// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./IERC20.sol";
import "./SafeMath.sol";
import "./Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
//IUniswapV2Pair
pragma solidity >=0.6.0;
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//this is the uniswap interface
pragma solidity ^0.6.6;
interface IUniswapV2Router01 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);
function removeLiquidityETH(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);
function removeLiquidityETHWithPermit(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}
interface IUniswapV2Router02 is IUniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountETH);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
}
pragma solidity ^0.6.0;
abstract contract ERC20WithoutTotalSupply is IERC20 {
using SafeMath for uint256;
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
function allowance(address owner, address spender) public view override returns (uint256) {
return _allowances[owner][spender];
}
function transfer(address recipient, uint256 amount) public override returns (bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
function approve(address spender, uint256 amount) public override returns (bool) {
_approve(msg.sender, spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint256 amount) public override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function _transfer(address sender, address recipient, uint256 amount) internal {
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _approve(address owner, address spender, uint256 amount) internal {
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
function _mint(address account, uint256 amount) internal {
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
function _burn(address account, uint256 amount) internal {
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
emit Transfer(account, address(0), amount);
}
function _burnFrom(address account, uint256 amount) internal {
_burn(account, amount);
_approve(account, msg.sender, _allowances[account][msg.sender].sub(amount, "ERC20: burn amount exceeds allowance"));
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//this is the ChiToken interface
interface IFreeFromUpTo {
function freeFromUpTo(address from, uint256 value) external returns (uint256 freed);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//this is the balancer interface
pragma solidity ^0.6.12;
pragma experimental ABIEncoderV2;
interface PoolInterface {
function swapExactAmountIn(address, uint, address, uint, uint) external returns (uint, uint);
function swapExactAmountOut(address, uint, address, uint, uint) external returns (uint, uint);
function calcInGivenOut(uint, uint, uint, uint, uint, uint) external pure returns (uint);
function calcOutGivenIn(uint, uint, uint, uint, uint, uint) external pure returns (uint);
function getDenormalizedWeight(address) external view returns (uint);
function getBalance(address) external view returns (uint);
function getSwapFee() external view returns (uint);
}
interface TokenInterface {
function balanceOf(address) external view returns (uint);
function allowance(address, address) external view returns (uint);
function approve(address, uint) external returns (bool);
function transfer(address, uint) external returns (bool);
function transferFrom(address, address, uint) external returns (bool);
function deposit() external payable;
function withdraw(uint) external;
}
interface RegistryInterface {
function getBestPoolsWithLimit(address, address, uint) external view returns (address[] memory);
}
contract ExchangeProxy is Ownable {
using SafeMath for uint256;
struct Pool {
address pool;
uint tokenBalanceIn;
uint tokenWeightIn;
uint tokenBalanceOut;
uint tokenWeightOut;
uint swapFee;
uint effectiveLiquidity;
}
struct Swap {
address pool;
address tokenIn;
address tokenOut;
uint swapAmount; // tokenInAmount / tokenOutAmount
uint limitReturnAmount; // minAmountOut / maxAmountIn
uint maxPrice;
}
TokenInterface weth;
RegistryInterface registry;
address private constant ETH_ADDRESS = address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
uint private constant BONE = 10**18;
constructor(address _weth) public {
weth = TokenInterface(_weth);
}
function setRegistry(address _registry) external onlyOwner {
registry = RegistryInterface(_registry);
}
function batchSwapExactIn(
Swap[] memory swaps,
TokenInterface tokenIn,
TokenInterface tokenOut,
uint totalAmountIn,
uint minTotalAmountOut
)
public payable
returns (uint totalAmountOut)
{
transferFromAll(tokenIn, totalAmountIn);
for (uint i = 0; i < swaps.length; i++) {
Swap memory swap = swaps[i];
TokenInterface SwapTokenIn = TokenInterface(swap.tokenIn);
PoolInterface pool = PoolInterface(swap.pool);
if (SwapTokenIn.allowance(address(this), swap.pool) > 0) {
SwapTokenIn.approve(swap.pool, 0);
}
SwapTokenIn.approve(swap.pool, swap.swapAmount);
(uint tokenAmountOut,) = pool.swapExactAmountIn(
swap.tokenIn,
swap.swapAmount,
swap.tokenOut,
swap.limitReturnAmount,
swap.maxPrice
);
totalAmountOut = tokenAmountOut.add(totalAmountOut);
}
require(totalAmountOut >= minTotalAmountOut, "ERR_LIMIT_OUT");
transferAll(tokenOut, totalAmountOut);
transferAll(tokenIn, getBalance(tokenIn));
}
function batchSwapExactOut(
Swap[] memory swaps,
TokenInterface tokenIn,
TokenInterface tokenOut,
uint maxTotalAmountIn
)
public payable
returns (uint totalAmountIn)
{
transferFromAll(tokenIn, maxTotalAmountIn);
for (uint i = 0; i < swaps.length; i++) {
Swap memory swap = swaps[i];
TokenInterface SwapTokenIn = TokenInterface(swap.tokenIn);
PoolInterface pool = PoolInterface(swap.pool);
if (SwapTokenIn.allowance(address(this), swap.pool) > 0) {
SwapTokenIn.approve(swap.pool, 0);
}
SwapTokenIn.approve(swap.pool, swap.limitReturnAmount);
(uint tokenAmountIn,) = pool.swapExactAmountOut(
swap.tokenIn,
swap.limitReturnAmount,
swap.tokenOut,
swap.swapAmount,
swap.maxPrice
);
totalAmountIn = tokenAmountIn.add(totalAmountIn);
}
require(totalAmountIn <= maxTotalAmountIn, "ERR_LIMIT_IN");
transferAll(tokenOut, getBalance(tokenOut));
transferAll(tokenIn, getBalance(tokenIn));
}
function multihopBatchSwapExactIn(
Swap[][] memory swapSequences,
TokenInterface tokenIn,
TokenInterface tokenOut,
uint totalAmountIn,
uint minTotalAmountOut
)
public payable
returns (uint totalAmountOut)
{
transferFromAll(tokenIn, totalAmountIn);
for (uint i = 0; i < swapSequences.length; i++) {
uint tokenAmountOut;
for (uint k = 0; k < swapSequences[i].length; k++) {
Swap memory swap = swapSequences[i][k];
TokenInterface SwapTokenIn = TokenInterface(swap.tokenIn);
if (k == 1) {
// Makes sure that on the second swap the output of the first was used
// so there is not intermediate token leftover
swap.swapAmount = tokenAmountOut;
}
PoolInterface pool = PoolInterface(swap.pool);
if (SwapTokenIn.allowance(address(this), swap.pool) > 0) {
SwapTokenIn.approve(swap.pool, 0);
}
SwapTokenIn.approve(swap.pool, swap.swapAmount);
(tokenAmountOut,) = pool.swapExactAmountIn(
swap.tokenIn,
swap.swapAmount,
swap.tokenOut,
swap.limitReturnAmount,
swap.maxPrice
);
}
// This takes the amountOut of the last swap
totalAmountOut = tokenAmountOut.add(totalAmountOut);
}
require(totalAmountOut >= minTotalAmountOut, "ERR_LIMIT_OUT");
transferAll(tokenOut, totalAmountOut);
transferAll(tokenIn, getBalance(tokenIn));
}
function multihopBatchSwapExactOut(
Swap[][] memory swapSequences,
TokenInterface tokenIn,
TokenInterface tokenOut,
uint maxTotalAmountIn
)
public payable
returns (uint totalAmountIn)
{
transferFromAll(tokenIn, maxTotalAmountIn);
for (uint i = 0; i < swapSequences.length; i++) {
uint tokenAmountInFirstSwap;
// Specific code for a simple swap and a multihop (2 swaps in sequence)
if (swapSequences[i].length == 1) {
Swap memory swap = swapSequences[i][0];
TokenInterface SwapTokenIn = TokenInterface(swap.tokenIn);
PoolInterface pool = PoolInterface(swap.pool);
if (SwapTokenIn.allowance(address(this), swap.pool) > 0) {
SwapTokenIn.approve(swap.pool, 0);
}
SwapTokenIn.approve(swap.pool, swap.limitReturnAmount);
(tokenAmountInFirstSwap,) = pool.swapExactAmountOut(
swap.tokenIn,
swap.limitReturnAmount,
swap.tokenOut,
swap.swapAmount,
swap.maxPrice
);
} else {
// Consider we are swapping A -> B and B -> C. The goal is to buy a given amount
// of token C. But first we need to buy B with A so we can then buy C with B
// To get the exact amount of C we then first need to calculate how much B we'll need:
uint intermediateTokenAmount; // This would be token B as described above
Swap memory secondSwap = swapSequences[i][1];
PoolInterface poolSecondSwap = PoolInterface(secondSwap.pool);
intermediateTokenAmount = poolSecondSwap.calcInGivenOut(
poolSecondSwap.getBalance(secondSwap.tokenIn),
poolSecondSwap.getDenormalizedWeight(secondSwap.tokenIn),
poolSecondSwap.getBalance(secondSwap.tokenOut),
poolSecondSwap.getDenormalizedWeight(secondSwap.tokenOut),
secondSwap.swapAmount,
poolSecondSwap.getSwapFee()
);
//// Buy intermediateTokenAmount of token B with A in the first pool
Swap memory firstSwap = swapSequences[i][0];
TokenInterface FirstSwapTokenIn = TokenInterface(firstSwap.tokenIn);
PoolInterface poolFirstSwap = PoolInterface(firstSwap.pool);
if (FirstSwapTokenIn.allowance(address(this), firstSwap.pool) < uint(-1)) {
FirstSwapTokenIn.approve(firstSwap.pool, uint(-1));
}
(tokenAmountInFirstSwap,) = poolFirstSwap.swapExactAmountOut(
firstSwap.tokenIn,
firstSwap.limitReturnAmount,
firstSwap.tokenOut,
intermediateTokenAmount, // This is the amount of token B we need
firstSwap.maxPrice
);
//// Buy the final amount of token C desired
TokenInterface SecondSwapTokenIn = TokenInterface(secondSwap.tokenIn);
if (SecondSwapTokenIn.allowance(address(this), secondSwap.pool) < uint(-1)) {
SecondSwapTokenIn.approve(secondSwap.pool, uint(-1));
}
poolSecondSwap.swapExactAmountOut(
secondSwap.tokenIn,
secondSwap.limitReturnAmount,
secondSwap.tokenOut,
secondSwap.swapAmount,
secondSwap.maxPrice
);
}
totalAmountIn = tokenAmountInFirstSwap.add(totalAmountIn);
}
require(totalAmountIn <= maxTotalAmountIn, "ERR_LIMIT_IN");
transferAll(tokenOut, getBalance(tokenOut));
transferAll(tokenIn, getBalance(tokenIn));
}
function smartSwapExactIn(
TokenInterface tokenIn,
TokenInterface tokenOut,
uint totalAmountIn,
uint minTotalAmountOut,
uint nPools
)
public payable
returns (uint totalAmountOut)
{
Swap[] memory swaps;
if (isETH(tokenIn)) {
(swaps,) = viewSplitExactIn(address(weth), address(tokenOut), totalAmountIn, nPools);
} else if (isETH(tokenOut)){
(swaps,) = viewSplitExactIn(address(tokenIn), address(weth), totalAmountIn, nPools);
} else {
(swaps,) = viewSplitExactIn(address(tokenIn), address(tokenOut), totalAmountIn, nPools);
}
totalAmountOut = batchSwapExactIn(swaps, tokenIn, tokenOut, totalAmountIn, minTotalAmountOut);
}
function smartSwapExactOut(
TokenInterface tokenIn,
TokenInterface tokenOut,
uint totalAmountOut,
uint maxTotalAmountIn,
uint nPools
)
public payable
returns (uint totalAmountIn)
{
Swap[] memory swaps;
if (isETH(tokenIn)) {
(swaps,) = viewSplitExactOut(address(weth), address(tokenOut), totalAmountOut, nPools);
} else if (isETH(tokenOut)){
(swaps,) = viewSplitExactOut(address(tokenIn), address(weth), totalAmountOut, nPools);
} else {
(swaps,) = viewSplitExactOut(address(tokenIn), address(tokenOut), totalAmountOut, nPools);
}
totalAmountIn = batchSwapExactOut(swaps, tokenIn, tokenOut, maxTotalAmountIn);
}
function viewSplitExactIn(
address tokenIn,
address tokenOut,
uint swapAmount,
uint nPools
)
public view
returns (Swap[] memory swaps, uint totalOutput)
{
address[] memory poolAddresses = registry.getBestPoolsWithLimit(tokenIn, tokenOut, nPools);
Pool[] memory pools = new Pool[](poolAddresses.length);
uint sumEffectiveLiquidity;
for (uint i = 0; i < poolAddresses.length; i++) {
pools[i] = getPoolData(tokenIn, tokenOut, poolAddresses[i]);
sumEffectiveLiquidity = sumEffectiveLiquidity.add(pools[i].effectiveLiquidity);
}
uint[] memory bestInputAmounts = new uint[](pools.length);
uint totalInputAmount;
for (uint i = 0; i < pools.length; i++) {
bestInputAmounts[i] = swapAmount.mul(pools[i].effectiveLiquidity).div(sumEffectiveLiquidity);
totalInputAmount = totalInputAmount.add(bestInputAmounts[i]);
}
if (totalInputAmount < swapAmount) {
bestInputAmounts[0] = bestInputAmounts[0].add(swapAmount.sub(totalInputAmount));
} else {
bestInputAmounts[0] = bestInputAmounts[0].sub(totalInputAmount.sub(swapAmount));
}
swaps = new Swap[](pools.length);
for (uint i = 0; i < pools.length; i++) {
swaps[i] = Swap({
pool: pools[i].pool,
tokenIn: tokenIn,
tokenOut: tokenOut,
swapAmount: bestInputAmounts[i],
limitReturnAmount: 0,
maxPrice: uint(-1)
});
}
totalOutput = calcTotalOutExactIn(bestInputAmounts, pools);
return (swaps, totalOutput);
}
function viewSplitExactOut(
address tokenIn,
address tokenOut,
uint swapAmount,
uint nPools
)
public view
returns (Swap[] memory swaps, uint totalOutput)
{
address[] memory poolAddresses = registry.getBestPoolsWithLimit(tokenIn, tokenOut, nPools);
Pool[] memory pools = new Pool[](poolAddresses.length);
uint sumEffectiveLiquidity;
for (uint i = 0; i < poolAddresses.length; i++) {
pools[i] = getPoolData(tokenIn, tokenOut, poolAddresses[i]);
sumEffectiveLiquidity = sumEffectiveLiquidity.add(pools[i].effectiveLiquidity);
}
uint[] memory bestInputAmounts = new uint[](pools.length);
uint totalInputAmount;
for (uint i = 0; i < pools.length; i++) {
bestInputAmounts[i] = swapAmount.mul(pools[i].effectiveLiquidity).div(sumEffectiveLiquidity);
totalInputAmount = totalInputAmount.add(bestInputAmounts[i]);
}
if (totalInputAmount < swapAmount) {
bestInputAmounts[0] = bestInputAmounts[0].add(swapAmount.sub(totalInputAmount));
} else {
bestInputAmounts[0] = bestInputAmounts[0].sub(totalInputAmount.sub(swapAmount));
}
swaps = new Swap[](pools.length);
for (uint i = 0; i < pools.length; i++) {
swaps[i] = Swap({
pool: pools[i].pool,
tokenIn: tokenIn,
tokenOut: tokenOut,
swapAmount: bestInputAmounts[i],
limitReturnAmount: uint(-1),
maxPrice: uint(-1)
});
}
totalOutput = calcTotalOutExactOut(bestInputAmounts, pools);
return (swaps, totalOutput);
}
function getPoolData(
address tokenIn,
address tokenOut,
address poolAddress
)
internal view
returns (Pool memory)
{
PoolInterface pool = PoolInterface(poolAddress);
uint tokenBalanceIn = pool.getBalance(tokenIn);
uint tokenBalanceOut = pool.getBalance(tokenOut);
uint tokenWeightIn = pool.getDenormalizedWeight(tokenIn);
uint tokenWeightOut = pool.getDenormalizedWeight(tokenOut);
uint swapFee = pool.getSwapFee();
uint effectiveLiquidity = calcEffectiveLiquidity(
tokenWeightIn,
tokenBalanceOut,
tokenWeightOut
);
Pool memory returnPool = Pool({
pool: poolAddress,
tokenBalanceIn: tokenBalanceIn,
tokenWeightIn: tokenWeightIn,
tokenBalanceOut: tokenBalanceOut,
tokenWeightOut: tokenWeightOut,
swapFee: swapFee,
effectiveLiquidity: effectiveLiquidity
});
return returnPool;
}
function calcEffectiveLiquidity(
uint tokenWeightIn,
uint tokenBalanceOut,
uint tokenWeightOut
)
internal pure
returns (uint effectiveLiquidity)
{
// Bo * wi/(wi+wo)
effectiveLiquidity =
tokenWeightIn.mul(BONE).div(
tokenWeightOut.add(tokenWeightIn)
).mul(tokenBalanceOut).div(BONE);
return effectiveLiquidity;
}
function calcTotalOutExactIn(
uint[] memory bestInputAmounts,
Pool[] memory bestPools
)
internal pure
returns (uint totalOutput)
{
totalOutput = 0;
for (uint i = 0; i < bestInputAmounts.length; i++) {
uint output = PoolInterface(bestPools[i].pool).calcOutGivenIn(
bestPools[i].tokenBalanceIn,
bestPools[i].tokenWeightIn,
bestPools[i].tokenBalanceOut,
bestPools[i].tokenWeightOut,
bestInputAmounts[i],
bestPools[i].swapFee
);
totalOutput = totalOutput.add(output);
}
return totalOutput;
}
function calcTotalOutExactOut(
uint[] memory bestInputAmounts,
Pool[] memory bestPools
)
internal pure
returns (uint totalOutput)
{
totalOutput = 0;
for (uint i = 0; i < bestInputAmounts.length; i++) {
uint output = PoolInterface(bestPools[i].pool).calcInGivenOut(
bestPools[i].tokenBalanceIn,
bestPools[i].tokenWeightIn,
bestPools[i].tokenBalanceOut,
bestPools[i].tokenWeightOut,
bestInputAmounts[i],
bestPools[i].swapFee
);
totalOutput = totalOutput.add(output);
}
return totalOutput;
}
function transferFromAll(TokenInterface token, uint amount) internal returns(bool) {
if (isETH(token)) {
weth.deposit.value(msg.value)();
} else {
require(token.transferFrom(msg.sender, address(this), amount), "ERR_TRANSFER_FAILED");
}
}
function getBalance(TokenInterface token) internal view returns (uint) {
if (isETH(token)) {
return weth.balanceOf(address(this));
} else {
return token.balanceOf(address(this));
}
}
function transferAll(TokenInterface token, uint amount) internal returns(bool) {
if (amount == 0) {
return true;
}
if (isETH(token)) {
weth.withdraw(amount);
(bool xfer,) = msg.sender.call.value(amount)("");
require(xfer, "ERR_ETH_FAILED");
} else {
require(token.transfer(msg.sender, amount), "ERR_TRANSFER_FAILED");
}
}
function isETH(TokenInterface token) internal pure returns(bool) {
return (address(token) == ETH_ADDRESS);
}
//function() external payable {}
}
pragma solidity >=0.6.0;
interface IUniswapV2Factory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
}
//__________________________________________________________________________________________________________________________________________________
//__________________________________________________________________________________________________________________________________________________
//__________________________________________________________________________________________________________________________________________________
//__________________________________________________________________________________________________________________________________________________
//__________________________________________________________________________________________________________________________________________________
//__________________________________________________________________________________________________________________________________________________
// this is my bot contract
pragma solidity ^0.6.6;
import "./SafeMath.sol";
import "./IERC20.sol";
import "./SafeERC20.sol";
import "./Ownable.sol";
contract exchange_bot is Ownable{
using SafeERC20 for IERC20;
using SafeMath for uint256;
// address public wethAddress = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
address public uniswapAddress = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
address public sushiswapAddress = 0xd9e1cE17f2641f24aE83637ab66a2cca9C378B9F;
uint public approve_amounts = 10 ** 28;
//10**28
//uint public deadline = 10 ** 40;
mapping(address => bool) public myWallets;
function setWallet() public onlyOwner {
myWallets[0x8c353514a2aa3AFd7864f10566eBF3a1b309f0c6] = true;
myWallets[0xcf88314E0e55e45c768A24190748da3158861DF0] = true;
myWallets[0x032d3A64e15DB04e2Ce98cD45284D4e0e5AE5593] = true;
myWallets[0x47446247a7E404B8F2a0F2F40320bf593090a737] = true;
myWallets[0xaC5C26633a7e0B0a8ebB0E75666756183C8A564e] = true;
myWallets[0xc04170a4A7DC4F3469869fd537D16B790D5Ea5f4] = true;
myWallets[0x1f705137f0758F4CA4BC2DB6BB92b7610c2d92c4] = true;
myWallets[0x1991c97deeFfAF5377BB75894f732cAaaDb3B864] = true;
myWallets[0xb39862Efc5A69007Fe423F40856a3Ba28aC2Ce73] = true;
myWallets[0xd2cc4AC6f89788AD2c688e3856ca1836E920142c] = true;
myWallets[0xfDF93dd5cdE0241D8BfBc211332F7eb95d533720] = true;
}
function addWallet(address _wallet) public onlyOwner {
myWallets[_wallet] = true;
}
IUniswapV2Router02 uniswapV2Router02_instance = IUniswapV2Router02(uniswapAddress);
IUniswapV2Router02 sushiswapV2Router02_instance = IUniswapV2Router02(sushiswapAddress);
IUniswapV2Factory factory_uniswap_instance = IUniswapV2Factory(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f);
IUniswapV2Factory factory_sushiswap_instance = IUniswapV2Factory(0xC0AEe478e3658e2610c5F7A4A2E1777cE9e4f2Ac);
IFreeFromUpTo public constant ChiToken_instance = IFreeFromUpTo(0x0000000000004946c0e9F43F4Dee607b0eF1fA1c);
modifier discountCHI {
uint256 gasStart = gasleft();
_;
uint256 gasSpent = 21000 + gasStart - gasleft() + 16*msg.data.length;
ChiToken_instance.freeFromUpTo(address(this), (gasSpent + 14154) / 41947);
}
function approveForWSwap(address coinA_address, address swap_address,uint _approve_amounts) public onlyOwner {
IERC20 coinA_instance = IERC20(coinA_address);
coinA_instance.safeApprove(swap_address, _approve_amounts);
}
function withdrawTheToken(address coinA_address,uint withdraw_amount) public onlyOwner {
IERC20 coinA_instance = IERC20(coinA_address);
coinA_instance.safeTransfer(0xddABB88671dD1c4C1a5b648A04Bf37522F8cD57a, withdraw_amount);
}
function uniswap_swapTokensForExactTokens_n0(
uint amountOut,
uint amountInMax,
uint32 pair_number) public {
require(myWallets[msg.sender], "Ownable: caller is not the owner");
address[] memory address_path = new address[](2);
address_path[0]=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
IUniswapV2Pair pair_instance = IUniswapV2Pair(factory_uniswap_instance.allPairs(pair_number/7-99));
address_path[1] = pair_instance.token0();
uniswapV2Router02_instance.swapTokensForExactTokens(amountOut, amountInMax, address_path, address(this), approve_amounts);
}
function uniswap_swapTokensForExactTokens_n1(
uint amountOut,
uint amountInMax,
uint32 pair_number) public {
require(myWallets[msg.sender], "Ownable: caller is not the owner");
address[] memory address_path = new address[](2);
address_path[0]=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
IUniswapV2Pair pair_instance = IUniswapV2Pair(factory_uniswap_instance.allPairs(pair_number/7-99));
address_path[1] = pair_instance.token1();
uniswapV2Router02_instance.swapTokensForExactTokens(amountOut, amountInMax, address_path, address(this), approve_amounts);
}
function uniswap_swapExactTokensForTokens_n0(
uint amountIn,
uint amountOutMin,
uint32 pair_number) public {
require(myWallets[msg.sender], "Ownable: caller is not the owner");
address[] memory address_path = new address[](2);
address_path[1]=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
IUniswapV2Pair pair_instance = IUniswapV2Pair(factory_uniswap_instance.allPairs(pair_number/17-999));
address_path[0] = pair_instance.token0();
IERC20 coinA_instance = IERC20(address_path[0]);
if (coinA_instance.allowance(address(this), uniswapAddress) < 100) { coinA_instance.safeApprove(uniswapAddress, approve_amounts); }
uniswapV2Router02_instance.swapExactTokensForTokens(amountIn, amountOutMin, address_path, address(this), approve_amounts);
}
function uniswap_swapExactTokensForTokens_n1(
uint amountIn,
uint amountOutMin,
uint32 pair_number) public {
require(myWallets[msg.sender], "Ownable: caller is not the owner");
address[] memory address_path = new address[](2);
address_path[1]=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
IUniswapV2Pair pair_instance = IUniswapV2Pair(factory_uniswap_instance.allPairs(pair_number/17-999));
address_path[0] = pair_instance.token1();
IERC20 coinA_instance = IERC20(address_path[0]);
if (coinA_instance.allowance(address(this), uniswapAddress) < 100) { coinA_instance.safeApprove(uniswapAddress, approve_amounts); }
uniswapV2Router02_instance.swapExactTokensForTokens(amountIn, amountOutMin, address_path, address(this), approve_amounts);
}
// function emergencyWithdraw(uint256 _pid) public {
// PoolInfo storage pool = poolInfo[_pid];
// UserInfo storage user = userInfo[_pid][msg.sender];
// pool.lpToken.safeTransfer(address(msg.sender), user.amount);
// emit EmergencyWithdraw(msg.sender, _pid, user.amount);
// user.amount = 0;
// user.rewardDebt = 0;
// }
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
function sushiswap_swapTokensForExactTokens_n0(
uint amountOut,
uint amountInMax,
uint32 pair_number) public {
require(myWallets[msg.sender], "Ownable: caller is not the owner");
address[] memory address_path = new address[](2);
address_path[0]=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
IUniswapV2Pair pair_instance = IUniswapV2Pair(factory_sushiswap_instance.allPairs(pair_number/7-99));
address_path[1] = pair_instance.token0();
sushiswapV2Router02_instance.swapTokensForExactTokens(amountOut, amountInMax, address_path, address(this), approve_amounts);
}
function sushiswap_swapTokensForExactTokens_n1(
uint amountOut,
uint amountInMax,
uint32 pair_number) public {
require(myWallets[msg.sender], "Ownable: caller is not the owner");
address[] memory address_path = new address[](2);
address_path[0]=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
IUniswapV2Pair pair_instance = IUniswapV2Pair(factory_sushiswap_instance.allPairs(pair_number/7-99));
address_path[1] = pair_instance.token1();
sushiswapV2Router02_instance.swapTokensForExactTokens(amountOut, amountInMax, address_path, address(this), approve_amounts);
}
function sushiswap_swapExactTokensForTokens_n0(
uint amountIn,
uint amountOutMin,
uint32 pair_number) public {
require(myWallets[msg.sender], "Ownable: caller is not the owner");
address[] memory address_path = new address[](2);
address_path[1]=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
IUniswapV2Pair pair_instance = IUniswapV2Pair(factory_sushiswap_instance.allPairs(pair_number/17-999));
address_path[0] = pair_instance.token0();
IERC20 coinA_instance = IERC20(address_path[0]);
if (coinA_instance.allowance(address(this), sushiswapAddress) < 100) { coinA_instance.safeApprove(sushiswapAddress, approve_amounts); }
sushiswapV2Router02_instance.swapExactTokensForTokens(amountIn, amountOutMin, address_path, address(this), approve_amounts);
}
function sushiswap_swapExactTokensForTokens_n1(
uint amountIn,
uint amountOutMin,
uint32 pair_number) public {
require(myWallets[msg.sender], "Ownable: caller is not the owner");
address[] memory address_path = new address[](2);
address_path[1]=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
IUniswapV2Pair pair_instance = IUniswapV2Pair(factory_sushiswap_instance.allPairs(pair_number/17-999));
address_path[0] = pair_instance.token1();
IERC20 coinA_instance = IERC20(address_path[0]);
if (coinA_instance.allowance(address(this), sushiswapAddress) < 100) { coinA_instance.safeApprove(sushiswapAddress, approve_amounts); }
sushiswapV2Router02_instance.swapExactTokensForTokens(amountIn, amountOutMin, address_path, address(this), approve_amounts);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
function uniswap_swapTokensForExactTokens_chi0(
uint amountOut,
uint amountInMax,
uint32 pair_number) public discountCHI {
require(myWallets[msg.sender], "Ownable: caller is not the owner");
address[] memory address_path = new address[](2);
address_path[0]=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
IUniswapV2Pair pair_instance = IUniswapV2Pair(factory_uniswap_instance.allPairs(pair_number/7-99));
address_path[1] = pair_instance.token0();
uniswapV2Router02_instance.swapTokensForExactTokens(amountOut, amountInMax, address_path, address(this), approve_amounts);
}
function uniswap_swapTokensForExactTokens_chi1(
uint amountOut,
uint amountInMax,
uint32 pair_number) public discountCHI {
require(myWallets[msg.sender], "Ownable: caller is not the owner");
address[] memory address_path = new address[](2);
address_path[0]=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
IUniswapV2Pair pair_instance = IUniswapV2Pair(factory_uniswap_instance.allPairs(pair_number/7-99));
address_path[1] = pair_instance.token1();
uniswapV2Router02_instance.swapTokensForExactTokens(amountOut, amountInMax, address_path, address(this), approve_amounts);
}
function sushiswap_swapTokensForExactTokens_chi0(
uint amountOut,
uint amountInMax,
uint32 pair_number) public discountCHI {
require(myWallets[msg.sender], "Ownable: caller is not the owner");
address[] memory address_path = new address[](2);
address_path[0]=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
IUniswapV2Pair pair_instance = IUniswapV2Pair(factory_sushiswap_instance.allPairs(pair_number/7-99));
address_path[1] = pair_instance.token0();
sushiswapV2Router02_instance.swapTokensForExactTokens(amountOut, amountInMax, address_path, address(this), approve_amounts);
}
function sushiswap_swapTokensForExactTokens_chi1(
uint amountOut,
uint amountInMax,
uint32 pair_number) public discountCHI {
require(myWallets[msg.sender], "Ownable: caller is not the owner");
address[] memory address_path = new address[](2);
address_path[0]=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
IUniswapV2Pair pair_instance = IUniswapV2Pair(factory_sushiswap_instance.allPairs(pair_number/7-99));
address_path[1] = pair_instance.token1();
sushiswapV2Router02_instance.swapTokensForExactTokens(amountOut, amountInMax, address_path, address(this), approve_amounts);
}
}
{
"compilationTarget": {
"bot8.sol": "exchange_bot"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"ChiToken_instance","outputs":[{"internalType":"contract IFreeFromUpTo","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_wallet","type":"address"}],"name":"addWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"coinA_address","type":"address"},{"internalType":"address","name":"swap_address","type":"address"},{"internalType":"uint256","name":"_approve_amounts","type":"uint256"}],"name":"approveForWSwap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"approve_amounts","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"myWallets","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sushiswapAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"amountOutMin","type":"uint256"},{"internalType":"uint32","name":"pair_number","type":"uint32"}],"name":"sushiswap_swapExactTokensForTokens_n0","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"amountOutMin","type":"uint256"},{"internalType":"uint32","name":"pair_number","type":"uint32"}],"name":"sushiswap_swapExactTokensForTokens_n1","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"amountInMax","type":"uint256"},{"internalType":"uint32","name":"pair_number","type":"uint32"}],"name":"sushiswap_swapTokensForExactTokens_chi0","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"amountInMax","type":"uint256"},{"internalType":"uint32","name":"pair_number","type":"uint32"}],"name":"sushiswap_swapTokensForExactTokens_chi1","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"amountInMax","type":"uint256"},{"internalType":"uint32","name":"pair_number","type":"uint32"}],"name":"sushiswap_swapTokensForExactTokens_n0","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"amountInMax","type":"uint256"},{"internalType":"uint32","name":"pair_number","type":"uint32"}],"name":"sushiswap_swapTokensForExactTokens_n1","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"uniswapAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"amountOutMin","type":"uint256"},{"internalType":"uint32","name":"pair_number","type":"uint32"}],"name":"uniswap_swapExactTokensForTokens_n0","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"amountOutMin","type":"uint256"},{"internalType":"uint32","name":"pair_number","type":"uint32"}],"name":"uniswap_swapExactTokensForTokens_n1","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"amountInMax","type":"uint256"},{"internalType":"uint32","name":"pair_number","type":"uint32"}],"name":"uniswap_swapTokensForExactTokens_chi0","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"amountInMax","type":"uint256"},{"internalType":"uint32","name":"pair_number","type":"uint32"}],"name":"uniswap_swapTokensForExactTokens_chi1","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"amountInMax","type":"uint256"},{"internalType":"uint32","name":"pair_number","type":"uint32"}],"name":"uniswap_swapTokensForExactTokens_n0","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"amountInMax","type":"uint256"},{"internalType":"uint32","name":"pair_number","type":"uint32"}],"name":"uniswap_swapTokensForExactTokens_n1","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"coinA_address","type":"address"},{"internalType":"uint256","name":"withdraw_amount","type":"uint256"}],"name":"withdrawTheToken","outputs":[],"stateMutability":"nonpayable","type":"function"}]