// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
mapping(bytes32 role => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual returns (bool) {
return _roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessControlBadConfirmation();
}
_revokeRole(role, callerConfirmation);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
if (!hasRole(role, account)) {
_roles[role].hasRole[account] = true;
emit RoleGranted(role, account, _msgSender());
return true;
} else {
return false;
}
}
/**
* @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
if (hasRole(role, account)) {
_roles[role].hasRole[account] = false;
emit RoleRevoked(role, account, _msgSender());
return true;
} else {
return false;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)
pragma solidity ^0.8.20;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev The `account` is missing a role.
*/
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
/**
* @dev The caller of a function is not the expected one.
*
* NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
*/
error AccessControlBadConfirmation();
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*/
function renounceRole(bytes32 role, address callerConfirmation) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
interface ISale {
/// The $CTND token
function token() external view returns (address);
/// The $USDC token
function paymentToken() external view returns (address);
/// How many $CTND will be received for the given payment amount
function paymentTokenToToken(
uint256 _paymentAmount
) external view returns (uint256);
/// How many $USDC will be received for the given $CTND amount
function tokenToPaymentToken(
uint256 _tokenAmount
) external view returns (uint256);
/// Commits an amount of $USDC to buy $CTND
///
/// @dev USDC allowance must be previously set by spender
/// @dev Actual $CTND allocation is only available once individual cap is set
///
/// @param _paymentAmount amount in payment token to commit
function buy(
uint256 _paymentAmount,
bytes32[] calldata _merkleProof
) external;
/**
* Refunds currently refundable amount for the given address
*
* @param to Address to refund to
*/
function refund(address to) external;
/**
* Returns the amount of tokens that are meant for refund due to the
* rising tide mechanism
*
* @param to The address to query
* @return The currently claimable amount
*/
function refundAmount(address to) external view returns (uint256);
/**
* Sets the individual cap for investors, which will then be used when
* claiming or refunding. Only callable by the cap validator role.
*
* @param cap The cap per investor to be set, specified in $CTND
*/
function setIndividualCap(uint256 cap) external;
/**
* Returns the amount of tokens that have been allocated in this sale for
* a given address (applying the individual cap)
*
* @param _who The address to query
*/
function allocation(address _who) external view returns (uint256);
/**
* Returns the amount of tokens that have been allocated in this sale for
* a given address (ignoring the individual cap)
*
* @param _who The address to query
*/
function uncappedAllocation(address _who) external view returns (uint256);
/**
* Allows a privileged account to withdraw payment tokens once the sale is over
*
* @notice Does not allow withdrawing funds meant for refunds
*/
function withdraw() external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
library Math {
/**
* @dev Return the smallest of the two arguments.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Return the largest of the two arguments.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return b < a ? a : b;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.20;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Sorts the pair (a, b) and hashes the result.
*/
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import {Math} from "../libraries/Math.sol";
/**
* Abstract implementation of a Rising Tide Calculator
*
* @dev In addition to implementing this interface, the contract must also
* ensure no investments are possible once the Rising Tide calculation kicks in
*/
abstract contract RisingTide {
//
// Libraries
//
using Math for uint256;
//
// Structs
//
enum RisingTideState {
NotSet, // cap not yet given, or invalid
Validating, // cap has been given, but still being validated
Finished, // cap is set. claims and refunds are open
Invalid // the current cap was deemed invalid
}
struct RisingTideCache {
uint256 index; // what index are we at
uint256 sumForCap; // cumulative investments with given cap
uint256 sumForNextCap; // cumulative investments with next cap
uint256 largest; // largest investment so far
}
//
// Constants
//
/// Min gas required to run one more cap validation iteration
uint256 public constant CAP_VALIDATION_GAS_LIMIT = 100000;
//
// State
//
/// Current state
RisingTideState public risingTideState;
/// Calculation cache
RisingTideCache public risingTideCache;
/// The currently set cap
/// Maximum amount of tokens that each buyer can actually get
uint256 public individualCap;
//
// Virtual Interface
//
/// @return How many individual investors exist
function investorCount() public view virtual returns (uint256);
/// @return Amount of the nth investor
function investorAmountAt(uint256 n) public view virtual returns (uint256);
/// How many allocations have been made, regardless of the future individual cap
///
/// @return Total amount invested
function risingTide_totalAllocatedUncapped()
public
view
virtual
returns (uint256);
/// How many tokens are to be distributed in total
///
/// @return amount corresponding to the total supply available for distribution
function risingTide_totalCap() public view virtual returns (uint256);
/// @return true if validation of current cap is still ongoing
function risingTide_validating() external view returns (bool) {
return risingTideState == RisingTideState.Validating;
}
/// @return true if current cap is already validated
function risingTide_isValidCap() public view returns (bool) {
return risingTideState == RisingTideState.Finished;
}
/// Internal helper to set a new cap and trigger the beginning of the validation logic
///
/// @param _cap The cap to validate
function _risingTide_setCap(uint256 _cap) internal {
require(
risingTideState == RisingTideState.NotSet ||
risingTideState == RisingTideState.Invalid,
"already set or in progress"
);
individualCap = _cap;
risingTideState = RisingTideState.Validating;
risingTideCache = RisingTideCache(0, 0, 0, 0);
risingTide_validate();
}
/// Continues a pending validation of the individual cap
function risingTide_validate() public {
require(risingTideState == RisingTideState.Validating);
RisingTideCache memory validation = risingTideCache;
uint256 count = investorCount();
uint256 localCap = individualCap;
for (
;
validation.index < count && gasleft() > CAP_VALIDATION_GAS_LIMIT;
++validation.index
) {
uint256 amount = investorAmountAt(validation.index);
validation.sumForCap += amount.min(localCap);
validation.sumForNextCap += amount.min(localCap + 1);
validation.largest = Math.max(validation.largest, amount);
}
risingTideCache = validation;
if (validation.index == count) {
bool _valid = _risingTide_validCap(localCap, validation);
if (_valid) {
risingTideState = RisingTideState.Finished;
} else {
risingTideState = RisingTideState.Invalid;
}
}
}
/**
* Applies the individual cap to the given amount
*
* @param _amount amount to apply cap to
* @return capped amount
*/
function risingTide_applyCap(
uint256 _amount
) public view returns (uint256) {
if (!risingTide_isValidCap()) {
return 0;
}
if (_amount >= individualCap) {
return individualCap;
}
return _amount;
}
//
// Internal API
//
/// @dev Determine if the given rising tide cap is valid.
///
/// If the maximum investment is not reached, the rising tide cap does not
/// have an upper bound. In this scenario, the cap is conventioned to be the
/// largest individual investment.
///
/// If the maximum investment is reached, the rising tide cap is defined as
/// the highest possible cap such that the sum of all contributions with the
/// cap applied does not exceed the maximum investment. This means that the
/// sum of all contirbutions with any cap above the rising tide cap applied
/// would exceed the maximum investment limit.
///
/// @param _cap Rising tide cap to be validated, in wei.
/// @param _validation The calculated CapValidation struct
///
/// @return true if `cap` is a valid rising tide cap for the given parameters.
function _risingTide_validCap(
uint256 _cap,
RisingTideCache memory _validation
) internal view returns (bool) {
uint256 total = risingTide_totalAllocatedUncapped();
uint256 max = risingTide_totalCap();
require(_validation.largest <= total);
require(_validation.sumForCap <= total);
require(_validation.sumForNextCap <= total);
if (total <= max) {
return _cap == _validation.largest;
} else {
return (_validation.sumForNextCap > max &&
_validation.sumForCap <= max);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
import {ERC165} from "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {MerkleProof} from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import {ISale} from "./ISale.sol";
import {RisingTide} from "../RisingTide/RisingTide.sol";
import {Math} from "../libraries/Math.sol";
/// Users interact with this contract to deposit $USDC in exchange for $CTND.
/// The contract should hold all $CTND tokens meant to be distributed in the public sale
contract Sale is ISale, RisingTide, ERC165, AccessControl, ReentrancyGuard {
using SafeERC20 for IERC20;
using Math for uint256;
struct Account {
uint256 uncappedAllocation;
bool refunded;
}
//
// Constants
//
bytes32 public constant CAP_VALIDATOR_ROLE =
keccak256("CAP_VALIDATOR_ROLE");
// multiplier used for rate conversions
uint256 constant MUL = 1 ether;
//
// Events
//
/// Emitted for every public purchase
event Purchase(
address indexed from,
uint256 paymentTokenAmount,
uint256 tokenAmount
);
/// Emitted for every claim
event Claim(address indexed to, uint256 tokenAmount);
/// Emitted for every refund given
event Refund(address indexed to, uint256 paymentTokenAmount);
/// Emitted every time someone withdraws their funds
event Withdraw(address indexed to, uint256 paymentTokenAmount);
//
// State
//
/// See {ISale.token}
address public override(ISale) token;
/// See {ISale.paymentToken}
address public immutable override(ISale) paymentToken;
/// Fixed price of token, expressed in paymentToken amount
uint256 public immutable rate;
/// Fixed minimum price of token, expressed in paymentToken amount
uint256 public immutable minPrice;
/// Fixed maximum price of token, expressed in paymentToken amount
uint256 public immutable maxPrice;
/// Minimum amount per contribution, expressed in paymentToken amount
uint256 public minContribution;
/// Maximum amount per contribution, expressed in paymentToken amount
uint256 public maxContribution;
/// Timestamp at which sale starts
uint256 public start;
/// Timestamp at which sale ends
uint256 public end;
/// Timestamp at which registration period starts
uint256 public startRegistration;
/// Timestamp at which registration period ends
uint256 public endRegistration;
/// Total tokens available for sale
uint256 public immutable totalTokensForSale;
/// Minimum amount to be raised
uint256 public minTarget;
/// Maximum amount to be raised
uint256 public maxTarget;
/// Token allocations committed by each buyer
mapping(address => Account) accounts;
/// incrementing index => investor address
mapping(uint256 => address) investorByIndex;
/// total unique investors
uint256 _investorCount;
/// How many tokens have been allocated, before cap calculation
uint256 public totalUncappedAllocations;
/// Did the admins already withdraw all aUSD from sales
bool public withdrawn;
// Merkle root for contributions validation
bytes32 public merkleRoot;
error MaxContributorsReached();
error InvalidLeaf();
/// @param _paymentToken Token accepted as payment
/// @param _rate token:paymentToken exchange rate, multiplied by 10e18
/// @param _start Start timestamp
/// @param _end End timestamp
/// @param _totalTokensForSale Total amount of tokens for sale
/// @param _minTarget Minimum target for the sale
/// @param _maxTarget Maximum target for the sale
/// @param _startRegistration Registration period start timestamp
/// @param _endRegistration Registration period end timestamp
constructor(
address _paymentToken,
uint256 _rate,
uint256 _start,
uint256 _end,
uint256 _totalTokensForSale,
uint256 _minTarget,
uint256 _maxTarget,
uint256 _startRegistration,
uint256 _endRegistration
) {
require(_paymentToken != address(0), "can't be zero");
require(_rate > 0, "can't be zero");
require(_start > 0, "can't be zero");
require(_end > _start, "end must be after start");
require(_totalTokensForSale > 0, "total cannot be 0");
require(_minTarget > 0, "_minTarget cannot be 0");
require(
_maxTarget > _minTarget,
"_maxTarget cannot be lower than _minTarget"
);
require(
_endRegistration > _startRegistration,
"_endRegistration cannot be lower than _startRegistration"
);
paymentToken = _paymentToken;
rate = _rate;
start = _start;
end = _end;
totalTokensForSale = _totalTokensForSale;
minTarget = _minTarget;
maxTarget = _maxTarget;
startRegistration = _startRegistration;
endRegistration = _endRegistration;
minPrice = 0.2 * 1e6;
maxPrice = 0.4 * 1e6;
_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
_grantRole(CAP_VALIDATOR_ROLE, msg.sender);
}
modifier beforeSale() {
require(block.timestamp <= start, "sale active");
_;
}
/// Ensures we're running during the set sale period
modifier inSale() {
require(
block.timestamp >= start && block.timestamp <= end,
"sale not active"
);
_;
}
modifier afterSale() {
require(block.timestamp > end, "sale not over");
_;
}
/// Ensures the individual cap is already calculated
modifier capCalculated() {
require(risingTide_isValidCap(), "cap not yet set");
_;
}
//
// ISale
//
/// @inheritdoc ISale
function withdraw()
external
onlyRole(DEFAULT_ADMIN_ROLE)
capCalculated
nonReentrant
{
require(block.timestamp > end, "sale not ended yet");
require(!withdrawn, "already withdrawn");
withdrawn = true;
uint256 allocatedAmount = allocated();
uint256 paymentTokenAmount = tokenToPaymentToken(allocatedAmount);
emit Withdraw(msg.sender, paymentTokenAmount);
IERC20(paymentToken).transfer(msg.sender, paymentTokenAmount);
}
/// @inheritdoc ISale
function paymentTokenToToken(
uint256 _paymentAmount
) public view override(ISale) returns (uint256) {
return (_paymentAmount * MUL) / rate;
}
/// @inheritdoc ISale
function tokenToPaymentToken(
uint256 _tokenAmount
) public view override(ISale) returns (uint256) {
return (_tokenAmount * rate) / MUL;
}
/// @inheritdoc ISale
function buy(
uint256 _amount,
bytes32[] calldata _merkleProof
) external override(ISale) inSale nonReentrant {
if (_investorCount >= maxTarget / minContribution)
revert MaxContributorsReached();
bytes32 leaf = keccak256(abi.encodePacked(msg.sender));
bool isValidLeaf = MerkleProof.verify(_merkleProof, merkleRoot, leaf);
if (!isValidLeaf) revert InvalidLeaf();
require(
_amount >= paymentTokenToToken(minContribution),
"can't be below minimum"
);
uint256 paymentAmount = tokenToPaymentToken(_amount);
require(paymentAmount > 0, "can't be zero");
uint256 currentAllocation = accounts[msg.sender].uncappedAllocation;
if (currentAllocation == 0) {
investorByIndex[_investorCount] = msg.sender;
_investorCount++;
}
accounts[msg.sender].uncappedAllocation += _amount;
totalUncappedAllocations += _amount;
emit Purchase(msg.sender, paymentAmount, _amount);
IERC20(paymentToken).safeTransferFrom(
msg.sender,
address(this),
paymentAmount
);
}
/// @inheritdoc ISale
function refund(
address to
) public override(ISale) capCalculated nonReentrant {
Account storage account = accounts[to];
require(!account.refunded, "already refunded");
uint256 amount = refundAmount(to);
require(amount > 0, "No tokens to refund");
accounts[to].refunded = true;
IERC20(paymentToken).transfer(to, amount);
emit Refund(to, amount);
}
/// @inheritdoc ISale
function refundAmount(
address to
) public view override(ISale) returns (uint256) {
if (!risingTide_isValidCap()) {
return 0;
}
Account memory account = accounts[to];
if (account.refunded) {
return 0;
}
uint256 uncapped = account.uncappedAllocation;
uint256 capped = allocation(to);
return tokenToPaymentToken(uncapped - capped);
}
function uncappedAllocation(
address _to
) public view override(ISale) returns (uint256) {
return accounts[_to].uncappedAllocation;
}
/// @inheritdoc ISale
function allocation(
address _to
) public view override(ISale) returns (uint256) {
if (tokenToPaymentToken(totalUncappedAllocations) < minTarget) {
return 0;
}
if (tokenToPaymentToken(totalUncappedAllocations) > maxTarget) {
return _applyCap(uncappedAllocation(_to));
}
return
(tokenToPaymentToken(uncappedAllocation(_to)) /
currentTokenPrice()) * MUL;
}
function currentTokenPrice() public view returns (uint256) {
if (tokenToPaymentToken(totalUncappedAllocations) < minTarget) {
return minPrice;
}
if (tokenToPaymentToken(totalUncappedAllocations) > maxTarget) {
return maxPrice;
}
return
minPrice +
((maxPrice - minPrice) *
(tokenToPaymentToken(totalUncappedAllocations) - minTarget)) /
(maxTarget - minTarget);
}
//
// RisingTide
//
/// @inheritdoc RisingTide
function investorCount()
public
view
override(RisingTide)
returns (uint256)
{
return _investorCount;
}
/// @inheritdoc RisingTide
function investorAmountAt(
uint256 i
) public view override(RisingTide) returns (uint256) {
address addr = investorByIndex[i];
Account storage account = accounts[addr];
return account.uncappedAllocation;
}
/// @inheritdoc RisingTide
function risingTide_totalAllocatedUncapped()
public
view
override(RisingTide)
returns (uint256)
{
return totalUncappedAllocations;
}
/// @inheritdoc RisingTide
function risingTide_totalCap()
public
view
override(RisingTide)
returns (uint256)
{
return totalTokensForSale;
}
//
// Admin API
//
function setToken(
address _token
) external onlyRole(DEFAULT_ADMIN_ROLE) beforeSale nonReentrant {
require(_token != address(0), "can't be zero");
token = _token;
}
function setMerkleRoot(
bytes32 _merkleRoot
) external onlyRole(DEFAULT_ADMIN_ROLE) nonReentrant {
merkleRoot = _merkleRoot;
}
function setStartRegistration(
uint256 _startRegistration
) external onlyRole(DEFAULT_ADMIN_ROLE) nonReentrant {
startRegistration = _startRegistration;
}
function setEndRegistration(
uint256 _endRegistration
) external onlyRole(DEFAULT_ADMIN_ROLE) nonReentrant {
endRegistration = _endRegistration;
}
function setStart(
uint256 _start
) external onlyRole(DEFAULT_ADMIN_ROLE) nonReentrant {
start = _start;
}
function setEnd(
uint256 _end
) external onlyRole(DEFAULT_ADMIN_ROLE) nonReentrant {
end = _end;
}
function setMinTarget(
uint256 _minTarget
) external onlyRole(DEFAULT_ADMIN_ROLE) beforeSale nonReentrant {
minTarget = _minTarget;
}
function setMaxTarget(
uint256 _maxTarget
) external onlyRole(DEFAULT_ADMIN_ROLE) beforeSale nonReentrant {
maxTarget = _maxTarget;
}
/// Sets the individual cap
/// @dev Can only be called once
///
/// @param _cap new individual cap
function setIndividualCap(
uint256 _cap
) external onlyRole(CAP_VALIDATOR_ROLE) afterSale nonReentrant {
_risingTide_setCap(_cap);
}
/// Sets the minimum contribution
/// @param _minContribution new minimum contribution
function setMinContribution(
uint256 _minContribution
) external onlyRole(DEFAULT_ADMIN_ROLE) nonReentrant {
require(_minContribution > 0, "can't be zero");
minContribution = _minContribution;
}
//
// ERC165
//
/// @inheritdoc ERC165
function supportsInterface(
bytes4 interfaceId
) public view virtual override(ERC165, AccessControl) returns (bool) {
return
interfaceId == type(ISale).interfaceId ||
super.supportsInterface(interfaceId);
}
//
// Other public APIs
//
/// @return the amount of tokens already allocated
function allocated() public view returns (uint256) {
return Math.min(totalUncappedAllocations, totalTokensForSale);
}
//
// Internal API
//
/**
* Applies the individual cap to the given amount
*
* @param _amount amount to apply cap to
* @return capped amount
*/
function _applyCap(uint256 _amount) internal view returns (uint256) {
if (!risingTide_isValidCap()) {
return 0;
}
if (_amount >= individualCap) {
return individualCap;
}
return _amount;
}
}
{
"compilationTarget": {
"contracts/token/Sale.sol": "Sale"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":@ensdomains/=node_modules/@ensdomains/",
":@openzeppelin/=node_modules/@openzeppelin/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":forge-std/=lib/forge-std/src/"
]
}
[{"inputs":[{"internalType":"address","name":"_paymentToken","type":"address"},{"internalType":"uint256","name":"_rate","type":"uint256"},{"internalType":"uint256","name":"_start","type":"uint256"},{"internalType":"uint256","name":"_end","type":"uint256"},{"internalType":"uint256","name":"_totalTokensForSale","type":"uint256"},{"internalType":"uint256","name":"_minTarget","type":"uint256"},{"internalType":"uint256","name":"_maxTarget","type":"uint256"},{"internalType":"uint256","name":"_startRegistration","type":"uint256"},{"internalType":"uint256","name":"_endRegistration","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"InvalidLeaf","type":"error"},{"inputs":[],"name":"MaxContributorsReached","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"Claim","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"paymentTokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"Purchase","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"paymentTokenAmount","type":"uint256"}],"name":"Refund","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"paymentTokenAmount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"CAP_VALIDATION_GAS_LIMIT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CAP_VALIDATOR_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"allocated","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"}],"name":"allocation","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bytes32[]","name":"_merkleProof","type":"bytes32[]"}],"name":"buy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"currentTokenPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"end","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"endRegistration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"individualCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"i","type":"uint256"}],"name":"investorAmountAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"investorCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxContribution","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxTarget","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"merkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minContribution","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minTarget","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paymentToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_paymentAmount","type":"uint256"}],"name":"paymentTokenToToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"refund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"refundAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"risingTideCache","outputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"sumForCap","type":"uint256"},{"internalType":"uint256","name":"sumForNextCap","type":"uint256"},{"internalType":"uint256","name":"largest","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"risingTideState","outputs":[{"internalType":"enum RisingTide.RisingTideState","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"risingTide_applyCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"risingTide_isValidCap","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"risingTide_totalAllocatedUncapped","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"risingTide_totalCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"risingTide_validate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"risingTide_validating","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_end","type":"uint256"}],"name":"setEnd","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_endRegistration","type":"uint256"}],"name":"setEndRegistration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_cap","type":"uint256"}],"name":"setIndividualCap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_maxTarget","type":"uint256"}],"name":"setMaxTarget","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"}],"name":"setMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_minContribution","type":"uint256"}],"name":"setMinContribution","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_minTarget","type":"uint256"}],"name":"setMinTarget","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_start","type":"uint256"}],"name":"setStart","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_startRegistration","type":"uint256"}],"name":"setStartRegistration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"setToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"start","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"startRegistration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenAmount","type":"uint256"}],"name":"tokenToPaymentToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalTokensForSale","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalUncappedAllocations","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"}],"name":"uncappedAllocation","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawn","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]