/**
*Submitted for verification at Etherscan.io on 2020-11-20
*/
// File: @openzeppelin/contracts/math/SafeMath.sol
pragma solidity ^0.5.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*
* _Available since v2.4.0._
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
pragma solidity ^0.5.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see {ERC20Detailed}.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: @openzeppelin/contracts/utils/Address.sol
pragma solidity ^0.5.5;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Converts an `address` into `address payable`. Note that this is
* simply a type cast: the actual underlying value is not changed.
*
* _Available since v2.4.0._
*/
function toPayable(address account) internal pure returns (address payable) {
return address(uint160(account));
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*
* _Available since v2.4.0._
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-call-value
(bool success, ) = recipient.call.value(amount)("");
require(success, "Address: unable to send value, recipient may have reverted");
}
}
// File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol
pragma solidity ^0.5.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves.
// A Solidity high level call has three parts:
// 1. The target address is checked to verify it contains contract code
// 2. The call itself is made, and success asserted
// 3. The return value is decoded, which in turn checks the size of the returned data.
// solhint-disable-next-line max-line-length
require(address(token).isContract(), "SafeERC20: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// File: contracts/IAUSC.sol
pragma solidity 0.5.16;
interface IAUSC {
function rebase(uint256 epoch, uint256 supplyDelta, bool positive) external;
function mint(address to, uint256 amount) external;
}
// File: contracts/IPoolEscrow.sol
pragma solidity 0.5.16;
interface IPoolEscrow {
function notifySecondaryTokens(uint256 number) external;
}
// File: contracts/BasicRebaser.sol
pragma solidity 0.5.16;
interface IUniswapV2Pair {
function sync() external;
}
contract BasicRebaser {
using SafeMath for uint256;
using SafeERC20 for IERC20;
event Updated(uint256 xau, uint256 ausc);
event NoUpdateXAU();
event NoUpdateAUSC();
event NoSecondaryMint();
event NoRebaseNeeded();
event StillCold();
event NotInitialized();
uint256 public constant BASE = 1e18;
uint256 public constant WINDOW_SIZE = 24;
address public ausc;
uint256[] public pricesXAU = new uint256[](WINDOW_SIZE);
uint256[] public pricesAUSC = new uint256[](WINDOW_SIZE);
uint256 public pendingXAUPrice = 0;
uint256 public pendingAUSCPrice = 0;
bool public noPending = true;
uint256 public averageXAU;
uint256 public averageAUSC;
uint256 public lastUpdate;
uint256 public frequency = 1 hours;
uint256 public counter = 0;
uint256 public epoch = 1;
address public secondaryPool;
address public governance;
uint256 public nextRebase = 0; // Wednesday November 25, 2020 09:00:00 (am) in time zone Asia/Seoul (KST)
uint256 public constant REBASE_DELAY = WINDOW_SIZE * 1 hours;
IUniswapV2Pair public constant UNIPAIR = IUniswapV2Pair(0x95a5543111343aB2A66a06bc663a1170AcF050b9);
modifier onlyGov() {
require(msg.sender == governance, "only gov");
_;
}
constructor (address token, address _secondaryPool) public {
ausc = token;
secondaryPool = _secondaryPool;
governance = msg.sender;
}
function setNextRebase(uint256 next) external onlyGov {
require(nextRebase == 0, "Only one time activation");
nextRebase = next;
}
function setGovernance(address account) external onlyGov {
governance = account;
}
function setSecondaryPool(address pool) external onlyGov {
secondaryPool = pool;
}
function checkRebase() external {
// ausc ensures that we do not have smart contracts rebasing
require (msg.sender == address(ausc), "only through ausc");
rebase();
recordPrice();
}
function recordPrice() public {
if (msg.sender != tx.origin && msg.sender != address(ausc)) {
// smart contracts could manipulate data via flashloans,
// thus we forbid them from updating the price
return;
}
if (block.timestamp < lastUpdate + frequency) {
// addition is running on timestamps, this will never overflow
// we leave at least the specified period between two updates
return;
}
(bool successXAU, uint256 priceXAU) = getPriceXAU();
(bool successAUSC, uint256 priceAUSC) = getPriceAUSC();
if (!successAUSC) {
// price of AUSC was not returned properly
emit NoUpdateAUSC();
return;
}
if (!successXAU) {
// price of XAU was not returned properly
emit NoUpdateXAU();
return;
}
lastUpdate = block.timestamp;
if (noPending) {
// we start recording with 1 hour delay
pendingXAUPrice = priceXAU;
pendingAUSCPrice = priceAUSC;
noPending = false;
} else if (counter < WINDOW_SIZE) {
// still in the warming up phase
averageXAU = averageXAU.mul(counter).add(pendingXAUPrice).div(counter.add(1));
averageAUSC = averageAUSC.mul(counter).add(pendingAUSCPrice).div(counter.add(1));
pricesXAU[counter] = pendingXAUPrice;
pricesAUSC[counter] = pendingAUSCPrice;
pendingXAUPrice = priceXAU;
pendingAUSCPrice = priceAUSC;
counter++;
} else {
uint256 index = counter % WINDOW_SIZE;
averageXAU = averageXAU.mul(WINDOW_SIZE).sub(pricesXAU[index]).add(pendingXAUPrice).div(WINDOW_SIZE);
averageAUSC = averageAUSC.mul(WINDOW_SIZE).sub(pricesAUSC[index]).add(pendingAUSCPrice).div(WINDOW_SIZE);
pricesXAU[index] = pendingXAUPrice;
pricesAUSC[index] = pendingAUSCPrice;
pendingXAUPrice = priceXAU;
pendingAUSCPrice = priceAUSC;
counter++;
}
emit Updated(pendingXAUPrice, pendingAUSCPrice);
}
function rebase() public {
// make public rebasing only after initialization
if (nextRebase == 0 && msg.sender != governance) {
emit NotInitialized();
return;
}
if (counter <= WINDOW_SIZE && msg.sender != governance) {
emit StillCold();
return;
}
// We want to rebase only at 12:00 UTC and 12 hours later
if (block.timestamp < nextRebase) {
return;
} else {
nextRebase = nextRebase + REBASE_DELAY;
}
// only rebase if there is a 5% difference between the price of XAU and AUSC
uint256 highThreshold = averageXAU.mul(105).div(100);
uint256 lowThreshold = averageXAU.mul(95).div(100);
if (averageAUSC > highThreshold) {
// AUSC is too expensive, this is a positive rebase increasing the supply
uint256 factor = BASE.sub(BASE.mul(averageAUSC.sub(averageXAU)).div(averageAUSC.mul(10)));
uint256 increase = BASE.sub(factor);
uint256 realAdjustment = increase.mul(BASE).div(factor);
uint256 currentSupply = IERC20(ausc).totalSupply();
uint256 desiredSupply = currentSupply.add(currentSupply.mul(realAdjustment).div(BASE));
uint256 secondaryPoolBudget = desiredSupply.sub(currentSupply).mul(10).div(100);
desiredSupply = desiredSupply.sub(secondaryPoolBudget);
// Cannot underflow as desiredSupply > currentSupply, the result is positive
// delta = (desiredSupply / currentSupply) * 100 - 100
uint256 delta = desiredSupply.mul(BASE).div(currentSupply).sub(BASE);
IAUSC(ausc).rebase(epoch, delta, true);
if (secondaryPool != address(0)) {
// notify the pool escrow that tokens are available
IAUSC(ausc).mint(address(this), secondaryPoolBudget);
IERC20(ausc).safeApprove(secondaryPool, 0);
IERC20(ausc).safeApprove(secondaryPool, secondaryPoolBudget);
IPoolEscrow(secondaryPool).notifySecondaryTokens(secondaryPoolBudget);
} else {
emit NoSecondaryMint();
}
UNIPAIR.sync();
epoch++;
} else if (averageAUSC < lowThreshold) {
// AUSC is too cheap, this is a negative rebase decreasing the supply
uint256 factor = BASE.add(BASE.mul(averageXAU.sub(averageAUSC)).div(averageAUSC.mul(10)));
uint256 increase = factor.sub(BASE);
uint256 realAdjustment = increase.mul(BASE).div(factor);
uint256 currentSupply = IERC20(ausc).totalSupply();
uint256 desiredSupply = currentSupply.sub(currentSupply.mul(realAdjustment).div(BASE));
// Cannot overflow as desiredSupply < currentSupply
// delta = 100 - (desiredSupply / currentSupply) * 100
uint256 delta = uint256(BASE).sub(desiredSupply.mul(BASE).div(currentSupply));
IAUSC(ausc).rebase(epoch, delta, false);
UNIPAIR.sync();
epoch++;
} else {
// else the price is within bounds
emit NoRebaseNeeded();
}
}
/**
* Calculates how a rebase would look if it was triggered now.
*/
function calculateRealTimeRebase() public view returns (uint256, uint256) {
// only rebase if there is a 5% difference between the price of XAU and AUSC
uint256 highThreshold = averageXAU.mul(105).div(100);
uint256 lowThreshold = averageXAU.mul(95).div(100);
if (averageAUSC > highThreshold) {
// AUSC is too expensive, this is a positive rebase increasing the supply
uint256 factor = BASE.sub(BASE.mul(averageAUSC.sub(averageXAU)).div(averageAUSC.mul(10)));
uint256 increase = BASE.sub(factor);
uint256 realAdjustment = increase.mul(BASE).div(factor);
uint256 currentSupply = IERC20(ausc).totalSupply();
uint256 desiredSupply = currentSupply.add(currentSupply.mul(realAdjustment).div(BASE));
uint256 secondaryPoolBudget = desiredSupply.sub(currentSupply).mul(10).div(100);
desiredSupply = desiredSupply.sub(secondaryPoolBudget);
// Cannot underflow as desiredSupply > currentSupply, the result is positive
// delta = (desiredSupply / currentSupply) * 100 - 100
uint256 delta = desiredSupply.mul(BASE).div(currentSupply).sub(BASE);
return (delta, secondaryPool == address(0) ? 0 : secondaryPoolBudget);
} else if (averageAUSC < lowThreshold) {
// AUSC is too cheap, this is a negative rebase decreasing the supply
uint256 factor = BASE.add(BASE.mul(averageXAU.sub(averageAUSC)).div(averageAUSC.mul(10)));
uint256 increase = factor.sub(BASE);
uint256 realAdjustment = increase.mul(BASE).div(factor);
uint256 currentSupply = IERC20(ausc).totalSupply();
uint256 desiredSupply = currentSupply.sub(currentSupply.mul(realAdjustment).div(BASE));
// Cannot overflow as desiredSupply < currentSupply
// delta = 100 - (desiredSupply / currentSupply) * 100
uint256 delta = uint256(BASE).sub(desiredSupply.mul(BASE).div(currentSupply));
return (delta, 0);
} else {
return (0,0);
}
}
function getPriceXAU() public view returns (bool, uint256);
function getPriceAUSC() public view returns (bool, uint256);
}
// File: @chainlink/contracts/src/v0.5/interfaces/AggregatorV3Interface.sol
pragma solidity >=0.5.0;
interface AggregatorV3Interface {
function decimals() external view returns (uint8);
function description() external view returns (string memory);
function version() external view returns (uint256);
// getRoundData and latestRoundData should both raise "No data present"
// if they do not have data to report, instead of returning unset values
// which could be misinterpreted as actual reported values.
function getRoundData(uint80 _roundId)
external
view
returns (
uint80 roundId,
int256 answer,
uint256 startedAt,
uint256 updatedAt,
uint80 answeredInRound
);
function latestRoundData()
external
view
returns (
uint80 roundId,
int256 answer,
uint256 startedAt,
uint256 updatedAt,
uint80 answeredInRound
);
}
// File: contracts/ChainlinkOracle.sol
pragma solidity 0.5.16;
contract ChainlinkOracle {
using SafeMath for uint256;
address public constant oracle = 0x214eD9Da11D2fbe465a6fc601a91E62EbEc1a0D6;
uint256 public constant ozToMg = 311035000;
uint256 public constant ozToMgPrecision = 1e4;
constructor () public {
}
function getPriceXAU() public view returns (bool, uint256) {
// answer has 8 decimals, it is the price of 1 oz of gold in USD
// if the round is not completed, updated at is 0
(,int256 answer,,uint256 updatedAt,) = AggregatorV3Interface(oracle).latestRoundData();
// add 10 decimals at the end
return (updatedAt != 0, uint256(answer).mul(ozToMgPrecision).div(ozToMg).mul(1e10));
}
}
// File: contracts/UniswapOracle.sol
pragma solidity 0.5.16;
contract IUniswapRouterV2 {
function getAmountsOut(uint256 amountIn, address[] memory path) public view returns (uint256[] memory amounts);
}
contract UniswapOracle {
using SafeMath for uint256;
address public constant oracle = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
address public constant usdc = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;
address public constant weth = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
address public ausc;
address[] public path;
constructor (address token) public {
ausc = token;
path = [ausc, weth, usdc];
}
function getPriceAUSC() public view returns (bool, uint256) {
// returns the price with 6 decimals, but we want 18
uint256[] memory amounts = IUniswapRouterV2(oracle).getAmountsOut(1e18, path);
return (ausc != address(0), amounts[2].mul(1e12));
}
}
// File: contracts/Rebaser.sol
pragma solidity 0.5.16;
contract Rebaser is BasicRebaser, UniswapOracle, ChainlinkOracle {
constructor (address token, address _treasury)
BasicRebaser(token, _treasury)
UniswapOracle(token) public {
}
}
{
"compilationTarget": {
"Rebaser.sol": "Rebaser"
},
"evmVersion": "istanbul",
"libraries": {},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"_treasury","type":"address"}],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[],"name":"NoRebaseNeeded","type":"event"},{"anonymous":false,"inputs":[],"name":"NoSecondaryMint","type":"event"},{"anonymous":false,"inputs":[],"name":"NoUpdateAUSC","type":"event"},{"anonymous":false,"inputs":[],"name":"NoUpdateXAU","type":"event"},{"anonymous":false,"inputs":[],"name":"NotInitialized","type":"event"},{"anonymous":false,"inputs":[],"name":"StillCold","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"xau","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"ausc","type":"uint256"}],"name":"Updated","type":"event"},{"constant":true,"inputs":[],"name":"BASE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"REBASE_DELAY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"UNIPAIR","outputs":[{"internalType":"contract IUniswapV2Pair","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"WINDOW_SIZE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"ausc","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"averageAUSC","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"averageXAU","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"calculateRealTimeRebase","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"checkRebase","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"counter","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"epoch","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"frequency","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"getPriceAUSC","outputs":[{"internalType":"bool","name":"","type":"bool"},{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"getPriceXAU","outputs":[{"internalType":"bool","name":"","type":"bool"},{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"governance","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"lastUpdate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"nextRebase","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"noPending","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"oracle","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"ozToMg","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"ozToMgPrecision","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"path","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"pendingAUSCPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"pendingXAUPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"pricesAUSC","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"pricesXAU","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"rebase","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"recordPrice","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"secondaryPool","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"setGovernance","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"next","type":"uint256"}],"name":"setNextRebase","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"pool","type":"address"}],"name":"setSecondaryPool","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"usdc","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"weth","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"}]