserve of token0 - pending fee0
* @return reserve1_ current reserve of token1 - pending fee1
*/
function getReserves() external view returns (uint256 reserve0_, uint256 reserve1_);
/**
* @notice return current Fictives Reserves of both token in the pair
* @return fictiveReserve0_ current fictive reserve of token0
* @return fictiveReserve1_ current fictive reserve of token1
*/
function getFictiveReserves() external view returns (uint256 fictiveReserve0_, uint256 fictiveReserve1_);
/**
* @notice return current pending fees of both token in the pair
* @return fees0_ current pending fees of token0
* @return fees1_ current pending fees of token1
*/
function getFees() external view returns (uint256 fees0_, uint256 fees1_);
/**
* @notice return last updated price average at timestamp of both token in the pair,
* read price0Average/price1Average for current price of token0/token1
* @return priceAverage0_ current price for token0
* @return priceAverage1_ current price for token1
* @return blockTimestampLast_ last block timestamp when price was updated
*/
function getPriceAverage()
external
view
returns (uint256 priceAverage0_, uint256 priceAverage1_, uint256 blockTimestampLast_);
/**
* @notice return current price average of both token in the pair for provided currentTimeStamp
* read price0Average/price1Average for current price of token0/token1
* @param _fictiveReserveIn,
* @param _fictiveReserveOut,
* @param _priceAverageLastTimestamp,
* @param _priceAverageIn current price for token0
* @param _priceAverageOut current price for token1
* @param _currentTimestamp block timestamp to get price
* @return priceAverageIn_ current price for token0
* @return priceAverageOut_ current price for token1
*/
function getUpdatedPriceAverage(
uint256 _fictiveReserveIn,
uint256 _fictiveReserveOut,
uint256 _priceAverageLastTimestamp,
uint256 _priceAverageIn,
uint256 _priceAverageOut,
uint256 _currentTimestamp
) external pure returns (uint256 priceAverageIn_, uint256 priceAverageOut_);
/**
* @notice Mint lp tokens proportionally of added tokens in balance. Should be called from a contract
* that makes safety checks like the SmardexRouter
* @param _to address who will receive minted tokens
* @param _amount0 amount of token0 to provide
* @param _amount1 amount of token1 to provide
* @return liquidity_ amount of lp tokens minted and sent to the address defined in parameter
*/
function mint(
address _to,
uint256 _amount0,
uint256 _amount1,
address _payer
) external returns (uint256 liquidity_);
/**
* @notice Burn lp tokens in the balance of the contract. Sends to the defined address the amount of token0 and
* token1 proportionally of the amount burned. Should be called from a contract that makes safety checks like the
* SmardexRouter
* @param _to address who will receive tokens
* @return amount0_ amount of token0 sent to the address defined in parameter
* @return amount1_ amount of token0 sent to the address defined in parameter
*/
function burn(address _to) external returns (uint256 amount0_, uint256 amount1_);
/**
* @notice Swaps tokens. Sends to the defined address the amount of token0 and token1 defined in parameters.
* Tokens to trade should be already sent in the contract.
* Swap function will check if the resulted balance is correct with current reserves and reserves fictive.
* Should be called from a contract that makes safety checks like the SmardexRouter
* @param _to address who will receive tokens
* @param _zeroForOne token0 to token1
* @param _amountSpecified amount of token wanted
* @param _data used for flash swap, data.length must be 0 for regular swap
*/
function swap(
address _to,
bool _zeroForOne,
int256 _amountSpecified,
bytes calldata _data
) external returns (int256 amount0_, int256 amount1_);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.8.17;
interface ISmardexSwapCallback {
/**
* @notice callback data for swap
* @param _amount0Delta amount of token0 for the swap (negative is incoming, positive is required to pay to pair)
* @param _amount1Delta amount of token1 for the swap (negative is incoming, positive is required to pay to pair)
* @param _data for Router path and payer for the swap (see router for details)
*/
function smardexSwapCallback(int256 _amount0Delta, int256 _amount1Delta, bytes calldata _data) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.17;
// libraries
import "./BytesLib.sol";
/**
* @title Functions for manipulating path data for multihop swaps
* @custom:from UniswapV3
* @custom:url https://github.com/Uniswap/v3-periphery/blob/main/contracts/libraries/Path.sol
*/
library Path {
using BytesLib for bytes;
/// @dev The length of the bytes encoded address
uint256 private constant ADDR_SIZE = 20;
/// @dev The offset of a single token address
uint256 private constant NEXT_OFFSET = ADDR_SIZE;
/// @dev The offset of an encoded pool key
uint256 private constant POP_OFFSET = NEXT_OFFSET + ADDR_SIZE;
/// @dev The minimum length of an encoding that contains 2 or more pools
uint256 private constant MULTIPLE_POOLS_MIN_LENGTH = POP_OFFSET + NEXT_OFFSET;
/// @notice Returns true if the path contains two or more pools
/// @param path The encoded swap path
/// @return True if path contains two or more pools, otherwise false
function hasMultiplePools(bytes memory path) internal pure returns (bool) {
return path.length >= MULTIPLE_POOLS_MIN_LENGTH;
}
/// @notice Returns the number of pools in the path
/// @param path The encoded swap path
/// @return The number of pools in the path
function numPools(bytes memory path) internal pure returns (uint256) {
// Ignore the first token address. From then on every fee and token offset indicates a pool.
return ((path.length - ADDR_SIZE) / NEXT_OFFSET);
}
/// @notice Decodes the first pool in path
/// @param path The bytes encoded swap path
/// @return tokenA The first token of the given pool
/// @return tokenB The second token of the given pool
function decodeFirstPool(bytes memory path) internal pure returns (address tokenA, address tokenB) {
tokenA = path.toAddress(0);
tokenB = path.toAddress(NEXT_OFFSET);
}
/// @notice Gets the segment corresponding to the first pool in the path
/// @param path The bytes encoded swap path
/// @return The segment containing all data necessary to target the first pool in the path
function getFirstPool(bytes memory path) internal pure returns (bytes memory) {
return path.slice(0, POP_OFFSET);
}
/// @notice Skips a token from the buffer and returns the remainder
/// @param path The swap path
/// @return The remaining token elements in the path
function skipToken(bytes memory path) internal pure returns (bytes memory) {
return path.slice(NEXT_OFFSET, path.length - NEXT_OFFSET);
}
function encodeTightlyPacked(address[] memory path) internal pure returns (bytes memory encoded) {
uint256 len = path.length;
for (uint256 i = 0; i < len; i++) {
encoded = bytes.concat(encoded, abi.encodePacked(path[i]));
}
}
function encodeTightlyPackedReversed(address[] memory path) internal pure returns (bytes memory encoded) {
uint256 len = path.length;
for (uint256 i = len; i > 0; i--) {
encoded = bytes.concat(encoded, abi.encodePacked(path[i - 1]));
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.0;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*
* Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
* all math on `uint256` and `int256` and then downcasting.
*/
library SafeCast {
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*
* _Available since v4.7._
*/
function toUint248(uint256 value) internal pure returns (uint248) {
require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*
* _Available since v4.7._
*/
function toUint240(uint256 value) internal pure returns (uint240) {
require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*
* _Available since v4.7._
*/
function toUint232(uint256 value) internal pure returns (uint232) {
require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*
* _Available since v4.2._
*/
function toUint224(uint256 value) internal pure returns (uint224) {
require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*
* _Available since v4.7._
*/
function toUint216(uint256 value) internal pure returns (uint216) {
require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*
* _Available since v4.7._
*/
function toUint208(uint256 value) internal pure returns (uint208) {
require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*
* _Available since v4.7._
*/
function toUint200(uint256 value) internal pure returns (uint200) {
require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*
* _Available since v4.7._
*/
function toUint192(uint256 value) internal pure returns (uint192) {
require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*
* _Available since v4.7._
*/
function toUint184(uint256 value) internal pure returns (uint184) {
require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*
* _Available since v4.7._
*/
function toUint176(uint256 value) internal pure returns (uint176) {
require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*
* _Available since v4.7._
*/
function toUint168(uint256 value) internal pure returns (uint168) {
require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*
* _Available since v4.7._
*/
function toUint160(uint256 value) internal pure returns (uint160) {
require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*
* _Available since v4.7._
*/
function toUint152(uint256 value) internal pure returns (uint152) {
require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*
* _Available since v4.7._
*/
function toUint144(uint256 value) internal pure returns (uint144) {
require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*
* _Available since v4.7._
*/
function toUint136(uint256 value) internal pure returns (uint136) {
require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v2.5._
*/
function toUint128(uint256 value) internal pure returns (uint128) {
require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*
* _Available since v4.7._
*/
function toUint120(uint256 value) internal pure returns (uint120) {
require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*
* _Available since v4.7._
*/
function toUint112(uint256 value) internal pure returns (uint112) {
require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*
* _Available since v4.7._
*/
function toUint104(uint256 value) internal pure returns (uint104) {
require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*
* _Available since v4.2._
*/
function toUint96(uint256 value) internal pure returns (uint96) {
require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*
* _Available since v4.7._
*/
function toUint88(uint256 value) internal pure returns (uint88) {
require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*
* _Available since v4.7._
*/
function toUint80(uint256 value) internal pure returns (uint80) {
require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*
* _Available since v4.7._
*/
function toUint72(uint256 value) internal pure returns (uint72) {
require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v2.5._
*/
function toUint64(uint256 value) internal pure returns (uint64) {
require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*
* _Available since v4.7._
*/
function toUint56(uint256 value) internal pure returns (uint56) {
require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*
* _Available since v4.7._
*/
function toUint48(uint256 value) internal pure returns (uint48) {
require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*
* _Available since v4.7._
*/
function toUint40(uint256 value) internal pure returns (uint40) {
require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v2.5._
*/
function toUint32(uint256 value) internal pure returns (uint32) {
require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*
* _Available since v4.7._
*/
function toUint24(uint256 value) internal pure returns (uint24) {
require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v2.5._
*/
function toUint16(uint256 value) internal pure returns (uint16) {
require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*
* _Available since v2.5._
*/
function toUint8(uint256 value) internal pure returns (uint8) {
require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*
* _Available since v3.0._
*/
function toUint256(int256 value) internal pure returns (uint256) {
require(value >= 0, "SafeCast: value must be positive");
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*
* _Available since v4.7._
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
require(downcasted == value, "SafeCast: value doesn't fit in 248 bits");
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*
* _Available since v4.7._
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
require(downcasted == value, "SafeCast: value doesn't fit in 240 bits");
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*
* _Available since v4.7._
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
require(downcasted == value, "SafeCast: value doesn't fit in 232 bits");
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*
* _Available since v4.7._
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
require(downcasted == value, "SafeCast: value doesn't fit in 224 bits");
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*
* _Available since v4.7._
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
require(downcasted == value, "SafeCast: value doesn't fit in 216 bits");
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*
* _Available since v4.7._
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
require(downcasted == value, "SafeCast: value doesn't fit in 208 bits");
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*
* _Available since v4.7._
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
require(downcasted == value, "SafeCast: value doesn't fit in 200 bits");
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*
* _Available since v4.7._
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
require(downcasted == value, "SafeCast: value doesn't fit in 192 bits");
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*
* _Available since v4.7._
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
require(downcasted == value, "SafeCast: value doesn't fit in 184 bits");
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*
* _Available since v4.7._
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
require(downcasted == value, "SafeCast: value doesn't fit in 176 bits");
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*
* _Available since v4.7._
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
require(downcasted == value, "SafeCast: value doesn't fit in 168 bits");
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*
* _Available since v4.7._
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
require(downcasted == value, "SafeCast: value doesn't fit in 160 bits");
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*
* _Available since v4.7._
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
require(downcasted == value, "SafeCast: value doesn't fit in 152 bits");
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*
* _Available since v4.7._
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
require(downcasted == value, "SafeCast: value doesn't fit in 144 bits");
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*
* _Available since v4.7._
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
require(downcasted == value, "SafeCast: value doesn't fit in 136 bits");
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v3.1._
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
require(downcasted == value, "SafeCast: value doesn't fit in 128 bits");
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*
* _Available since v4.7._
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
require(downcasted == value, "SafeCast: value doesn't fit in 120 bits");
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*
* _Available since v4.7._
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
require(downcasted == value, "SafeCast: value doesn't fit in 112 bits");
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*
* _Available since v4.7._
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
require(downcasted == value, "SafeCast: value doesn't fit in 104 bits");
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*
* _Available since v4.7._
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
require(downcasted == value, "SafeCast: value doesn't fit in 96 bits");
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*
* _Available since v4.7._
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
require(downcasted == value, "SafeCast: value doesn't fit in 88 bits");
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*
* _Available since v4.7._
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
require(downcasted == value, "SafeCast: value doesn't fit in 80 bits");
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*
* _Available since v4.7._
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
require(downcasted == value, "SafeCast: value doesn't fit in 72 bits");
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v3.1._
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
require(downcasted == value, "SafeCast: value doesn't fit in 64 bits");
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*
* _Available since v4.7._
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
require(downcasted == value, "SafeCast: value doesn't fit in 56 bits");
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*
* _Available since v4.7._
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
require(downcasted == value, "SafeCast: value doesn't fit in 48 bits");
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*
* _Available since v4.7._
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
require(downcasted == value, "SafeCast: value doesn't fit in 40 bits");
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v3.1._
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
require(downcasted == value, "SafeCast: value doesn't fit in 32 bits");
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*
* _Available since v4.7._
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
require(downcasted == value, "SafeCast: value doesn't fit in 24 bits");
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v3.1._
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
require(downcasted == value, "SafeCast: value doesn't fit in 16 bits");
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*
* _Available since v3.1._
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
require(downcasted == value, "SafeCast: value doesn't fit in 8 bits");
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*
* _Available since v3.0._
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
return int256(value);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.17;
// libraries
import "@openzeppelin/contracts/utils/math/Math.sol";
// interfaces
import "../interfaces/ISmardexPair.sol";
library SmardexLibrary {
/// @notice amount of fees sent to LP, not in percent but in FEES_BASE
uint256 public constant FEES_LP = 5;
/// @notice amount of fees sent to the pool, not in percent but in FEES_BASE. if feeTo is null, sent to the LP
uint256 public constant FEES_POOL = 2;
/// @notice total amount of fees, not in percent but in FEES_BASE
uint256 public constant FEES_TOTAL = FEES_LP + FEES_POOL;
/// @notice base of the FEES
uint256 public constant FEES_BASE = 10000;
/// @notice ratio of quantity that is send to the user, after removing the fees, not in percent but in FEES_BASE
uint256 public constant REVERSE_FEES_TOTAL = FEES_BASE - FEES_TOTAL;
/// @notice precision for approxEq, not in percent but in APPROX_PRECISION_BASE
uint256 public constant APPROX_PRECISION = 1;
/// @notice base of the APPROX_PRECISION
uint256 public constant APPROX_PRECISION_BASE = 1_000_000;
/// @notice number of seconds to reset priceAverage
uint256 private constant MAX_BLOCK_DIFF_SECONDS = 300;
/**
* @notice check if 2 numbers are approximatively equal, using APPROX_PRECISION
* @param _x number to compare
* @param _y number to compare
* @return true if numbers are approximatively equal, false otherwise
*/
function approxEq(uint256 _x, uint256 _y) internal pure returns (bool) {
if (_x > _y) {
return _x < (_y + (_y * APPROX_PRECISION) / APPROX_PRECISION_BASE);
} else {
return _y < (_x + (_x * APPROX_PRECISION) / APPROX_PRECISION_BASE);
}
}
/**
* @notice check if 2 ratio are approximatively equal: _xNum _/ xDen ~= _yNum / _yDen
* @param _xNum numerator of the first ratio to compare
* @param _xDen denominator of the first ratio to compare
* @param _yNum numerator of the second ratio to compare
* @param _yDen denominator of the second ratio to compare
* @return true if ratio are approximatively equal, false otherwise
*/
function ratioApproxEq(uint256 _xNum, uint256 _xDen, uint256 _yNum, uint256 _yDen) internal pure returns (bool) {
return approxEq(_xNum * _yDen, _xDen * _yNum);
}
/**
* @notice update priceAverage given old timestamp, new timestamp and prices
* @param _fictiveReserveIn ratio component of the new price of the in-token
* @param _fictiveReserveOut ratio component of the new price of the out-token
* @param _priceAverageLastTimestamp timestamp of the last priceAvregae update (0, if never updated)
* @param _priceAverageIn ratio component of the last priceAverage of the in-token
* @param _priceAverageOut ratio component of the last priceAverage of the out-token
* @param _currentTimestamp timestamp of the priceAverage to update
* @return newPriceAverageIn_ ratio component of the updated priceAverage of the in-token
* @return newPriceAverageOut_ ratio component of the updated priceAverage of the out-token
*/
function getUpdatedPriceAverage(
uint256 _fictiveReserveIn,
uint256 _fictiveReserveOut,
uint256 _priceAverageLastTimestamp,
uint256 _priceAverageIn,
uint256 _priceAverageOut,
uint256 _currentTimestamp
) internal pure returns (uint256 newPriceAverageIn_, uint256 newPriceAverageOut_) {
require(_currentTimestamp >= _priceAverageLastTimestamp, "SmardexPair: INVALID_TIMESTAMP");
// very first time
if (_priceAverageLastTimestamp == 0) {
newPriceAverageIn_ = _fictiveReserveIn;
newPriceAverageOut_ = _fictiveReserveOut;
}
// another tx has been done in the same block
else if (_priceAverageLastTimestamp == _currentTimestamp) {
newPriceAverageIn_ = _priceAverageIn;
newPriceAverageOut_ = _priceAverageOut;
}
// need to compute new linear-average price
else {
// compute new price:
uint256 _timeDiff = Math.min(_currentTimestamp - _priceAverageLastTimestamp, MAX_BLOCK_DIFF_SECONDS);
newPriceAverageIn_ = _fictiveReserveIn;
newPriceAverageOut_ =
(((MAX_BLOCK_DIFF_SECONDS - _timeDiff) * _priceAverageOut * newPriceAverageIn_) /
_priceAverageIn +
_timeDiff *
_fictiveReserveOut) /
MAX_BLOCK_DIFF_SECONDS;
}
}
/**
* @notice compute the firstTradeAmountIn so that the price reach the price Average
* @param _amountIn the amountIn requested, it's the maximum possible value for firstAmountIn_
* @param _fictiveReserveIn fictive reserve of the in-token
* @param _fictiveReserveOut fictive reserve of the out-token
* @param _priceAverageIn ratio component of the priceAverage of the in-token
* @param _priceAverageOut ratio component of the priceAverage of the out-token
* @return firstAmountIn_ the first amount of in-token
*
* @dev if the trade is going in the direction that the price will never reach the priceAverage, or if _amountIn
* is not big enough to reach the priceAverage or if the price is already equal to the priceAverage, then
* firstAmountIn_ will be set to _amountIn
*/
function computeFirstTradeQtyIn(
uint256 _amountIn,
uint256 _fictiveReserveIn,
uint256 _fictiveReserveOut,
uint256 _priceAverageIn,
uint256 _priceAverageOut
) internal pure returns (uint256 firstAmountIn_) {
// default value
firstAmountIn_ = _amountIn;
// if trade is in the good direction
if (_fictiveReserveOut * _priceAverageIn > _fictiveReserveIn * _priceAverageOut) {
// pre-compute all operands
uint256 _toSub = _fictiveReserveIn * (FEES_BASE + REVERSE_FEES_TOTAL - FEES_POOL);
uint256 _toDiv = (REVERSE_FEES_TOTAL + FEES_LP) << 1;
uint256 _inSqrt = (((_fictiveReserveIn * _fictiveReserveOut) << 2) / _priceAverageOut) *
_priceAverageIn *
(REVERSE_FEES_TOTAL * (FEES_BASE - FEES_POOL)) +
(_fictiveReserveIn * _fictiveReserveIn * (FEES_LP * FEES_LP));
// reverse sqrt check to only compute sqrt if really needed
if (_inSqrt < (_toSub + _amountIn * _toDiv) ** 2) {
firstAmountIn_ = (Math.sqrt(_inSqrt) - _toSub) / _toDiv;
}
}
}
/**
* @notice compute the firstTradeAmountOut so that the price reach the price Average
* @param _amountOut the amountOut requested, it's the maximum possible value for firstAmountOut_
* @param _fictiveReserveIn fictive reserve of the in-token
* @param _fictiveReserveOut fictive reserve of the out-token
* @param _priceAverageIn ratio component of the priceAverage of the in-token
* @param _priceAverageOut ratio component of the priceAverage of the out-token
* @return firstAmountOut_ the first amount of out-token
*
* @dev if the trade is going in the direction that the price will never reach the priceAverage, or if _amountOut
* is not big enough to reach the priceAverage or if the price is already equal to the priceAverage, then
* firstAmountOut_ will be set to _amountOut
*/
function computeFirstTradeQtyOut(
uint256 _amountOut,
uint256 _fictiveReserveIn,
uint256 _fictiveReserveOut,
uint256 _priceAverageIn,
uint256 _priceAverageOut
) internal pure returns (uint256 firstAmountOut_) {
// default value
firstAmountOut_ = _amountOut;
// if trade is in the good direction
if (_fictiveReserveOut * _priceAverageIn > _fictiveReserveIn * _priceAverageOut) {
// pre-compute all operands
uint256 _fictiveReserveOutPredFees = (_fictiveReserveIn * FEES_LP * _priceAverageOut) / _priceAverageIn;
uint256 _toAdd = ((_fictiveReserveOut * REVERSE_FEES_TOTAL) << 1) + _fictiveReserveOutPredFees;
uint256 _toDiv = REVERSE_FEES_TOTAL << 1;
uint256 _inSqrt = (((_fictiveReserveOut * _fictiveReserveOutPredFees) << 2) *
(REVERSE_FEES_TOTAL * (FEES_BASE - FEES_POOL))) /
FEES_LP +
_fictiveReserveOutPredFees *
_fictiveReserveOutPredFees;
// reverse sqrt check to only compute sqrt if really needed
if (_inSqrt > (_toAdd - _amountOut * _toDiv) ** 2) {
firstAmountOut_ = (_toAdd - Math.sqrt(_inSqrt)) / _toDiv;
}
}
}
/**
* @notice compute fictive reserves
* @param _reserveIn reserve of the in-token
* @param _reserveOut reserve of the out-token
* @param _fictiveReserveIn fictive reserve of the in-token
* @param _fictiveReserveOut fictive reserve of the out-token
* @return newFictiveReserveIn_ new fictive reserve of the in-token
* @return newFictiveReserveOut_ new fictive reserve of the out-token
*/
function computeFictiveReserves(
uint256 _reserveIn,
uint256 _reserveOut,
uint256 _fictiveReserveIn,
uint256 _fictiveReserveOut
) internal pure returns (uint256 newFictiveReserveIn_, uint256 newFictiveReserveOut_) {
if (_reserveOut * _fictiveReserveIn < _reserveIn * _fictiveReserveOut) {
uint256 _temp = (((_reserveOut * _reserveOut) / _fictiveReserveOut) * _fictiveReserveIn) / _reserveIn;
newFictiveReserveIn_ =
(_temp * _fictiveReserveIn) /
_fictiveReserveOut +
(_reserveOut * _fictiveReserveIn) /
_fictiveReserveOut;
newFictiveReserveOut_ = _reserveOut + _temp;
} else {
newFictiveReserveIn_ = (_fictiveReserveIn * _reserveOut) / _fictiveReserveOut + _reserveIn;
newFictiveReserveOut_ = (_reserveIn * _fictiveReserveOut) / _fictiveReserveIn + _reserveOut;
}
// div all values by 4
newFictiveReserveIn_ >>= 2;
newFictiveReserveOut_ >>= 2;
}
/**
* @notice apply k const rule using fictive reserve, when the amountIn is specified
* @param _amountIn qty of token that arrives in the contract
* @param _reserveIn reserve of the in-token
* @param _reserveOut reserve of the out-token
* @param _fictiveReserveIn fictive reserve of the in-token
* @param _fictiveReserveOut fictive reserve of the out-token
* @return amountOut_ qty of token that leaves in the contract
* @return newReserveIn_ new reserve of the in-token after the transaction
* @return newReserveOut_ new reserve of the out-token after the transaction
* @return newFictiveReserveIn_ new fictive reserve of the in-token after the transaction
* @return newFictiveReserveOut_ new fictive reserve of the out-token after the transaction
*/
function applyKConstRuleOut(
uint256 _amountIn,
uint256 _reserveIn,
uint256 _reserveOut,
uint256 _fictiveReserveIn,
uint256 _fictiveReserveOut
)
internal
pure
returns (
uint256 amountOut_,
uint256 newReserveIn_,
uint256 newReserveOut_,
uint256 newFictiveReserveIn_,
uint256 newFictiveReserveOut_
)
{
// k const rule
uint256 _amountInWithFee = _amountIn * REVERSE_FEES_TOTAL;
uint256 _numerator = _amountInWithFee * _fictiveReserveOut;
uint256 _denominator = _fictiveReserveIn * FEES_BASE + _amountInWithFee;
amountOut_ = _numerator / _denominator;
// update new reserves and add lp-fees to pools
uint256 _amountInWithFeeLp = (_amountInWithFee + (_amountIn * FEES_LP)) / FEES_BASE;
newReserveIn_ = _reserveIn + _amountInWithFeeLp;
newFictiveReserveIn_ = _fictiveReserveIn + _amountInWithFeeLp;
newReserveOut_ = _reserveOut - amountOut_;
newFictiveReserveOut_ = _fictiveReserveOut - amountOut_;
}
/**
* @notice apply k const rule using fictive reserve, when the amountOut is specified
* @param _amountOut qty of token that leaves in the contract
* @param _reserveIn reserve of the in-token
* @param _reserveOut reserve of the out-token
* @param _fictiveReserveIn fictive reserve of the in-token
* @param _fictiveReserveOut fictive reserve of the out-token
* @return amountIn_ qty of token that arrives in the contract
* @return newReserveIn_ new reserve of the in-token after the transaction
* @return newReserveOut_ new reserve of the out-token after the transaction
* @return newFictiveReserveIn_ new fictive reserve of the in-token after the transaction
* @return newFictiveReserveOut_ new fictive reserve of the out-token after the transaction
*/
function applyKConstRuleIn(
uint256 _amountOut,
uint256 _reserveIn,
uint256 _reserveOut,
uint256 _fictiveReserveIn,
uint256 _fictiveReserveOut
)
internal
pure
returns (
uint256 amountIn_,
uint256 newReserveIn_,
uint256 newReserveOut_,
uint256 newFictiveReserveIn_,
uint256 newFictiveReserveOut_
)
{
// k const rule
uint256 _numerator = _fictiveReserveIn * _amountOut * FEES_BASE;
uint256 _denominator = (_fictiveReserveOut - _amountOut) * REVERSE_FEES_TOTAL;
amountIn_ = _numerator / _denominator + 1;
// update new reserves
uint256 _amountInWithFeeLp = (amountIn_ * (REVERSE_FEES_TOTAL + FEES_LP)) / FEES_BASE;
newReserveIn_ = _reserveIn + _amountInWithFeeLp;
newFictiveReserveIn_ = _fictiveReserveIn + _amountInWithFeeLp;
newReserveOut_ = _reserveOut - _amountOut;
newFictiveReserveOut_ = _fictiveReserveOut - _amountOut;
}
/**
* @notice return the amount of tokens the user would get by doing a swap
* @param _amountIn quantity of token the user want to swap (to sell)
* @param _reserveIn reserves of the selling token (getReserve())
* @param _reserveOut reserves of the buying token (getReserve())
* @param _fictiveReserveIn fictive reserve of the selling token (getFictiveReserves())
* @param _fictiveReserveOut fictive reserve of the buying token (getFictiveReserves())
* @param _priceAverageIn price average of the selling token
* @param _priceAverageOut price average of the buying token
* @return amountOut_ The amount of token the user would receive
* @return newReserveIn_ reserves of the selling token after the swap
* @return newReserveOut_ reserves of the buying token after the swap
* @return newFictiveReserveIn_ fictive reserve of the selling token after the swap
* @return newFictiveReserveOut_ fictive reserve of the buying token after the swap
*/
function getAmountOut(
uint256 _amountIn,
uint256 _reserveIn,
uint256 _reserveOut,
uint256 _fictiveReserveIn,
uint256 _fictiveReserveOut,
uint256 _priceAverageIn,
uint256 _priceAverageOut
)
internal
pure
returns (
uint256 amountOut_,
uint256 newReserveIn_,
uint256 newReserveOut_,
uint256 newFictiveReserveIn_,
uint256 newFictiveReserveOut_
)
{
require(_amountIn > 0, "SmarDexLibrary: INSUFFICIENT_INPUT_AMOUNT");
require(
_reserveIn > 0 && _reserveOut > 0 && _fictiveReserveIn > 0 && _fictiveReserveOut > 0,
"SmarDexLibrary: INSUFFICIENT_LIQUIDITY"
);
uint256 _amountInWithFees = (_amountIn * REVERSE_FEES_TOTAL) / FEES_BASE;
uint256 _firstAmountIn = computeFirstTradeQtyIn(
_amountInWithFees,
_fictiveReserveIn,
_fictiveReserveOut,
_priceAverageIn,
_priceAverageOut
);
// if there is 2 trade: 1st trade mustn't re-compute fictive reserves, 2nd should
if (
_firstAmountIn == _amountInWithFees &&
ratioApproxEq(_fictiveReserveIn, _fictiveReserveOut, _priceAverageIn, _priceAverageOut)
) {
(_fictiveReserveIn, _fictiveReserveOut) = computeFictiveReserves(
_reserveIn,
_reserveOut,
_fictiveReserveIn,
_fictiveReserveOut
);
}
// avoid stack too deep
{
uint256 _firstAmountInNoFees = (_firstAmountIn * FEES_BASE) / REVERSE_FEES_TOTAL;
(
amountOut_,
newReserveIn_,
newReserveOut_,
newFictiveReserveIn_,
newFictiveReserveOut_
) = applyKConstRuleOut(
_firstAmountInNoFees,
_reserveIn,
_reserveOut,
_fictiveReserveIn,
_fictiveReserveOut
);
// update amountIn in case there is a second trade
_amountIn -= _firstAmountInNoFees;
}
// if we need a second trade
if (_firstAmountIn < _amountInWithFees) {
// in the second trade ALWAYS recompute fictive reserves
(newFictiveReserveIn_, newFictiveReserveOut_) = computeFictiveReserves(
newReserveIn_,
newReserveOut_,
newFictiveReserveIn_,
newFictiveReserveOut_
);
uint256 _secondAmountOutNoFees;
(
_secondAmountOutNoFees,
newReserveIn_,
newReserveOut_,
newFictiveReserveIn_,
newFictiveReserveOut_
) = applyKConstRuleOut(
_amountIn,
newReserveIn_,
newReserveOut_,
newFictiveReserveIn_,
newFictiveReserveOut_
);
amountOut_ += _secondAmountOutNoFees;
}
}
/**
* @notice return the amount of tokens the user should spend by doing a swap
* @param _amountOut quantity of token the user want to swap (to buy)
* @param _reserveIn reserves of the selling token (getReserve())
* @param _reserveOut reserves of the buying token (getReserve())
* @param _fictiveReserveIn fictive reserve of the selling token (getFictiveReserves())
* @param _fictiveReserveOut fictive reserve of the buying token (getFictiveReserves())
* @param _priceAverageIn price average of the selling token
* @param _priceAverageOut price average of the buying token
* @return amountIn_ The amount of token the user would spend to receive _amountOut
* @return newReserveIn_ reserves of the selling token after the swap
* @return newReserveOut_ reserves of the buying token after the swap
* @return newFictiveReserveIn_ fictive reserve of the selling token after the swap
* @return newFictiveReserveOut_ fictive reserve of the buying token after the swap
*/
function getAmountIn(
uint256 _amountOut,
uint256 _reserveIn,
uint256 _reserveOut,
uint256 _fictiveReserveIn,
uint256 _fictiveReserveOut,
uint256 _priceAverageIn,
uint256 _priceAverageOut
)
internal
pure
returns (
uint256 amountIn_,
uint256 newReserveIn_,
uint256 newReserveOut_,
uint256 newFictiveReserveIn_,
uint256 newFictiveReserveOut_
)
{
require(_amountOut > 0, "SmarDexLibrary: INSUFFICIENT_OUTPUT_AMOUNT");
require(
_amountOut < _fictiveReserveOut &&
_reserveIn > 0 &&
_reserveOut > 0 &&
_fictiveReserveIn > 0 &&
_fictiveReserveOut > 0,
"SmarDexLibrary: INSUFFICIENT_LIQUIDITY"
);
uint256 _firstAmountOut = computeFirstTradeQtyOut(
_amountOut,
_fictiveReserveIn,
_fictiveReserveOut,
_priceAverageIn,
_priceAverageOut
);
// if there is 2 trade: 1st trade mustn't re-compute fictive reserves, 2nd should
if (
_firstAmountOut == _amountOut &&
ratioApproxEq(_fictiveReserveIn, _fictiveReserveOut, _priceAverageIn, _priceAverageOut)
) {
(_fictiveReserveIn, _fictiveReserveOut) = computeFictiveReserves(
_reserveIn,
_reserveOut,
_fictiveReserveIn,
_fictiveReserveOut
);
}
(amountIn_, newReserveIn_, newReserveOut_, newFictiveReserveIn_, newFictiveReserveOut_) = applyKConstRuleIn(
_firstAmountOut,
_reserveIn,
_reserveOut,
_fictiveReserveIn,
_fictiveReserveOut
);
// if we need a second trade
if (_firstAmountOut < _amountOut) {
// in the second trade ALWAYS recompute fictive reserves
(newFictiveReserveIn_, newFictiveReserveOut_) = computeFictiveReserves(
newReserveIn_,
newReserveOut_,
newFictiveReserveIn_,
newFictiveReserveOut_
);
uint256 _secondAmountIn;
(
_secondAmountIn,
newReserveIn_,
newReserveOut_,
newFictiveReserveIn_,
newFictiveReserveOut_
) = applyKConstRuleIn(
_amountOut - _firstAmountOut,
newReserveIn_,
newReserveOut_,
newFictiveReserveIn_,
newFictiveReserveOut_
);
amountIn_ += _secondAmountIn;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
{
"compilationTarget": {
"contracts/rewards/AutoSwapper.sol": "AutoSwapper"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "none",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 999999
},
"remappings": []
}
[{"inputs":[{"internalType":"contract ISmardexFactory","name":"_factory","type":"address"},{"internalType":"contract IERC20","name":"_smardexToken","type":"address"},{"internalType":"address","name":"_stakingAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"contract IERC20","name":"_token0","type":"address"},{"internalType":"contract IERC20","name":"_token1","type":"address"}],"name":"executeWork","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"contract ISmardexFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"int256","name":"_amount0Delta","type":"int256"},{"internalType":"int256","name":"_amount1Delta","type":"int256"},{"internalType":"bytes","name":"_dataFromPair","type":"bytes"}],"name":"smardexSwapCallback","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"smardexToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakingAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"transferTokens","outputs":[],"stateMutability":"nonpayable","type":"function"}]