// Dependency file: @openzeppelin/contracts/math/SafeMath.sol
// SPDX-License-Identifier: MIT
// pragma solidity ^0.6.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// Dependency file: @openzeppelin/contracts/utils/ReentrancyGuard.sol
// pragma solidity ^0.6.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor () internal {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// Dependency file: @uniswap/lib/contracts/libraries/TransferHelper.sol
// pragma solidity >=0.6.0;
// helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false
library TransferHelper {
function safeApprove(address token, address to, uint value) internal {
// bytes4(keccak256(bytes('approve(address,uint256)')));
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: APPROVE_FAILED');
}
function safeTransfer(address token, address to, uint value) internal {
// bytes4(keccak256(bytes('transfer(address,uint256)')));
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FAILED');
}
function safeTransferFrom(address token, address from, address to, uint value) internal {
// bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FROM_FAILED');
}
function safeTransferETH(address to, uint value) internal {
(bool success,) = to.call{value:value}(new bytes(0));
require(success, 'TransferHelper: ETH_TRANSFER_FAILED');
}
}
// Dependency file: contracts/IUniTradeStaker.sol
// pragma solidity ^0.6.6;
interface IUniTradeStaker
{
function deposit() external payable;
}
// Root file: contracts/UniTradeStaker01.sol
pragma solidity ^0.6.6;
// import "@openzeppelin/contracts/math/SafeMath.sol";
// import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
// import "@uniswap/lib/contracts/libraries/TransferHelper.sol";
// import "contracts/IUniTradeStaker.sol";
contract UniTradeStaker01 is IUniTradeStaker, ReentrancyGuard {
using SafeMath for uint256;
address immutable unitrade;
uint256 constant DEFAULT_STAKE_PERIOD = 30 days;
uint256 public totalStake;
uint256 totalWeight;
uint256 public totalEthReceived;
mapping(address => uint256) public staked;
mapping(address => uint256) public timelock;
mapping(address => uint256) weighted;
mapping(address => uint256) accumulated;
event Stake(address indexed staker, uint256 unitradeIn);
event Withdraw(address indexed staker, uint256 unitradeOut, uint256 reward);
event Deposit(address indexed depositor, uint256 amount);
constructor(address _unitrade) public {
unitrade = _unitrade;
}
function stake(uint256 unitradeIn) nonReentrant public {
require(unitradeIn > 0, "Nothing to stake");
_stake(unitradeIn);
timelock[msg.sender] = block.timestamp.add(DEFAULT_STAKE_PERIOD);
TransferHelper.safeTransferFrom(
unitrade,
msg.sender,
address(this),
unitradeIn
);
}
function withdraw() nonReentrant public returns (uint256 unitradeOut, uint256 reward) {
require(block.timestamp >= timelock[msg.sender], "Stake is locked");
(unitradeOut, reward) = _applyReward();
emit Withdraw(msg.sender, unitradeOut, reward);
timelock[msg.sender] = 0;
TransferHelper.safeTransfer(unitrade, msg.sender, unitradeOut);
if (reward > 0) {
TransferHelper.safeTransferETH(msg.sender, reward);
}
}
function payout() nonReentrant public returns (uint256 reward) {
(uint256 unitradeOut, uint256 _reward) = _applyReward();
emit Withdraw(msg.sender, unitradeOut, _reward);
reward = _reward;
require(reward > 0, "Nothing to pay out");
TransferHelper.safeTransferETH(msg.sender, reward);
// restake after withdrawal
_stake(unitradeOut);
timelock[msg.sender] = block.timestamp.add(DEFAULT_STAKE_PERIOD);
}
function deposit() nonReentrant public override payable {
require(msg.value > 0, "Nothing to deposit");
require(totalStake > 0, "Nothing staked");
totalEthReceived = totalEthReceived.add(msg.value);
emit Deposit(msg.sender, msg.value);
_distribute(msg.value, totalStake);
}
function _stake(uint256 unitradeIn) private {
uint256 addBack;
if (staked[msg.sender] > 0) {
(uint256 unitradeOut, uint256 reward) = _applyReward();
addBack = unitradeOut;
accumulated[msg.sender] = reward;
staked[msg.sender] = unitradeOut;
}
staked[msg.sender] = staked[msg.sender].add(unitradeIn);
weighted[msg.sender] = totalWeight;
totalStake = totalStake.add(unitradeIn);
if (addBack > 0) {
totalStake = totalStake.add(addBack);
}
emit Stake(msg.sender, unitradeIn);
}
function _applyReward() private returns (uint256 unitradeOut, uint256 reward) {
require(staked[msg.sender] > 0, "Nothing staked");
unitradeOut = staked[msg.sender];
reward = unitradeOut
.mul(totalWeight.sub(weighted[msg.sender]))
.div(10**18)
.add(accumulated[msg.sender]);
totalStake = totalStake.sub(unitradeOut);
accumulated[msg.sender] = 0;
staked[msg.sender] = 0;
}
function _distribute(uint256 _value, uint256 _totalStake) private {
totalWeight = totalWeight.add(_value.mul(10**18).div(_totalStake));
}
}
{
"compilationTarget": {
"UniTradeStaker01.sol": "UniTradeStaker01"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_unitrade","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"depositor","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"staker","type":"address"},{"indexed":false,"internalType":"uint256","name":"unitradeIn","type":"uint256"}],"name":"Stake","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"staker","type":"address"},{"indexed":false,"internalType":"uint256","name":"unitradeOut","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"deposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"payout","outputs":[{"internalType":"uint256","name":"reward","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"unitradeIn","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"staked","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"timelock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalEthReceived","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalStake","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdraw","outputs":[{"internalType":"uint256","name":"unitradeOut","type":"uint256"},{"internalType":"uint256","name":"reward","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]