// File: openzeppelin-solidity/contracts/ownership/Ownable.sol
pragma solidity ^0.5.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be aplied to your functions to restrict their use to
* the owner.
*/
contract Ownable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
_owner = msg.sender;
emit OwnershipTransferred(address(0), _owner);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(isOwner(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Returns true if the caller is the current owner.
*/
function isOwner() public view returns (bool) {
return msg.sender == _owner;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* > Note: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
*/
function _transferOwnership(address newOwner) internal {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// File: openzeppelin-solidity/contracts/math/SafeMath.sol
pragma solidity ^0.5.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, "SafeMath: division by zero");
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0, "SafeMath: modulo by zero");
return a % b;
}
}
// File: openzeppelin-solidity/contracts/token/ERC20/IERC20.sol
pragma solidity ^0.5.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see `ERC20Detailed`.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a `Transfer` event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through `transferFrom`. This is
* zero by default.
*
* This value changes when `approve` or `transferFrom` are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* > Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an `Approval` event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a `Transfer` event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to `approve`. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: openzeppelin-solidity/contracts/token/ERC20/ERC20.sol
pragma solidity ^0.5.0;
/**
* @dev Implementation of the `IERC20` interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using `_mint`.
* For a generic mechanism see `ERC20Mintable`.
*
* *For a detailed writeup see our guide [How to implement supply
* mechanisms](https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226).*
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an `Approval` event is emitted on calls to `transferFrom`.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard `decreaseAllowance` and `increaseAllowance`
* functions have been added to mitigate the well-known issues around setting
* allowances. See `IERC20.approve`.
*/
contract ERC20 is IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
/**
* @dev See `IERC20.totalSupply`.
*/
function totalSupply() public view returns (uint256) {
return _totalSupply;
}
/**
* @dev See `IERC20.balanceOf`.
*/
function balanceOf(address account) public view returns (uint256) {
return _balances[account];
}
/**
* @dev See `IERC20.transfer`.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public returns (bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
/**
* @dev See `IERC20.allowance`.
*/
function allowance(address owner, address spender) public view returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See `IERC20.approve`.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public returns (bool) {
_approve(msg.sender, spender, value);
return true;
}
/**
* @dev See `IERC20.transferFrom`.
*
* Emits an `Approval` event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of `ERC20`;
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `value`.
* - the caller must have allowance for `sender`'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to `approve` that can be used as a mitigation for
* problems described in `IERC20.approve`.
*
* Emits an `Approval` event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to `approve` that can be used as a mitigation for
* problems described in `IERC20.approve`.
*
* Emits an `Approval` event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to `transfer`, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a `Transfer` event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount);
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a `Transfer` event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destoys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a `Transfer` event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 value) internal {
require(account != address(0), "ERC20: burn from the zero address");
_totalSupply = _totalSupply.sub(value);
_balances[account] = _balances[account].sub(value);
emit Transfer(account, address(0), value);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
*
* This is internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an `Approval` event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 value) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = value;
emit Approval(owner, spender, value);
}
/**
* @dev Destoys `amount` tokens from `account`.`amount` is then deducted
* from the caller's allowance.
*
* See `_burn` and `_approve`.
*/
function _burnFrom(address account, uint256 amount) internal {
_burn(account, amount);
_approve(account, msg.sender, _allowances[account][msg.sender].sub(amount));
}
}
// File: openzeppelin-solidity/contracts/access/Roles.sol
pragma solidity ^0.5.0;
/**
* @title Roles
* @dev Library for managing addresses assigned to a Role.
*/
library Roles {
struct Role {
mapping (address => bool) bearer;
}
/**
* @dev Give an account access to this role.
*/
function add(Role storage role, address account) internal {
require(!has(role, account), "Roles: account already has role");
role.bearer[account] = true;
}
/**
* @dev Remove an account's access to this role.
*/
function remove(Role storage role, address account) internal {
require(has(role, account), "Roles: account does not have role");
role.bearer[account] = false;
}
/**
* @dev Check if an account has this role.
* @return bool
*/
function has(Role storage role, address account) internal view returns (bool) {
require(account != address(0), "Roles: account is the zero address");
return role.bearer[account];
}
}
// File: openzeppelin-solidity/contracts/access/roles/MinterRole.sol
pragma solidity ^0.5.0;
contract MinterRole {
using Roles for Roles.Role;
event MinterAdded(address indexed account);
event MinterRemoved(address indexed account);
Roles.Role private _minters;
constructor () internal {
_addMinter(msg.sender);
}
modifier onlyMinter() {
require(isMinter(msg.sender), "MinterRole: caller does not have the Minter role");
_;
}
function isMinter(address account) public view returns (bool) {
return _minters.has(account);
}
function addMinter(address account) public onlyMinter {
_addMinter(account);
}
function renounceMinter() public {
_removeMinter(msg.sender);
}
function _addMinter(address account) internal {
_minters.add(account);
emit MinterAdded(account);
}
function _removeMinter(address account) internal {
_minters.remove(account);
emit MinterRemoved(account);
}
}
// File: contracts/token/ERC20Interface.sol
pragma solidity 0.5.9;
interface ERC20Interface {
// Standard ERC-20 interface.
function transfer(address to, uint256 value) external returns (bool);
function approve(address spender, uint256 value) external returns (bool);
function transferFrom(address from, address to, uint256 value) external returns (bool);
function totalSupply() external view returns (uint256);
function balanceOf(address who) external view returns (uint256);
function allowance(address owner, address spender) external view returns (uint256);
// Extension of ERC-20 interface to support supply adjustment.
function mint(address to, uint256 value) external returns (bool);
function burn(address from, uint256 value) external returns (bool);
}
// File: contracts/token/ERC20Base.sol
pragma solidity 0.5.9;
/// "ERC20Base" is the standard ERC-20 implementation that allows its minter to mint tokens. Both BandToken and
/// CommunityToken extend from ERC20Base. In addition to the standard functions, the class provides `transferAndCall`
/// function, which performs a transfer and invokes the given function using the provided data. If the destination
/// contract uses "ERC20Acceptor" interface, it can verify that the caller properly sends appropriate amount of tokens.
contract ERC20Base is ERC20Interface, ERC20, MinterRole {
string public name;
string public symbol;
uint8 public decimals = 18;
constructor(string memory _name, string memory _symbol) public {
name = _name;
symbol = _symbol;
}
function transferAndCall(address to, uint256 value, bytes4 sig, bytes memory data) public returns (bool) {
require(to != address(this));
_transfer(msg.sender, to, value);
(bool success,) = to.call(abi.encodePacked(sig, uint256(msg.sender), value, data));
require(success);
return true;
}
function mint(address to, uint256 value) public onlyMinter returns (bool) {
_mint(to, value);
return true;
}
function burn(address from, uint256 value) public onlyMinter returns (bool) {
_burn(from, value);
return true;
}
}
// File: contracts/token/SnapshotToken.sol
pragma solidity 0.5.9;
contract SnapshotToken is ERC20Base {
using SafeMath for uint256;
/// IMPORTANT: votingPowers are kept as a linked list of ALL historical changes.
/// - This allows the contract to figure out voting power of the address at any nonce `n`, by
/// searching for the node that has the biggest nonce that is not greater than `n`.
/// - For efficiency, nonce and power are packed into one uint256 integer, with the top 64 bits
/// representing nonce, and the bottom 192 bits representing voting power.
mapping (address => mapping(uint256 => uint256)) _votingPower;
mapping (address => uint256) public votingPowerChangeCount;
uint256 public votingPowerChangeNonce = 0;
/// Returns user voting power at the given index, that is, as of the user's index^th voting power change
function historicalVotingPowerAtIndex(address owner, uint256 index) public view returns (uint256) {
require(index <= votingPowerChangeCount[owner]);
return _votingPower[owner][index] & ((1 << 192) - 1); // Lower 192 bits
}
/// Returns user voting power at the given time. Under the hood, this performs binary search
/// to look for the largest index at which the nonce is not greater than 'nonce'.
/// The voting power at that index is the returning value.
function historicalVotingPowerAtNonce(address owner, uint256 nonce) public view returns (uint256) {
require(nonce <= votingPowerChangeNonce && nonce < (1 << 64));
uint256 start = 0;
uint256 end = votingPowerChangeCount[owner];
while (start < end) {
uint256 mid = start.add(end).add(1).div(2); /// Use (start+end+1)/2 to prevent infinite loop.
if ((_votingPower[owner][mid] >> 192) > nonce) { /// Upper 64-bit nonce
/// If midTime > nonce, this mid can't possibly be the answer.
end = mid.sub(1);
} else {
/// Otherwise, search on the greater side, but still keep mid as a possible option.
start = mid;
}
}
return historicalVotingPowerAtIndex(owner, start);
}
function _transfer(address from, address to, uint256 value) internal {
super._transfer(from, to, value);
votingPowerChangeNonce = votingPowerChangeNonce.add(1);
_changeVotingPower(from);
_changeVotingPower(to);
}
function _mint(address account, uint256 amount) internal {
super._mint(account, amount);
votingPowerChangeNonce = votingPowerChangeNonce.add(1);
_changeVotingPower(account);
}
function _burn(address account, uint256 amount) internal {
super._burn(account, amount);
votingPowerChangeNonce = votingPowerChangeNonce.add(1);
_changeVotingPower(account);
}
function _changeVotingPower(address account) internal {
uint256 currentIndex = votingPowerChangeCount[account];
uint256 newPower = balanceOf(account);
require(newPower < (1 << 192));
require(votingPowerChangeNonce < (1 << 64));
currentIndex = currentIndex.add(1);
votingPowerChangeCount[account] = currentIndex;
_votingPower[account][currentIndex] = (votingPowerChangeNonce << 192) | newPower;
}
}
// File: contracts/utils/Fractional.sol
pragma solidity 0.5.9;
/// "Fractional" library facilitate fixed point decimal computation. In Band Protocol, fixed point decimal can be
/// represented using `uint256` data type. The decimal is fixed at 18 digits and `mulFrac` can be used to multiply
/// the fixed point decimal with an ordinary `uint256` value.
library Fractional {
using SafeMath for uint256;
uint256 internal constant DENOMINATOR = 1e18;
function getDenominator() internal pure returns (uint256) {
return DENOMINATOR;
}
function mulFrac(uint256 numerator, uint256 value) internal pure returns(uint256) {
return numerator.mul(value).div(DENOMINATOR);
}
}
// File: contracts/Parameters.sol
pragma solidity 0.5.9;
/// "Parameters" contract controls how other smart contracts behave through a key-value mapping, which other contracts
/// will query using `get` or `getRaw` functions. Every dataset community has one governance parameters contract.
/// Additionally, there is one parameter contract that is controlled by BandToken for protocol-wide parameters.
/// Conducting parameter changes can be done through the following process.
/// 1. Anyone can propose for a change by sending a `propose` transaction, which will assign an ID to the proposal.
/// 2. While the proposal is open, token holders can vote for approval or rejection through `vote` function.
/// 3. After the voting period ends, if the proposal receives enough participation and support, it will get accepted.
/// `resolve` function must to be called to trigger the decision process.
/// 4. Additionally, to facilitate unanimous parameter changes, a proposal is automatically resolved prior to its
/// expiration if more than the required percentage of ALL tokens approve the proposal.
/// Parameters contract uses the following parameters for its internal logic. These parameters can be change via the
/// same proposal process.
/// `params:expiration_time`: Number of seconds that a proposal stays open after getting proposed.
/// `params:min_participation_pct`: % of tokens required to participate in order for a proposal to be considered.
/// `params:support_required_pct`: % of participating tokens required to approve a proposal.
/// Parameters contract is "Ownable" initially to allow its owner to overrule the parameters during the initial
/// deployment as a measure against possible smart contract vulnerabilities. Owner can be set to 0x0 address afterwards.
contract Parameters is Ownable {
using SafeMath for uint256;
using Fractional for uint256;
event ProposalProposed(uint256 indexed proposalId, address indexed proposer, bytes32 reasonHash);
event ProposalVoted(uint256 indexed proposalId, address indexed voter, bool vote, uint256 votingPower);
event ProposalAccepted(uint256 indexed proposalId);
event ProposalRejected(uint256 indexed proposalId);
event ParameterChanged(bytes32 indexed key, uint256 value);
event ParameterProposed(uint256 indexed proposalId, bytes32 indexed key, uint256 value);
struct ParameterValue { bool existed; uint256 value; }
struct KeyValue { bytes32 key; uint256 value; }
enum ProposalState { INVALID, OPEN, ACCEPTED, REJECTED }
struct Proposal {
uint256 changesCount; /// The number of parameter changes
mapping (uint256 => KeyValue) changes; /// The list of parameter changes in proposal
uint256 snapshotNonce; /// The votingPowerNonce to count voting power
uint256 expirationTime; /// The time at which this proposal resolves
uint256 voteSupportRequiredPct; /// Threshold % for determining proposal acceptance
uint256 voteMinParticipation; /// The minimum # of votes required
uint256 totalVotingPower; /// The total voting power at this snapshotNonce
uint256 yesCount; /// The current total number of YES votes
uint256 noCount; /// The current total number of NO votes
mapping (address => bool) isVoted; /// Mapping for check who already voted
ProposalState proposalState; /// Current state of this proposal.
}
SnapshotToken public token;
Proposal[] public proposals;
mapping (bytes32 => ParameterValue) public params;
constructor(SnapshotToken _token) public {
token = _token;
}
function get(bytes8 namespace, bytes24 key) public view returns (uint256) {
uint8 namespaceSize = 0;
while (namespaceSize < 8 && namespace[namespaceSize] != byte(0)) ++namespaceSize;
return getRaw(bytes32(namespace) | (bytes32(key) >> (8 * namespaceSize)));
}
function getRaw(bytes32 rawKey) public view returns (uint256) {
ParameterValue storage param = params[rawKey];
require(param.existed);
return param.value;
}
function set(bytes8 namespace, bytes24[] memory keys, uint256[] memory values) public onlyOwner {
require(keys.length == values.length);
bytes32[] memory rawKeys = new bytes32[](keys.length);
uint8 namespaceSize = 0;
while (namespaceSize < 8 && namespace[namespaceSize] != byte(0)) ++namespaceSize;
for (uint256 i = 0; i < keys.length; i++) {
rawKeys[i] = bytes32(namespace) | bytes32(keys[i]) >> (8 * namespaceSize);
}
setRaw(rawKeys, values);
}
function setRaw(bytes32[] memory rawKeys, uint256[] memory values) public onlyOwner {
require(rawKeys.length == values.length);
for (uint256 i = 0; i < rawKeys.length; i++) {
params[rawKeys[i]].existed = true;
params[rawKeys[i]].value = values[i];
emit ParameterChanged(rawKeys[i], values[i]);
}
}
function getProposalChange(uint256 proposalId, uint256 changeIndex) public view returns (bytes32, uint256) {
KeyValue memory keyValue = proposals[proposalId].changes[changeIndex];
return (keyValue.key, keyValue.value);
}
function propose(bytes32 reasonHash, bytes32[] calldata keys, uint256[] calldata values) external {
require(keys.length == values.length);
uint256 proposalId = proposals.length;
proposals.push(Proposal({
changesCount: keys.length,
snapshotNonce: token.votingPowerChangeNonce(),
expirationTime: now.add(getRaw("params:expiration_time")),
voteSupportRequiredPct: getRaw("params:support_required_pct"),
voteMinParticipation: getRaw("params:min_participation_pct").mulFrac(token.totalSupply()),
totalVotingPower: token.totalSupply(),
yesCount: 0,
noCount: 0,
proposalState: ProposalState.OPEN
}));
emit ProposalProposed(proposalId, msg.sender, reasonHash);
for (uint256 index = 0; index < keys.length; ++index) {
bytes32 key = keys[index];
uint256 value = values[index];
emit ParameterProposed(proposalId, key, value);
proposals[proposalId].changes[index] = KeyValue({key: key, value: value});
}
}
function vote(uint256 proposalId, bool accepted) public {
Proposal storage proposal = proposals[proposalId];
require(proposal.proposalState == ProposalState.OPEN);
require(now < proposal.expirationTime);
require(!proposal.isVoted[msg.sender]);
uint256 votingPower = token.historicalVotingPowerAtNonce(msg.sender, proposal.snapshotNonce);
require(votingPower > 0);
if (accepted) {
proposal.yesCount = proposal.yesCount.add(votingPower);
} else {
proposal.noCount = proposal.noCount.add(votingPower);
}
proposal.isVoted[msg.sender] = true;
emit ProposalVoted(proposalId, msg.sender, accepted, votingPower);
uint256 minVoteToAccept = proposal.voteSupportRequiredPct.mulFrac(proposal.totalVotingPower);
uint256 minVoteToReject = proposal.totalVotingPower.sub(minVoteToAccept);
if (proposal.yesCount >= minVoteToAccept) {
_acceptProposal(proposalId);
} else if (proposal.noCount > minVoteToReject) {
_rejectProposal(proposalId);
}
}
function resolve(uint256 proposalId) public {
Proposal storage proposal = proposals[proposalId];
require(proposal.proposalState == ProposalState.OPEN);
require(now >= proposal.expirationTime);
uint256 yesCount = proposal.yesCount;
uint256 noCount = proposal.noCount;
uint256 totalCount = yesCount.add(noCount);
if (totalCount >= proposal.voteMinParticipation &&
yesCount.mul(Fractional.getDenominator()) >= proposal.voteSupportRequiredPct.mul(totalCount)) {
_acceptProposal(proposalId);
} else {
_rejectProposal(proposalId);
}
}
function _acceptProposal(uint256 proposalId) internal {
Proposal storage proposal = proposals[proposalId];
proposal.proposalState = ProposalState.ACCEPTED;
for (uint256 index = 0; index < proposal.changesCount; ++index) {
bytes32 key = proposal.changes[index].key;
uint256 value = proposal.changes[index].value;
params[key].existed = true;
params[key].value = value;
emit ParameterChanged(key, value);
}
emit ProposalAccepted(proposalId);
}
function _rejectProposal(uint256 proposalId) internal {
Proposal storage proposal = proposals[proposalId];
proposal.proposalState = ProposalState.REJECTED;
emit ProposalRejected(proposalId);
}
}
{
"compilationTarget": {
"Parameters.sol": "Parameters"
},
"evmVersion": "petersburg",
"libraries": {},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"constant":false,"inputs":[{"name":"reasonHash","type":"bytes32"},{"name":"keys","type":"bytes32[]"},{"name":"values","type":"uint256[]"}],"name":"propose","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"name":"","type":"uint256"}],"name":"proposals","outputs":[{"name":"changesCount","type":"uint256"},{"name":"snapshotNonce","type":"uint256"},{"name":"expirationTime","type":"uint256"},{"name":"voteSupportRequiredPct","type":"uint256"},{"name":"voteMinParticipation","type":"uint256"},{"name":"totalVotingPower","type":"uint256"},{"name":"yesCount","type":"uint256"},{"name":"noCount","type":"uint256"},{"name":"proposalState","type":"uint8"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"name":"namespace","type":"bytes8"},{"name":"key","type":"bytes24"}],"name":"get","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"name":"proposalId","type":"uint256"},{"name":"changeIndex","type":"uint256"}],"name":"getProposalChange","outputs":[{"name":"","type":"bytes32"},{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"rawKeys","type":"bytes32[]"},{"name":"values","type":"uint256[]"}],"name":"setRaw","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"proposalId","type":"uint256"}],"name":"resolve","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"renounceOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"name":"rawKey","type":"bytes32"}],"name":"getRaw","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"namespace","type":"bytes8"},{"name":"keys","type":"bytes24[]"},{"name":"values","type":"uint256[]"}],"name":"set","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"owner","outputs":[{"name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"isOwner","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"proposalId","type":"uint256"},{"name":"accepted","type":"bool"}],"name":"vote","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"name":"","type":"bytes32"}],"name":"params","outputs":[{"name":"existed","type":"bool"},{"name":"value","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"token","outputs":[{"name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[{"name":"_token","type":"address"}],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"name":"proposalId","type":"uint256"},{"indexed":true,"name":"proposer","type":"address"},{"indexed":false,"name":"reasonHash","type":"bytes32"}],"name":"ProposalProposed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"proposalId","type":"uint256"},{"indexed":true,"name":"voter","type":"address"},{"indexed":false,"name":"vote","type":"bool"},{"indexed":false,"name":"votingPower","type":"uint256"}],"name":"ProposalVoted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"proposalId","type":"uint256"}],"name":"ProposalAccepted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"proposalId","type":"uint256"}],"name":"ProposalRejected","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"key","type":"bytes32"},{"indexed":false,"name":"value","type":"uint256"}],"name":"ParameterChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"proposalId","type":"uint256"},{"indexed":true,"name":"key","type":"bytes32"},{"indexed":false,"name":"value","type":"uint256"}],"name":"ParameterProposed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"previousOwner","type":"address"},{"indexed":true,"name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"}]