// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: @bancor/token-governance/contracts/IClaimable.sol
pragma solidity 0.6.12;
/// @title Claimable contract interface
interface IClaimable {
function owner() external view returns (address);
function transferOwnership(address newOwner) external;
function acceptOwnership() external;
}
// File: @bancor/token-governance/contracts/IMintableToken.sol
pragma solidity 0.6.12;
/// @title Mintable Token interface
interface IMintableToken is IERC20, IClaimable {
function issue(address to, uint256 amount) external;
function destroy(address from, uint256 amount) external;
}
// File: @bancor/token-governance/contracts/ITokenGovernance.sol
pragma solidity 0.6.12;
/// @title The interface for mintable/burnable token governance.
interface ITokenGovernance {
// The address of the mintable ERC20 token.
function token() external view returns (IMintableToken);
/// @dev Mints new tokens.
///
/// @param to Account to receive the new amount.
/// @param amount Amount to increase the supply by.
///
function mint(address to, uint256 amount) external;
/// @dev Burns tokens from the caller.
///
/// @param amount Amount to decrease the supply by.
///
function burn(uint256 amount) external;
}
// File: solidity/contracts/utility/interfaces/ICheckpointStore.sol
pragma solidity 0.6.12;
/**
* @dev Checkpoint store contract interface
*/
interface ICheckpointStore {
function addCheckpoint(address _address) external;
function addPastCheckpoint(address _address, uint256 _time) external;
function addPastCheckpoints(address[] calldata _addresses, uint256[] calldata _times) external;
function checkpoint(address _address) external view returns (uint256);
}
// File: solidity/contracts/utility/ReentrancyGuard.sol
pragma solidity 0.6.12;
/**
* @dev This contract provides protection against calling a function
* (directly or indirectly) from within itself.
*/
contract ReentrancyGuard {
uint256 private constant UNLOCKED = 1;
uint256 private constant LOCKED = 2;
// LOCKED while protected code is being executed, UNLOCKED otherwise
uint256 private state = UNLOCKED;
/**
* @dev ensures instantiation only by sub-contracts
*/
constructor() internal {}
// protects a function against reentrancy attacks
modifier protected() {
_protected();
state = LOCKED;
_;
state = UNLOCKED;
}
// error message binary size optimization
function _protected() internal view {
require(state == UNLOCKED, "ERR_REENTRANCY");
}
}
// File: solidity/contracts/utility/interfaces/IOwned.sol
pragma solidity 0.6.12;
/*
Owned contract interface
*/
interface IOwned {
// this function isn't since the compiler emits automatically generated getter functions as external
function owner() external view returns (address);
function transferOwnership(address _newOwner) external;
function acceptOwnership() external;
}
// File: solidity/contracts/utility/Owned.sol
pragma solidity 0.6.12;
/**
* @dev This contract provides support and utilities for contract ownership.
*/
contract Owned is IOwned {
address public override owner;
address public newOwner;
/**
* @dev triggered when the owner is updated
*
* @param _prevOwner previous owner
* @param _newOwner new owner
*/
event OwnerUpdate(address indexed _prevOwner, address indexed _newOwner);
/**
* @dev initializes a new Owned instance
*/
constructor() public {
owner = msg.sender;
}
// allows execution by the owner only
modifier ownerOnly {
_ownerOnly();
_;
}
// error message binary size optimization
function _ownerOnly() internal view {
require(msg.sender == owner, "ERR_ACCESS_DENIED");
}
/**
* @dev allows transferring the contract ownership
* the new owner still needs to accept the transfer
* can only be called by the contract owner
*
* @param _newOwner new contract owner
*/
function transferOwnership(address _newOwner) public override ownerOnly {
require(_newOwner != owner, "ERR_SAME_OWNER");
newOwner = _newOwner;
}
/**
* @dev used by a new owner to accept an ownership transfer
*/
function acceptOwnership() public override {
require(msg.sender == newOwner, "ERR_ACCESS_DENIED");
emit OwnerUpdate(owner, newOwner);
owner = newOwner;
newOwner = address(0);
}
}
// File: solidity/contracts/utility/SafeMath.sol
pragma solidity 0.6.12;
/**
* @dev This library supports basic math operations with overflow/underflow protection.
*/
library SafeMath {
/**
* @dev returns the sum of _x and _y, reverts if the calculation overflows
*
* @param _x value 1
* @param _y value 2
*
* @return sum
*/
function add(uint256 _x, uint256 _y) internal pure returns (uint256) {
uint256 z = _x + _y;
require(z >= _x, "ERR_OVERFLOW");
return z;
}
/**
* @dev returns the difference of _x minus _y, reverts if the calculation underflows
*
* @param _x minuend
* @param _y subtrahend
*
* @return difference
*/
function sub(uint256 _x, uint256 _y) internal pure returns (uint256) {
require(_x >= _y, "ERR_UNDERFLOW");
return _x - _y;
}
/**
* @dev returns the product of multiplying _x by _y, reverts if the calculation overflows
*
* @param _x factor 1
* @param _y factor 2
*
* @return product
*/
function mul(uint256 _x, uint256 _y) internal pure returns (uint256) {
// gas optimization
if (_x == 0) return 0;
uint256 z = _x * _y;
require(z / _x == _y, "ERR_OVERFLOW");
return z;
}
/**
* @dev Integer division of two numbers truncating the quotient, reverts on division by zero.
*
* @param _x dividend
* @param _y divisor
*
* @return quotient
*/
function div(uint256 _x, uint256 _y) internal pure returns (uint256) {
require(_y > 0, "ERR_DIVIDE_BY_ZERO");
uint256 c = _x / _y;
return c;
}
}
// File: solidity/contracts/utility/Math.sol
pragma solidity 0.6.12;
/**
* @dev This library provides a set of complex math operations.
*/
library Math {
/**
* @dev returns the largest integer smaller than or equal to the square root of a positive integer
*
* @param _num a positive integer
*
* @return the largest integer smaller than or equal to the square root of the positive integer
*/
function floorSqrt(uint256 _num) internal pure returns (uint256) {
uint256 x = _num / 2 + 1;
uint256 y = (x + _num / x) / 2;
while (x > y) {
x = y;
y = (x + _num / x) / 2;
}
return x;
}
/**
* @dev returns the smallest integer larger than or equal to the square root of a positive integer
*
* @param _num a positive integer
*
* @return the smallest integer larger than or equal to the square root of the positive integer
*/
function ceilSqrt(uint256 _num) internal pure returns (uint256) {
uint256 x = floorSqrt(_num);
return x * x == _num ? x : x + 1;
}
/**
* @dev computes a reduced-scalar ratio
*
* @param _n ratio numerator
* @param _d ratio denominator
* @param _max maximum desired scalar
*
* @return ratio's numerator and denominator
*/
function reducedRatio(
uint256 _n,
uint256 _d,
uint256 _max
) internal pure returns (uint256, uint256) {
(uint256 n, uint256 d) = (_n, _d);
if (n > _max || d > _max) {
(n, d) = normalizedRatio(n, d, _max);
}
if (n != d) {
return (n, d);
}
return (1, 1);
}
/**
* @dev computes "scale * a / (a + b)" and "scale * b / (a + b)".
*/
function normalizedRatio(
uint256 _a,
uint256 _b,
uint256 _scale
) internal pure returns (uint256, uint256) {
if (_a <= _b) {
return accurateRatio(_a, _b, _scale);
}
(uint256 y, uint256 x) = accurateRatio(_b, _a, _scale);
return (x, y);
}
/**
* @dev computes "scale * a / (a + b)" and "scale * b / (a + b)", assuming that "a <= b".
*/
function accurateRatio(
uint256 _a,
uint256 _b,
uint256 _scale
) internal pure returns (uint256, uint256) {
uint256 maxVal = uint256(-1) / _scale;
if (_a > maxVal) {
uint256 c = _a / (maxVal + 1) + 1;
_a /= c; // we can now safely compute `_a * _scale`
_b /= c;
}
if (_a != _b) {
uint256 n = _a * _scale;
uint256 d = _a + _b; // can overflow
if (d >= _a) { // no overflow in `_a + _b`
uint256 x = roundDiv(n, d); // we can now safely compute `_scale - x`
uint256 y = _scale - x;
return (x, y);
}
if (n < _b - (_b - _a) / 2) {
return (0, _scale); // `_a * _scale < (_a + _b) / 2 < MAX_UINT256 < _a + _b`
}
return (1, _scale - 1); // `(_a + _b) / 2 < _a * _scale < MAX_UINT256 < _a + _b`
}
return (_scale / 2, _scale / 2); // allow reduction to `(1, 1)` in the calling function
}
/**
* @dev computes the nearest integer to a given quotient without overflowing or underflowing.
*/
function roundDiv(uint256 _n, uint256 _d) internal pure returns (uint256) {
return _n / _d + (_n % _d) / (_d - _d / 2);
}
/**
* @dev returns the average number of decimal digits in a given list of positive integers
*
* @param _values list of positive integers
*
* @return the average number of decimal digits in the given list of positive integers
*/
function geometricMean(uint256[] memory _values) internal pure returns (uint256) {
uint256 numOfDigits = 0;
uint256 length = _values.length;
for (uint256 i = 0; i < length; i++) {
numOfDigits += decimalLength(_values[i]);
}
return uint256(10)**(roundDivUnsafe(numOfDigits, length) - 1);
}
/**
* @dev returns the number of decimal digits in a given positive integer
*
* @param _x positive integer
*
* @return the number of decimal digits in the given positive integer
*/
function decimalLength(uint256 _x) internal pure returns (uint256) {
uint256 y = 0;
for (uint256 x = _x; x > 0; x /= 10) {
y++;
}
return y;
}
/**
* @dev returns the nearest integer to a given quotient
* the computation is overflow-safe assuming that the input is sufficiently small
*
* @param _n quotient numerator
* @param _d quotient denominator
*
* @return the nearest integer to the given quotient
*/
function roundDivUnsafe(uint256 _n, uint256 _d) internal pure returns (uint256) {
return (_n + _d / 2) / _d;
}
/**
* @dev returns the larger of two values
*
* @param _val1 the first value
* @param _val2 the second value
*/
function max(uint256 _val1, uint256 _val2) internal pure returns (uint256) {
return _val1 > _val2 ? _val1 : _val2;
}
}
// File: solidity/contracts/token/interfaces/IERC20Token.sol
pragma solidity 0.6.12;
/*
ERC20 Standard Token interface
*/
interface IERC20Token {
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
function totalSupply() external view returns (uint256);
function balanceOf(address _owner) external view returns (uint256);
function allowance(address _owner, address _spender) external view returns (uint256);
function transfer(address _to, uint256 _value) external returns (bool);
function transferFrom(
address _from,
address _to,
uint256 _value
) external returns (bool);
function approve(address _spender, uint256 _value) external returns (bool);
}
// File: solidity/contracts/utility/TokenHandler.sol
pragma solidity 0.6.12;
contract TokenHandler {
bytes4 private constant APPROVE_FUNC_SELECTOR = bytes4(keccak256("approve(address,uint256)"));
bytes4 private constant TRANSFER_FUNC_SELECTOR = bytes4(keccak256("transfer(address,uint256)"));
bytes4 private constant TRANSFER_FROM_FUNC_SELECTOR = bytes4(keccak256("transferFrom(address,address,uint256)"));
/**
* @dev executes the ERC20 token's `approve` function and reverts upon failure
* the main purpose of this function is to prevent a non standard ERC20 token
* from failing silently
*
* @param _token ERC20 token address
* @param _spender approved address
* @param _value allowance amount
*/
function safeApprove(
IERC20Token _token,
address _spender,
uint256 _value
) internal {
(bool success, bytes memory data) = address(_token).call(
abi.encodeWithSelector(APPROVE_FUNC_SELECTOR, _spender, _value)
);
require(success && (data.length == 0 || abi.decode(data, (bool))), "ERR_APPROVE_FAILED");
}
/**
* @dev executes the ERC20 token's `transfer` function and reverts upon failure
* the main purpose of this function is to prevent a non standard ERC20 token
* from failing silently
*
* @param _token ERC20 token address
* @param _to target address
* @param _value transfer amount
*/
function safeTransfer(
IERC20Token _token,
address _to,
uint256 _value
) internal {
(bool success, bytes memory data) = address(_token).call(
abi.encodeWithSelector(TRANSFER_FUNC_SELECTOR, _to, _value)
);
require(success && (data.length == 0 || abi.decode(data, (bool))), "ERR_TRANSFER_FAILED");
}
/**
* @dev executes the ERC20 token's `transferFrom` function and reverts upon failure
* the main purpose of this function is to prevent a non standard ERC20 token
* from failing silently
*
* @param _token ERC20 token address
* @param _from source address
* @param _to target address
* @param _value transfer amount
*/
function safeTransferFrom(
IERC20Token _token,
address _from,
address _to,
uint256 _value
) internal {
(bool success, bytes memory data) = address(_token).call(
abi.encodeWithSelector(TRANSFER_FROM_FUNC_SELECTOR, _from, _to, _value)
);
require(success && (data.length == 0 || abi.decode(data, (bool))), "ERR_TRANSFER_FROM_FAILED");
}
}
// File: solidity/contracts/utility/Types.sol
pragma solidity 0.6.12;
/**
* @dev This contract provides types which can be used by various contracts.
*/
struct Fraction {
uint256 n; // numerator
uint256 d; // denominator
}
// File: solidity/contracts/utility/Time.sol
pragma solidity 0.6.12;
/*
Time implementing contract
*/
contract Time {
/**
* @dev returns the current time
*/
function time() internal view virtual returns (uint256) {
return block.timestamp;
}
}
// File: solidity/contracts/utility/Utils.sol
pragma solidity 0.6.12;
/**
* @dev Utilities & Common Modifiers
*/
contract Utils {
// verifies that a value is greater than zero
modifier greaterThanZero(uint256 _value) {
_greaterThanZero(_value);
_;
}
// error message binary size optimization
function _greaterThanZero(uint256 _value) internal pure {
require(_value > 0, "ERR_ZERO_VALUE");
}
// validates an address - currently only checks that it isn't null
modifier validAddress(address _address) {
_validAddress(_address);
_;
}
// error message binary size optimization
function _validAddress(address _address) internal pure {
require(_address != address(0), "ERR_INVALID_ADDRESS");
}
// verifies that the address is different than this contract address
modifier notThis(address _address) {
_notThis(_address);
_;
}
// error message binary size optimization
function _notThis(address _address) internal view {
require(_address != address(this), "ERR_ADDRESS_IS_SELF");
}
}
// File: solidity/contracts/converter/interfaces/IConverterAnchor.sol
pragma solidity 0.6.12;
/*
Converter Anchor interface
*/
interface IConverterAnchor is IOwned {
}
// File: solidity/contracts/token/interfaces/IDSToken.sol
pragma solidity 0.6.12;
/*
DSToken interface
*/
interface IDSToken is IConverterAnchor, IERC20Token {
function issue(address _to, uint256 _amount) external;
function destroy(address _from, uint256 _amount) external;
}
// File: solidity/contracts/liquidity-protection/interfaces/ILiquidityProtectionStore.sol
pragma solidity 0.6.12;
/*
Liquidity Protection Store interface
*/
interface ILiquidityProtectionStore is IOwned {
function withdrawTokens(
IERC20Token _token,
address _to,
uint256 _amount
) external;
function protectedLiquidity(uint256 _id)
external
view
returns (
address,
IDSToken,
IERC20Token,
uint256,
uint256,
uint256,
uint256,
uint256
);
function addProtectedLiquidity(
address _provider,
IDSToken _poolToken,
IERC20Token _reserveToken,
uint256 _poolAmount,
uint256 _reserveAmount,
uint256 _reserveRateN,
uint256 _reserveRateD,
uint256 _timestamp
) external returns (uint256);
function updateProtectedLiquidityAmounts(
uint256 _id,
uint256 _poolNewAmount,
uint256 _reserveNewAmount
) external;
function removeProtectedLiquidity(uint256 _id) external;
function lockedBalance(address _provider, uint256 _index) external view returns (uint256, uint256);
function lockedBalanceRange(
address _provider,
uint256 _startIndex,
uint256 _endIndex
) external view returns (uint256[] memory, uint256[] memory);
function addLockedBalance(
address _provider,
uint256 _reserveAmount,
uint256 _expirationTime
) external returns (uint256);
function removeLockedBalance(address _provider, uint256 _index) external;
function systemBalance(IERC20Token _poolToken) external view returns (uint256);
function incSystemBalance(IERC20Token _poolToken, uint256 _poolAmount) external;
function decSystemBalance(IERC20Token _poolToken, uint256 _poolAmount) external;
}
// File: solidity/contracts/liquidity-protection/interfaces/ILiquidityProtectionSettings.sol
pragma solidity 0.6.12;
/*
Liquidity Protection Store Settings interface
*/
interface ILiquidityProtectionSettings {
function addPoolToWhitelist(IConverterAnchor _poolAnchor) external;
function removePoolFromWhitelist(IConverterAnchor _poolAnchor) external;
function isPoolWhitelisted(IConverterAnchor _poolAnchor) external view returns (bool);
function isPoolSupported(IConverterAnchor _poolAnchor) external view returns (bool);
function minNetworkTokenLiquidityForMinting() external view returns (uint256);
function defaultNetworkTokenMintingLimit() external view returns (uint256);
function networkTokenMintingLimits(IConverterAnchor _poolAnchor) external view returns (uint256);
function networkTokensMinted(IConverterAnchor _poolAnchor) external view returns (uint256);
function incNetworkTokensMinted(IConverterAnchor _poolAnchor, uint256 _amount) external;
function decNetworkTokensMinted(IConverterAnchor _poolAnchor, uint256 _amount) external;
function minProtectionDelay() external view returns (uint256);
function maxProtectionDelay() external view returns (uint256);
function setProtectionDelays(uint256 _minProtectionDelay, uint256 _maxProtectionDelay) external;
function minNetworkCompensation() external view returns (uint256);
function setMinNetworkCompensation(uint256 _minCompensation) external;
function lockDuration() external view returns (uint256);
function setLockDuration(uint256 _lockDuration) external;
function averageRateMaxDeviation() external view returns (uint32);
function setAverageRateMaxDeviation(uint32 _averageRateMaxDeviation) external;
}
// File: solidity/contracts/converter/interfaces/IConverter.sol
pragma solidity 0.6.12;
/*
Converter interface
*/
interface IConverter is IOwned {
function converterType() external pure returns (uint16);
function anchor() external view returns (IConverterAnchor);
function isActive() external view returns (bool);
function targetAmountAndFee(
IERC20Token _sourceToken,
IERC20Token _targetToken,
uint256 _amount
) external view returns (uint256, uint256);
function convert(
IERC20Token _sourceToken,
IERC20Token _targetToken,
uint256 _amount,
address _trader,
address payable _beneficiary
) external payable returns (uint256);
function conversionFee() external view returns (uint32);
function maxConversionFee() external view returns (uint32);
function reserveBalance(IERC20Token _reserveToken) external view returns (uint256);
receive() external payable;
function transferAnchorOwnership(address _newOwner) external;
function acceptAnchorOwnership() external;
function setConversionFee(uint32 _conversionFee) external;
function withdrawTokens(
IERC20Token _token,
address _to,
uint256 _amount
) external;
function withdrawETH(address payable _to) external;
function addReserve(IERC20Token _token, uint32 _ratio) external;
// deprecated, backward compatibility
function token() external view returns (IConverterAnchor);
function transferTokenOwnership(address _newOwner) external;
function acceptTokenOwnership() external;
function connectors(IERC20Token _address)
external
view
returns (
uint256,
uint32,
bool,
bool,
bool
);
function getConnectorBalance(IERC20Token _connectorToken) external view returns (uint256);
function connectorTokens(uint256 _index) external view returns (IERC20Token);
function connectorTokenCount() external view returns (uint16);
/**
* @dev triggered when the converter is activated
*
* @param _type converter type
* @param _anchor converter anchor
* @param _activated true if the converter was activated, false if it was deactivated
*/
event Activation(uint16 indexed _type, IConverterAnchor indexed _anchor, bool indexed _activated);
/**
* @dev triggered when a conversion between two tokens occurs
*
* @param _fromToken source ERC20 token
* @param _toToken target ERC20 token
* @param _trader wallet that initiated the trade
* @param _amount input amount in units of the source token
* @param _return output amount minus conversion fee in units of the target token
* @param _conversionFee conversion fee in units of the target token
*/
event Conversion(
IERC20Token indexed _fromToken,
IERC20Token indexed _toToken,
address indexed _trader,
uint256 _amount,
uint256 _return,
int256 _conversionFee
);
/**
* @dev triggered when the rate between two tokens in the converter changes
* note that the event might be dispatched for rate updates between any two tokens in the converter
*
* @param _token1 address of the first token
* @param _token2 address of the second token
* @param _rateN rate of 1 unit of `_token1` in `_token2` (numerator)
* @param _rateD rate of 1 unit of `_token1` in `_token2` (denominator)
*/
event TokenRateUpdate(IERC20Token indexed _token1, IERC20Token indexed _token2, uint256 _rateN, uint256 _rateD);
/**
* @dev triggered when the conversion fee is updated
*
* @param _prevFee previous fee percentage, represented in ppm
* @param _newFee new fee percentage, represented in ppm
*/
event ConversionFeeUpdate(uint32 _prevFee, uint32 _newFee);
}
// File: solidity/contracts/converter/interfaces/IConverterRegistry.sol
pragma solidity 0.6.12;
interface IConverterRegistry {
function getAnchorCount() external view returns (uint256);
function getAnchors() external view returns (address[] memory);
function getAnchor(uint256 _index) external view returns (IConverterAnchor);
function isAnchor(address _value) external view returns (bool);
function getLiquidityPoolCount() external view returns (uint256);
function getLiquidityPools() external view returns (address[] memory);
function getLiquidityPool(uint256 _index) external view returns (IConverterAnchor);
function isLiquidityPool(address _value) external view returns (bool);
function getConvertibleTokenCount() external view returns (uint256);
function getConvertibleTokens() external view returns (address[] memory);
function getConvertibleToken(uint256 _index) external view returns (IERC20Token);
function isConvertibleToken(address _value) external view returns (bool);
function getConvertibleTokenAnchorCount(IERC20Token _convertibleToken) external view returns (uint256);
function getConvertibleTokenAnchors(IERC20Token _convertibleToken) external view returns (address[] memory);
function getConvertibleTokenAnchor(IERC20Token _convertibleToken, uint256 _index)
external
view
returns (IConverterAnchor);
function isConvertibleTokenAnchor(IERC20Token _convertibleToken, address _value) external view returns (bool);
}
// File: solidity/contracts/liquidity-protection/LiquidityProtection.sol
pragma solidity 0.6.12;
interface ILiquidityPoolConverter is IConverter {
function addLiquidity(
IERC20Token[] memory _reserveTokens,
uint256[] memory _reserveAmounts,
uint256 _minReturn
) external payable;
function removeLiquidity(
uint256 _amount,
IERC20Token[] memory _reserveTokens,
uint256[] memory _reserveMinReturnAmounts
) external;
function recentAverageRate(IERC20Token _reserveToken) external view returns (uint256, uint256);
}
/**
* @dev This contract implements the liquidity protection mechanism.
*/
contract LiquidityProtection is TokenHandler, Utils, Owned, ReentrancyGuard, Time {
using SafeMath for uint256;
using Math for *;
struct ProtectedLiquidity {
address provider; // liquidity provider
IDSToken poolToken; // pool token address
IERC20Token reserveToken; // reserve token address
uint256 poolAmount; // pool token amount
uint256 reserveAmount; // reserve token amount
uint256 reserveRateN; // rate of 1 protected reserve token in units of the other reserve token (numerator)
uint256 reserveRateD; // rate of 1 protected reserve token in units of the other reserve token (denominator)
uint256 timestamp; // timestamp
}
// various rates between the two reserve tokens. the rate is of 1 unit of the protected reserve token in units of the other reserve token
struct PackedRates {
uint128 addSpotRateN; // spot rate of 1 A in units of B when liquidity was added (numerator)
uint128 addSpotRateD; // spot rate of 1 A in units of B when liquidity was added (denominator)
uint128 removeSpotRateN; // spot rate of 1 A in units of B when liquidity is removed (numerator)
uint128 removeSpotRateD; // spot rate of 1 A in units of B when liquidity is removed (denominator)
uint128 removeAverageRateN; // average rate of 1 A in units of B when liquidity is removed (numerator)
uint128 removeAverageRateD; // average rate of 1 A in units of B when liquidity is removed (denominator)
}
IERC20Token internal constant ETH_RESERVE_ADDRESS = IERC20Token(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
uint32 internal constant PPM_RESOLUTION = 1000000;
uint256 internal constant MAX_UINT128 = 2**128 - 1;
uint256 internal constant MAX_UINT256 = uint256(-1);
ILiquidityProtectionSettings public immutable settings;
ILiquidityProtectionStore public immutable store;
IERC20Token public immutable networkToken;
ITokenGovernance public immutable networkTokenGovernance;
IERC20Token public immutable govToken;
ITokenGovernance public immutable govTokenGovernance;
ICheckpointStore public immutable lastRemoveCheckpointStore;
// true if the contract is currently adding/removing liquidity from a converter, used for accepting ETH
bool private updatingLiquidity = false;
/**
* @dev initializes a new LiquidityProtection contract
*
* @param _settings liquidity protection settings
* @param _store liquidity protection store
* @param _networkTokenGovernance network token governance
* @param _govTokenGovernance governance token governance
* @param _lastRemoveCheckpointStore last liquidity removal/unprotection checkpoints store
*/
constructor(
ILiquidityProtectionSettings _settings,
ILiquidityProtectionStore _store,
ITokenGovernance _networkTokenGovernance,
ITokenGovernance _govTokenGovernance,
ICheckpointStore _lastRemoveCheckpointStore
)
public
validAddress(address(_settings))
validAddress(address(_store))
validAddress(address(_networkTokenGovernance))
validAddress(address(_govTokenGovernance))
notThis(address(_settings))
notThis(address(_store))
notThis(address(_networkTokenGovernance))
notThis(address(_govTokenGovernance))
{
settings = _settings;
store = _store;
networkTokenGovernance = _networkTokenGovernance;
networkToken = IERC20Token(address(_networkTokenGovernance.token()));
govTokenGovernance = _govTokenGovernance;
govToken = IERC20Token(address(_govTokenGovernance.token()));
lastRemoveCheckpointStore = _lastRemoveCheckpointStore;
}
// ensures that the contract is currently removing liquidity from a converter
modifier updatingLiquidityOnly() {
_updatingLiquidityOnly();
_;
}
// error message binary size optimization
function _updatingLiquidityOnly() internal view {
require(updatingLiquidity, "ERR_NOT_UPDATING_LIQUIDITY");
}
// ensures that the portion is valid
modifier validPortion(uint32 _portion) {
_validPortion(_portion);
_;
}
// error message binary size optimization
function _validPortion(uint32 _portion) internal pure {
require(_portion > 0 && _portion <= PPM_RESOLUTION, "ERR_INVALID_PORTION");
}
// ensures that the pool is supported
modifier poolSupported(IConverterAnchor _poolAnchor) {
_poolSupported(_poolAnchor);
_;
}
// error message binary size optimization
function _poolSupported(IConverterAnchor _poolAnchor) internal view {
require(settings.isPoolSupported(_poolAnchor), "ERR_POOL_NOT_SUPPORTED");
}
// ensures that the pool is whitelisted
modifier poolWhitelisted(IConverterAnchor _poolAnchor) {
_poolWhitelisted(_poolAnchor);
_;
}
// error message binary size optimization
function _poolWhitelisted(IConverterAnchor _poolAnchor) internal view {
require(settings.isPoolWhitelisted(_poolAnchor), "ERR_POOL_NOT_WHITELISTED");
}
/**
* @dev accept ETH
* used when removing liquidity from ETH converters
*/
receive() external payable updatingLiquidityOnly() {}
/**
* @dev transfers the ownership of the store
* can only be called by the contract owner
*
* @param _newOwner the new owner of the store
*/
function transferStoreOwnership(address _newOwner) external ownerOnly {
store.transferOwnership(_newOwner);
}
/**
* @dev accepts the ownership of the store
* can only be called by the contract owner
*/
function acceptStoreOwnership() external ownerOnly {
store.acceptOwnership();
}
/**
* @dev adds protection to existing pool tokens
* also mints new governance tokens for the caller
*
* @param _poolAnchor anchor of the pool
* @param _amount amount of pool tokens to protect
*/
function protectLiquidity(IConverterAnchor _poolAnchor, uint256 _amount)
external
protected
poolSupported(_poolAnchor)
poolWhitelisted(_poolAnchor)
greaterThanZero(_amount)
{
// get the converter
IConverter converter = IConverter(payable(ownedBy(_poolAnchor)));
// save a local copy of `networkToken`
IERC20Token networkTokenLocal = networkToken;
// protect both reserves
IDSToken poolToken = IDSToken(address(_poolAnchor));
protectLiquidity(poolToken, converter, networkTokenLocal, 0, _amount / 2);
protectLiquidity(poolToken, converter, networkTokenLocal, 1, _amount - _amount / 2);
// transfer the pool tokens from the caller directly to the store
safeTransferFrom(poolToken, msg.sender, address(store), _amount);
}
/**
* @dev cancels the protection and returns the pool tokens to the caller
* also burns governance tokens from the caller
* must be called with the indices of both the base token and the network token protections
*
* @param _id1 id in the caller's list of protected liquidity
* @param _id2 matching id in the caller's list of protected liquidity
*/
function unprotectLiquidity(uint256 _id1, uint256 _id2) external protected {
require(_id1 != _id2, "ERR_SAME_ID");
ProtectedLiquidity memory liquidity1 = protectedLiquidity(_id1, msg.sender);
ProtectedLiquidity memory liquidity2 = protectedLiquidity(_id2, msg.sender);
// save a local copy of `networkToken`
IERC20Token networkTokenLocal = networkToken;
// verify that the two protected liquidities were added together (using `protect`)
require(
liquidity1.poolToken == liquidity2.poolToken &&
liquidity1.reserveToken != liquidity2.reserveToken &&
(liquidity1.reserveToken == networkTokenLocal || liquidity2.reserveToken == networkTokenLocal) &&
liquidity1.timestamp == liquidity2.timestamp &&
liquidity1.poolAmount <= liquidity2.poolAmount.add(1) &&
liquidity2.poolAmount <= liquidity1.poolAmount.add(1),
"ERR_PROTECTIONS_MISMATCH"
);
// verify that the two protected liquidities are not removed on the same block in which they were added
require(liquidity1.timestamp < time(), "ERR_TOO_EARLY");
// burn the governance tokens from the caller. we need to transfer the tokens to the contract itself, since only
// token holders can burn their tokens
uint256 amount =
liquidity1.reserveToken == networkTokenLocal ? liquidity1.reserveAmount : liquidity2.reserveAmount;
safeTransferFrom(govToken, msg.sender, address(this), amount);
govTokenGovernance.burn(amount);
// update last liquidity removal checkpoint
lastRemoveCheckpointStore.addCheckpoint(msg.sender);
// remove the two protected liquidities from the provider
store.removeProtectedLiquidity(_id1);
store.removeProtectedLiquidity(_id2);
// transfer the pool tokens back to the caller
store.withdrawTokens(liquidity1.poolToken, msg.sender, liquidity1.poolAmount.add(liquidity2.poolAmount));
}
/**
* @dev adds protected liquidity to a pool for a specific recipient
* also mints new governance tokens for the caller if the caller adds network tokens
*
* @param _owner protected liquidity owner
* @param _poolAnchor anchor of the pool
* @param _reserveToken reserve token to add to the pool
* @param _amount amount of tokens to add to the pool
* @return new protected liquidity id
*/
function addLiquidityFor(
address _owner,
IConverterAnchor _poolAnchor,
IERC20Token _reserveToken,
uint256 _amount
)
external
payable
protected
validAddress(_owner)
poolSupported(_poolAnchor)
poolWhitelisted(_poolAnchor)
greaterThanZero(_amount)
returns (uint256)
{
return addLiquidity(_owner, _poolAnchor, _reserveToken, _amount);
}
/**
* @dev adds protected liquidity to a pool
* also mints new governance tokens for the caller if the caller adds network tokens
*
* @param _poolAnchor anchor of the pool
* @param _reserveToken reserve token to add to the pool
* @param _amount amount of tokens to add to the pool
* @return new protected liquidity id
*/
function addLiquidity(
IConverterAnchor _poolAnchor,
IERC20Token _reserveToken,
uint256 _amount
)
external
payable
protected
poolSupported(_poolAnchor)
poolWhitelisted(_poolAnchor)
greaterThanZero(_amount)
returns (uint256)
{
return addLiquidity(msg.sender, _poolAnchor, _reserveToken, _amount);
}
/**
* @dev adds protected liquidity to a pool for a specific recipient
* also mints new governance tokens for the caller if the caller adds network tokens
*
* @param _owner protected liquidity owner
* @param _poolAnchor anchor of the pool
* @param _reserveToken reserve token to add to the pool
* @param _amount amount of tokens to add to the pool
* @return new protected liquidity id
*/
function addLiquidity(
address _owner,
IConverterAnchor _poolAnchor,
IERC20Token _reserveToken,
uint256 _amount
) private returns (uint256) {
// save a local copy of `networkToken`
IERC20Token networkTokenLocal = networkToken;
if (_reserveToken == networkTokenLocal) {
require(msg.value == 0, "ERR_ETH_AMOUNT_MISMATCH");
return addNetworkTokenLiquidity(_owner, _poolAnchor, networkTokenLocal, _amount);
}
// verify that ETH was passed with the call if needed
uint256 val = _reserveToken == ETH_RESERVE_ADDRESS ? _amount : 0;
require(msg.value == val, "ERR_ETH_AMOUNT_MISMATCH");
return addBaseTokenLiquidity(_owner, _poolAnchor, _reserveToken, networkTokenLocal, _amount);
}
/**
* @dev adds protected network token liquidity to a pool
* also mints new governance tokens for the caller
*
* @param _owner protected liquidity owner
* @param _poolAnchor anchor of the pool
* @param _networkToken the network reserve token of the pool
* @param _amount amount of tokens to add to the pool
* @return new protected liquidity id
*/
function addNetworkTokenLiquidity(
address _owner,
IConverterAnchor _poolAnchor,
IERC20Token _networkToken,
uint256 _amount
) internal returns (uint256) {
IDSToken poolToken = IDSToken(address(_poolAnchor));
// get the rate between the pool token and the reserve
Fraction memory poolRate = poolTokenRate(poolToken, _networkToken);
// calculate the amount of pool tokens based on the amount of reserve tokens
uint256 poolTokenAmount = _amount.mul(poolRate.d).div(poolRate.n);
// remove the pool tokens from the system's ownership (will revert if not enough tokens are available)
store.decSystemBalance(poolToken, poolTokenAmount);
// add protected liquidity for the recipient
uint256 id = addProtectedLiquidity(_owner, poolToken, _networkToken, poolTokenAmount, _amount);
// burns the network tokens from the caller. we need to transfer the tokens to the contract itself, since only
// token holders can burn their tokens
safeTransferFrom(_networkToken, msg.sender, address(this), _amount);
networkTokenGovernance.burn(_amount);
settings.decNetworkTokensMinted(_poolAnchor, _amount);
// mint governance tokens to the recipient
govTokenGovernance.mint(_owner, _amount);
return id;
}
/**
* @dev adds protected base token liquidity to a pool
*
* @param _owner protected liquidity owner
* @param _poolAnchor anchor of the pool
* @param _baseToken the base reserve token of the pool
* @param _networkToken the network reserve token of the pool
* @param _amount amount of tokens to add to the pool
* @return new protected liquidity id
*/
function addBaseTokenLiquidity(
address _owner,
IConverterAnchor _poolAnchor,
IERC20Token _baseToken,
IERC20Token _networkToken,
uint256 _amount
) internal returns (uint256) {
IDSToken poolToken = IDSToken(address(_poolAnchor));
// get the reserve balances
ILiquidityPoolConverter converter = ILiquidityPoolConverter(payable(ownedBy(_poolAnchor)));
(uint256 reserveBalanceBase, uint256 reserveBalanceNetwork) =
converterReserveBalances(converter, _baseToken, _networkToken);
require(reserveBalanceNetwork >= settings.minNetworkTokenLiquidityForMinting(), "ERR_NOT_ENOUGH_LIQUIDITY");
// calculate and mint the required amount of network tokens for adding liquidity
uint256 newNetworkLiquidityAmount = _amount.mul(reserveBalanceNetwork).div(reserveBalanceBase);
// verify network token minting limit
uint256 mintingLimit = settings.networkTokenMintingLimits(_poolAnchor);
if (mintingLimit == 0) {
mintingLimit = settings.defaultNetworkTokenMintingLimit();
}
uint256 newNetworkTokensMinted = settings.networkTokensMinted(_poolAnchor).add(newNetworkLiquidityAmount);
require(newNetworkTokensMinted <= mintingLimit, "ERR_MAX_AMOUNT_REACHED");
// issue new network tokens to the system
networkTokenGovernance.mint(address(this), newNetworkLiquidityAmount);
settings.incNetworkTokensMinted(_poolAnchor, newNetworkLiquidityAmount);
// transfer the base tokens from the caller and approve the converter
ensureAllowance(_networkToken, address(converter), newNetworkLiquidityAmount);
if (_baseToken != ETH_RESERVE_ADDRESS) {
safeTransferFrom(_baseToken, msg.sender, address(this), _amount);
ensureAllowance(_baseToken, address(converter), _amount);
}
// add liquidity
addLiquidity(converter, _baseToken, _networkToken, _amount, newNetworkLiquidityAmount, msg.value);
// transfer the new pool tokens to the store
uint256 poolTokenAmount = poolToken.balanceOf(address(this));
safeTransfer(poolToken, address(store), poolTokenAmount);
// the system splits the pool tokens with the caller
// increase the system's pool token balance and add protected liquidity for the caller
store.incSystemBalance(poolToken, poolTokenAmount - poolTokenAmount / 2); // account for rounding errors
return addProtectedLiquidity(_owner, poolToken, _baseToken, poolTokenAmount / 2, _amount);
}
/**
* @dev returns the expected/actual amounts the provider will receive for removing liquidity
* it's also possible to provide the remove liquidity time to get an estimation
* for the return at that given point
*
* @param _id protected liquidity id
* @param _portion portion of liquidity to remove, in PPM
* @param _removeTimestamp time at which the liquidity is removed
* @return expected return amount in the reserve token
* @return actual return amount in the reserve token
* @return compensation in the network token
*/
function removeLiquidityReturn(
uint256 _id,
uint32 _portion,
uint256 _removeTimestamp
)
external
view
validPortion(_portion)
returns (
uint256,
uint256,
uint256
)
{
ProtectedLiquidity memory liquidity = protectedLiquidity(_id);
// verify input
require(liquidity.provider != address(0), "ERR_INVALID_ID");
require(_removeTimestamp >= liquidity.timestamp, "ERR_INVALID_TIMESTAMP");
// calculate the portion of the liquidity to remove
if (_portion != PPM_RESOLUTION) {
liquidity.poolAmount = liquidity.poolAmount.mul(_portion) / PPM_RESOLUTION;
liquidity.reserveAmount = liquidity.reserveAmount.mul(_portion) / PPM_RESOLUTION;
}
// get the various rates between the reserves upon adding liquidity and now
PackedRates memory packedRates =
packRates(
liquidity.poolToken,
liquidity.reserveToken,
liquidity.reserveRateN,
liquidity.reserveRateD,
false
);
uint256 targetAmount =
removeLiquidityTargetAmount(
liquidity.poolToken,
liquidity.reserveToken,
liquidity.poolAmount,
liquidity.reserveAmount,
packedRates,
liquidity.timestamp,
_removeTimestamp
);
// for network token, the return amount is identical to the target amount
if (liquidity.reserveToken == networkToken) {
return (targetAmount, targetAmount, 0);
}
// handle base token return
// calculate the amount of pool tokens required for liquidation
// note that the amount is doubled since it's not possible to liquidate one reserve only
Fraction memory poolRate = poolTokenRate(liquidity.poolToken, liquidity.reserveToken);
uint256 poolAmount = targetAmount.mul(poolRate.d).div(poolRate.n / 2);
// limit the amount of pool tokens by the amount the system/caller holds
uint256 availableBalance = store.systemBalance(liquidity.poolToken).add(liquidity.poolAmount);
poolAmount = poolAmount > availableBalance ? availableBalance : poolAmount;
// calculate the base token amount received by liquidating the pool tokens
// note that the amount is divided by 2 since the pool amount represents both reserves
uint256 baseAmount = poolAmount.mul(poolRate.n / 2).div(poolRate.d);
uint256 networkAmount = getNetworkCompensation(targetAmount, baseAmount, packedRates);
return (targetAmount, baseAmount, networkAmount);
}
/**
* @dev removes protected liquidity from a pool
* also burns governance tokens from the caller if the caller removes network tokens
*
* @param _id id in the caller's list of protected liquidity
* @param _portion portion of liquidity to remove, in PPM
*/
function removeLiquidity(uint256 _id, uint32 _portion) external validPortion(_portion) protected {
ProtectedLiquidity memory liquidity = protectedLiquidity(_id, msg.sender);
// save a local copy of `networkToken`
IERC20Token networkTokenLocal = networkToken;
// verify that the pool is whitelisted
_poolWhitelisted(liquidity.poolToken);
// verify that the protected liquidity is not removed on the same block in which it was added
require(liquidity.timestamp < time(), "ERR_TOO_EARLY");
if (_portion == PPM_RESOLUTION) {
// remove the protected liquidity from the provider
store.removeProtectedLiquidity(_id);
} else {
// remove a portion of the protected liquidity from the provider
uint256 fullPoolAmount = liquidity.poolAmount;
uint256 fullReserveAmount = liquidity.reserveAmount;
liquidity.poolAmount = liquidity.poolAmount.mul(_portion) / PPM_RESOLUTION;
liquidity.reserveAmount = liquidity.reserveAmount.mul(_portion) / PPM_RESOLUTION;
store.updateProtectedLiquidityAmounts(
_id,
fullPoolAmount - liquidity.poolAmount,
fullReserveAmount - liquidity.reserveAmount
);
}
// update last liquidity removal checkpoint
lastRemoveCheckpointStore.addCheckpoint(msg.sender);
// add the pool tokens to the system
store.incSystemBalance(liquidity.poolToken, liquidity.poolAmount);
// if removing network token liquidity, burn the governance tokens from the caller. we need to transfer the
// tokens to the contract itself, since only token holders can burn their tokens
if (liquidity.reserveToken == networkTokenLocal) {
safeTransferFrom(govToken, msg.sender, address(this), liquidity.reserveAmount);
govTokenGovernance.burn(liquidity.reserveAmount);
}
// get the various rates between the reserves upon adding liquidity and now
PackedRates memory packedRates =
packRates(
liquidity.poolToken,
liquidity.reserveToken,
liquidity.reserveRateN,
liquidity.reserveRateD,
true
);
// get the target token amount
uint256 targetAmount =
removeLiquidityTargetAmount(
liquidity.poolToken,
liquidity.reserveToken,
liquidity.poolAmount,
liquidity.reserveAmount,
packedRates,
liquidity.timestamp,
time()
);
// remove network token liquidity
if (liquidity.reserveToken == networkTokenLocal) {
// mint network tokens for the caller and lock them
networkTokenGovernance.mint(address(store), targetAmount);
settings.incNetworkTokensMinted(liquidity.poolToken, targetAmount);
lockTokens(msg.sender, targetAmount);
return;
}
// remove base token liquidity
// calculate the amount of pool tokens required for liquidation
// note that the amount is doubled since it's not possible to liquidate one reserve only
Fraction memory poolRate = poolTokenRate(liquidity.poolToken, liquidity.reserveToken);
uint256 poolAmount = targetAmount.mul(poolRate.d).div(poolRate.n / 2);
// limit the amount of pool tokens by the amount the system holds
uint256 systemBalance = store.systemBalance(liquidity.poolToken);
poolAmount = poolAmount > systemBalance ? systemBalance : poolAmount;
// withdraw the pool tokens from the store
store.decSystemBalance(liquidity.poolToken, poolAmount);
store.withdrawTokens(liquidity.poolToken, address(this), poolAmount);
// remove liquidity
removeLiquidity(liquidity.poolToken, poolAmount, liquidity.reserveToken, networkTokenLocal);
// transfer the base tokens to the caller
uint256 baseBalance;
if (liquidity.reserveToken == ETH_RESERVE_ADDRESS) {
baseBalance = address(this).balance;
msg.sender.transfer(baseBalance);
} else {
baseBalance = liquidity.reserveToken.balanceOf(address(this));
safeTransfer(liquidity.reserveToken, msg.sender, baseBalance);
}
// compensate the caller with network tokens if still needed
uint256 delta = getNetworkCompensation(targetAmount, baseBalance, packedRates);
if (delta > 0) {
// check if there's enough network token balance, otherwise mint more
uint256 networkBalance = networkTokenLocal.balanceOf(address(this));
if (networkBalance < delta) {
networkTokenGovernance.mint(address(this), delta - networkBalance);
}
// lock network tokens for the caller
safeTransfer(networkTokenLocal, address(store), delta);
lockTokens(msg.sender, delta);
}
// if the contract still holds network tokens, burn them
uint256 networkBalance = networkTokenLocal.balanceOf(address(this));
if (networkBalance > 0) {
networkTokenGovernance.burn(networkBalance);
settings.decNetworkTokensMinted(liquidity.poolToken, networkBalance);
}
}
/**
* @dev returns the amount the provider will receive for removing liquidity
* it's also possible to provide the remove liquidity rate & time to get an estimation
* for the return at that given point
*
* @param _poolToken pool token
* @param _reserveToken reserve token
* @param _poolAmount pool token amount when the liquidity was added
* @param _reserveAmount reserve token amount that was added
* @param _packedRates see `struct PackedRates`
* @param _addTimestamp time at which the liquidity was added
* @param _removeTimestamp time at which the liquidity is removed
* @return amount received for removing liquidity
*/
function removeLiquidityTargetAmount(
IDSToken _poolToken,
IERC20Token _reserveToken,
uint256 _poolAmount,
uint256 _reserveAmount,
PackedRates memory _packedRates,
uint256 _addTimestamp,
uint256 _removeTimestamp
) internal view returns (uint256) {
// get the rate between the pool token and the reserve token
Fraction memory poolRate = poolTokenRate(_poolToken, _reserveToken);
// get the rate between the reserves upon adding liquidity and now
Fraction memory addSpotRate = Fraction({ n: _packedRates.addSpotRateN, d: _packedRates.addSpotRateD });
Fraction memory removeSpotRate = Fraction({ n: _packedRates.removeSpotRateN, d: _packedRates.removeSpotRateD });
Fraction memory removeAverageRate =
Fraction({ n: _packedRates.removeAverageRateN, d: _packedRates.removeAverageRateD });
// calculate the protected amount of reserve tokens plus accumulated fee before compensation
uint256 total = protectedAmountPlusFee(_poolAmount, poolRate, addSpotRate, removeSpotRate);
// calculate the impermanent loss
Fraction memory loss = impLoss(addSpotRate, removeAverageRate);
// calculate the protection level
Fraction memory level = protectionLevel(_addTimestamp, _removeTimestamp);
// calculate the compensation amount
return compensationAmount(_reserveAmount, Math.max(_reserveAmount, total), loss, level);
}
/**
* @dev allows the caller to claim network token balance that is no longer locked
* note that the function can revert if the range is too large
*
* @param _startIndex start index in the caller's list of locked balances
* @param _endIndex end index in the caller's list of locked balances (exclusive)
*/
function claimBalance(uint256 _startIndex, uint256 _endIndex) external protected {
// get the locked balances from the store
(uint256[] memory amounts, uint256[] memory expirationTimes) =
store.lockedBalanceRange(msg.sender, _startIndex, _endIndex);
uint256 totalAmount = 0;
uint256 length = amounts.length;
assert(length == expirationTimes.length);
// reverse iteration since we're removing from the list
for (uint256 i = length; i > 0; i--) {
uint256 index = i - 1;
if (expirationTimes[index] > time()) {
continue;
}
// remove the locked balance item
store.removeLockedBalance(msg.sender, _startIndex + index);
totalAmount = totalAmount.add(amounts[index]);
}
if (totalAmount > 0) {
// transfer the tokens to the caller in a single call
store.withdrawTokens(networkToken, msg.sender, totalAmount);
}
}
/**
* @dev returns the ROI for removing liquidity in the current state after providing liquidity with the given args
* the function assumes full protection is in effect
* return value is in PPM and can be larger than PPM_RESOLUTION for positive ROI, 1M = 0% ROI
*
* @param _poolToken pool token
* @param _reserveToken reserve token
* @param _reserveAmount reserve token amount that was added
* @param _poolRateN rate of 1 pool token in reserve token units when the liquidity was added (numerator)
* @param _poolRateD rate of 1 pool token in reserve token units when the liquidity was added (denominator)
* @param _reserveRateN rate of 1 reserve token in the other reserve token units when the liquidity was added (numerator)
* @param _reserveRateD rate of 1 reserve token in the other reserve token units when the liquidity was added (denominator)
* @return ROI in PPM
*/
function poolROI(
IDSToken _poolToken,
IERC20Token _reserveToken,
uint256 _reserveAmount,
uint256 _poolRateN,
uint256 _poolRateD,
uint256 _reserveRateN,
uint256 _reserveRateD
) external view returns (uint256) {
// calculate the amount of pool tokens based on the amount of reserve tokens
uint256 poolAmount = _reserveAmount.mul(_poolRateD).div(_poolRateN);
// get the various rates between the reserves upon adding liquidity and now
PackedRates memory packedRates = packRates(_poolToken, _reserveToken, _reserveRateN, _reserveRateD, false);
// get the current return
uint256 protectedReturn =
removeLiquidityTargetAmount(
_poolToken,
_reserveToken,
poolAmount,
_reserveAmount,
packedRates,
time().sub(settings.maxProtectionDelay()),
time()
);
// calculate the ROI as the ratio between the current fully protected return and the initial amount
return protectedReturn.mul(PPM_RESOLUTION).div(_reserveAmount);
}
/**
* @dev utility to protect existing liquidity
* also mints new governance tokens for the caller when protecting the network token reserve
*
* @param _poolAnchor pool anchor
* @param _converter pool converter
* @param _networkToken the network reserve token of the pool
* @param _reserveIndex index of the reserve to protect
* @param _poolAmount amount of pool tokens to protect
*/
function protectLiquidity(
IDSToken _poolAnchor,
IConverter _converter,
IERC20Token _networkToken,
uint256 _reserveIndex,
uint256 _poolAmount
) internal {
// get the reserves token
IERC20Token reserveToken = _converter.connectorTokens(_reserveIndex);
// get the pool token rate
IDSToken poolToken = IDSToken(address(_poolAnchor));
Fraction memory poolRate = poolTokenRate(poolToken, reserveToken);
// calculate the reserve balance based on the amount provided and the pool token rate
uint256 reserveAmount = _poolAmount.mul(poolRate.n).div(poolRate.d);
// protect the liquidity
addProtectedLiquidity(msg.sender, poolToken, reserveToken, _poolAmount, reserveAmount);
// for network token liquidity, mint governance tokens to the caller
if (reserveToken == _networkToken) {
govTokenGovernance.mint(msg.sender, reserveAmount);
}
}
/**
* @dev adds protected liquidity for the caller to the store
*
* @param _provider protected liquidity provider
* @param _poolToken pool token
* @param _reserveToken reserve token
* @param _poolAmount amount of pool tokens to protect
* @param _reserveAmount amount of reserve tokens to protect
* @return new protected liquidity id
*/
function addProtectedLiquidity(
address _provider,
IDSToken _poolToken,
IERC20Token _reserveToken,
uint256 _poolAmount,
uint256 _reserveAmount
) internal returns (uint256) {
Fraction memory rate = reserveTokenAverageRate(_poolToken, _reserveToken, true);
return
store.addProtectedLiquidity(
_provider,
_poolToken,
_reserveToken,
_poolAmount,
_reserveAmount,
rate.n,
rate.d,
time()
);
}
/**
* @dev locks network tokens for the provider and emits the tokens locked event
*
* @param _provider tokens provider
* @param _amount amount of network tokens
*/
function lockTokens(address _provider, uint256 _amount) internal {
uint256 expirationTime = time().add(settings.lockDuration());
store.addLockedBalance(_provider, _amount, expirationTime);
}
/**
* @dev returns the rate of 1 pool token in reserve token units
*
* @param _poolToken pool token
* @param _reserveToken reserve token
*/
function poolTokenRate(IDSToken _poolToken, IERC20Token _reserveToken) internal view virtual returns (Fraction memory) {
// get the pool token supply
uint256 poolTokenSupply = _poolToken.totalSupply();
// get the reserve balance
IConverter converter = IConverter(payable(ownedBy(_poolToken)));
uint256 reserveBalance = converter.getConnectorBalance(_reserveToken);
// for standard pools, 50% of the pool supply value equals the value of each reserve
return Fraction({ n: reserveBalance.mul(2), d: poolTokenSupply });
}
/**
* @dev returns the average rate of 1 reserve token in the other reserve token units
*
* @param _poolToken pool token
* @param _reserveToken reserve token
* @param _validateAverageRate true to validate the average rate; false otherwise
*/
function reserveTokenAverageRate(
IDSToken _poolToken,
IERC20Token _reserveToken,
bool _validateAverageRate
) internal view returns (Fraction memory) {
(, , uint256 averageRateN, uint256 averageRateD) =
reserveTokenRates(_poolToken, _reserveToken, _validateAverageRate);
return Fraction(averageRateN, averageRateD);
}
/**
* @dev returns the spot rate and average rate of 1 reserve token in the other reserve token units
*
* @param _poolToken pool token
* @param _reserveToken reserve token
* @param _validateAverageRate true to validate the average rate; false otherwise
*/
function reserveTokenRates(
IDSToken _poolToken,
IERC20Token _reserveToken,
bool _validateAverageRate
)
internal
view
returns (
uint256,
uint256,
uint256,
uint256
)
{
ILiquidityPoolConverter converter = ILiquidityPoolConverter(payable(ownedBy(_poolToken)));
IERC20Token otherReserve = converter.connectorTokens(0);
if (otherReserve == _reserveToken) {
otherReserve = converter.connectorTokens(1);
}
(uint256 spotRateN, uint256 spotRateD) = converterReserveBalances(converter, otherReserve, _reserveToken);
(uint256 averageRateN, uint256 averageRateD) = converter.recentAverageRate(_reserveToken);
require(
!_validateAverageRate ||
averageRateInRange(
spotRateN,
spotRateD,
averageRateN,
averageRateD,
settings.averageRateMaxDeviation()
),
"ERR_INVALID_RATE"
);
return (spotRateN, spotRateD, averageRateN, averageRateD);
}
/**
* @dev returns the various rates between the reserves
*
* @param _poolToken pool token
* @param _reserveToken reserve token
* @param _addSpotRateN add spot rate numerator
* @param _addSpotRateD add spot rate denominator
* @param _validateAverageRate true to validate the average rate; false otherwise
* @return see `struct PackedRates`
*/
function packRates(
IDSToken _poolToken,
IERC20Token _reserveToken,
uint256 _addSpotRateN,
uint256 _addSpotRateD,
bool _validateAverageRate
) internal view returns (PackedRates memory) {
(uint256 removeSpotRateN, uint256 removeSpotRateD, uint256 removeAverageRateN, uint256 removeAverageRateD) =
reserveTokenRates(_poolToken, _reserveToken, _validateAverageRate);
require(
(_addSpotRateN <= MAX_UINT128 && _addSpotRateD <= MAX_UINT128) &&
(removeSpotRateN <= MAX_UINT128 && removeSpotRateD <= MAX_UINT128) &&
(removeAverageRateN <= MAX_UINT128 && removeAverageRateD <= MAX_UINT128),
"ERR_INVALID_RATE"
);
return
PackedRates({
addSpotRateN: uint128(_addSpotRateN),
addSpotRateD: uint128(_addSpotRateD),
removeSpotRateN: uint128(removeSpotRateN),
removeSpotRateD: uint128(removeSpotRateD),
removeAverageRateN: uint128(removeAverageRateN),
removeAverageRateD: uint128(removeAverageRateD)
});
}
/**
* @dev returns whether or not the deviation of the average rate from the spot rate is within range
* for example, if the maximum permitted deviation is 5%, then return `95/100 <= average/spot <= 100/95`
*
* @param _spotRateN spot rate numerator
* @param _spotRateD spot rate denominator
* @param _averageRateN average rate numerator
* @param _averageRateD average rate denominator
* @param _maxDeviation the maximum permitted deviation of the average rate from the spot rate
*/
function averageRateInRange(
uint256 _spotRateN,
uint256 _spotRateD,
uint256 _averageRateN,
uint256 _averageRateD,
uint32 _maxDeviation
) internal pure returns (bool) {
uint256 min =
_spotRateN.mul(_averageRateD).mul(PPM_RESOLUTION - _maxDeviation).mul(PPM_RESOLUTION - _maxDeviation);
uint256 mid = _spotRateD.mul(_averageRateN).mul(PPM_RESOLUTION - _maxDeviation).mul(PPM_RESOLUTION);
uint256 max = _spotRateN.mul(_averageRateD).mul(PPM_RESOLUTION).mul(PPM_RESOLUTION);
return min <= mid && mid <= max;
}
/**
* @dev utility to add liquidity to a converter
*
* @param _converter converter
* @param _reserveToken1 reserve token 1
* @param _reserveToken2 reserve token 2
* @param _reserveAmount1 reserve amount 1
* @param _reserveAmount2 reserve amount 2
* @param _value ETH amount to add
*/
function addLiquidity(
ILiquidityPoolConverter _converter,
IERC20Token _reserveToken1,
IERC20Token _reserveToken2,
uint256 _reserveAmount1,
uint256 _reserveAmount2,
uint256 _value
) internal {
// ensure that the contract can receive ETH
updatingLiquidity = true;
IERC20Token[] memory reserveTokens = new IERC20Token[](2);
uint256[] memory amounts = new uint256[](2);
reserveTokens[0] = _reserveToken1;
reserveTokens[1] = _reserveToken2;
amounts[0] = _reserveAmount1;
amounts[1] = _reserveAmount2;
_converter.addLiquidity{ value: _value }(reserveTokens, amounts, 1);
// ensure that the contract can receive ETH
updatingLiquidity = false;
}
/**
* @dev utility to remove liquidity from a converter
*
* @param _poolToken pool token of the converter
* @param _poolAmount amount of pool tokens to remove
* @param _reserveToken1 reserve token 1
* @param _reserveToken2 reserve token 2
*/
function removeLiquidity(
IDSToken _poolToken,
uint256 _poolAmount,
IERC20Token _reserveToken1,
IERC20Token _reserveToken2
) internal {
ILiquidityPoolConverter converter = ILiquidityPoolConverter(payable(ownedBy(_poolToken)));
// ensure that the contract can receive ETH
updatingLiquidity = true;
IERC20Token[] memory reserveTokens = new IERC20Token[](2);
uint256[] memory minReturns = new uint256[](2);
reserveTokens[0] = _reserveToken1;
reserveTokens[1] = _reserveToken2;
minReturns[0] = 1;
minReturns[1] = 1;
converter.removeLiquidity(_poolAmount, reserveTokens, minReturns);
// ensure that the contract can receive ETH
updatingLiquidity = false;
}
/**
* @dev returns a protected liquidity from the store
*
* @param _id protected liquidity id
* @return protected liquidity
*/
function protectedLiquidity(uint256 _id) internal view returns (ProtectedLiquidity memory) {
ProtectedLiquidity memory liquidity;
(
liquidity.provider,
liquidity.poolToken,
liquidity.reserveToken,
liquidity.poolAmount,
liquidity.reserveAmount,
liquidity.reserveRateN,
liquidity.reserveRateD,
liquidity.timestamp
) = store.protectedLiquidity(_id);
return liquidity;
}
/**
* @dev returns a protected liquidity from the store
*
* @param _id protected liquidity id
* @param _provider authorized provider
* @return protected liquidity
*/
function protectedLiquidity(uint256 _id, address _provider) internal view returns (ProtectedLiquidity memory) {
ProtectedLiquidity memory liquidity = protectedLiquidity(_id);
require(liquidity.provider == _provider, "ERR_ACCESS_DENIED");
return liquidity;
}
/**
* @dev returns the protected amount of reserve tokens plus accumulated fee before compensation
*
* @param _poolAmount pool token amount when the liquidity was added
* @param _poolRate rate of 1 pool token in the related reserve token units
* @param _addRate rate of 1 reserve token in the other reserve token units when the liquidity was added
* @param _removeRate rate of 1 reserve token in the other reserve token units when the liquidity is removed
* @return protected amount of reserve tokens plus accumulated fee = sqrt(_removeRate / _addRate) * _poolRate * _poolAmount
*/
function protectedAmountPlusFee(
uint256 _poolAmount,
Fraction memory _poolRate,
Fraction memory _addRate,
Fraction memory _removeRate
) internal pure returns (uint256) {
uint256 n = Math.ceilSqrt(_addRate.d.mul(_removeRate.n)).mul(_poolRate.n);
uint256 d = Math.floorSqrt(_addRate.n.mul(_removeRate.d)).mul(_poolRate.d);
uint256 x = n * _poolAmount;
if (x / n == _poolAmount) {
return x / d;
}
(uint256 hi, uint256 lo) = n > _poolAmount ? (n, _poolAmount) : (_poolAmount, n);
(uint256 p, uint256 q) = Math.reducedRatio(hi, d, MAX_UINT256 / lo);
uint256 min = (hi / d).mul(lo);
if (q > 0) {
return Math.max(min, p * lo / q);
}
return min;
}
/**
* @dev returns the impermanent loss incurred due to the change in rates between the reserve tokens
*
* @param _prevRate previous rate between the reserves
* @param _newRate new rate between the reserves
* @return impermanent loss (as a ratio)
*/
function impLoss(Fraction memory _prevRate, Fraction memory _newRate) internal pure returns (Fraction memory) {
uint256 ratioN = _newRate.n.mul(_prevRate.d);
uint256 ratioD = _newRate.d.mul(_prevRate.n);
uint256 prod = ratioN * ratioD;
uint256 root = prod / ratioN == ratioD ? Math.floorSqrt(prod) : Math.floorSqrt(ratioN) * Math.floorSqrt(ratioD);
uint256 sum = ratioN.add(ratioD);
// the arithmetic below is safe because `x + y >= sqrt(x * y) * 2`
if (sum % 2 == 0) {
sum /= 2;
return Fraction({ n: sum - root, d: sum });
}
return Fraction({ n: sum - root * 2, d: sum });
}
/**
* @dev returns the protection level based on the timestamp and protection delays
*
* @param _addTimestamp time at which the liquidity was added
* @param _removeTimestamp time at which the liquidity is removed
* @return protection level (as a ratio)
*/
function protectionLevel(uint256 _addTimestamp, uint256 _removeTimestamp) internal view returns (Fraction memory) {
uint256 timeElapsed = _removeTimestamp.sub(_addTimestamp);
uint256 minProtectionDelay = settings.minProtectionDelay();
uint256 maxProtectionDelay = settings.maxProtectionDelay();
if (timeElapsed < minProtectionDelay) {
return Fraction({ n: 0, d: 1 });
}
if (timeElapsed >= maxProtectionDelay) {
return Fraction({ n: 1, d: 1 });
}
return Fraction({ n: timeElapsed, d: maxProtectionDelay });
}
/**
* @dev returns the compensation amount based on the impermanent loss and the protection level
*
* @param _amount protected amount in units of the reserve token
* @param _total amount plus fee in units of the reserve token
* @param _loss protection level (as a ratio between 0 and 1)
* @param _level impermanent loss (as a ratio between 0 and 1)
* @return compensation amount
*/
function compensationAmount(
uint256 _amount,
uint256 _total,
Fraction memory _loss,
Fraction memory _level
) internal pure returns (uint256) {
uint256 levelN = _level.n.mul(_amount);
uint256 levelD = _level.d;
uint256 maxVal = Math.max(Math.max(levelN, levelD), _total);
(uint256 lossN, uint256 lossD) = Math.reducedRatio(_loss.n, _loss.d, MAX_UINT256 / maxVal);
return _total.mul(lossD.sub(lossN)).div(lossD).add(lossN.mul(levelN).div(lossD.mul(levelD)));
}
function getNetworkCompensation(
uint256 _targetAmount,
uint256 _baseAmount,
PackedRates memory _packedRates
) internal view returns (uint256) {
if (_targetAmount <= _baseAmount) {
return 0;
}
// calculate the delta in network tokens
uint256 delta =
(_targetAmount - _baseAmount).mul(_packedRates.removeAverageRateN).div(_packedRates.removeAverageRateD);
// the delta might be very small due to precision loss
// in which case no compensation will take place (gas optimization)
if (delta >= settings.minNetworkCompensation()) {
return delta;
}
return 0;
}
/**
* @dev utility, checks whether allowance for the given spender exists and approves one if it doesn't.
* note that we use the non standard erc-20 interface in which `approve` has no return value so that
* this function will work for both standard and non standard tokens
*
* @param _token token to check the allowance in
* @param _spender approved address
* @param _value allowance amount
*/
function ensureAllowance(
IERC20Token _token,
address _spender,
uint256 _value
) private {
uint256 allowance = _token.allowance(address(this), _spender);
if (allowance < _value) {
if (allowance > 0) safeApprove(_token, _spender, 0);
safeApprove(_token, _spender, _value);
}
}
// utility to get the reserve balances
function converterReserveBalances(
IConverter _converter,
IERC20Token _reserveToken1,
IERC20Token _reserveToken2
) private view returns (uint256, uint256) {
return (_converter.getConnectorBalance(_reserveToken1), _converter.getConnectorBalance(_reserveToken2));
}
// utility to get the owner
function ownedBy(IOwned _owned) private view returns (address) {
return _owned.owner();
}
}
{
"compilationTarget": {
"LiquidityProtection.sol": "LiquidityProtection"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"contract ILiquidityProtectionSettings","name":"_settings","type":"address"},{"internalType":"contract ILiquidityProtectionStore","name":"_store","type":"address"},{"internalType":"contract ITokenGovernance","name":"_networkTokenGovernance","type":"address"},{"internalType":"contract ITokenGovernance","name":"_govTokenGovernance","type":"address"},{"internalType":"contract ICheckpointStore","name":"_lastRemoveCheckpointStore","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_prevOwner","type":"address"},{"indexed":true,"internalType":"address","name":"_newOwner","type":"address"}],"name":"OwnerUpdate","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"acceptStoreOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IConverterAnchor","name":"_poolAnchor","type":"address"},{"internalType":"contract IERC20Token","name":"_reserveToken","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"addLiquidity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"contract IConverterAnchor","name":"_poolAnchor","type":"address"},{"internalType":"contract IERC20Token","name":"_reserveToken","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"addLiquidityFor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_startIndex","type":"uint256"},{"internalType":"uint256","name":"_endIndex","type":"uint256"}],"name":"claimBalance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"govToken","outputs":[{"internalType":"contract IERC20Token","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"govTokenGovernance","outputs":[{"internalType":"contract ITokenGovernance","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastRemoveCheckpointStore","outputs":[{"internalType":"contract ICheckpointStore","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"networkToken","outputs":[{"internalType":"contract IERC20Token","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"networkTokenGovernance","outputs":[{"internalType":"contract ITokenGovernance","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"newOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IDSToken","name":"_poolToken","type":"address"},{"internalType":"contract IERC20Token","name":"_reserveToken","type":"address"},{"internalType":"uint256","name":"_reserveAmount","type":"uint256"},{"internalType":"uint256","name":"_poolRateN","type":"uint256"},{"internalType":"uint256","name":"_poolRateD","type":"uint256"},{"internalType":"uint256","name":"_reserveRateN","type":"uint256"},{"internalType":"uint256","name":"_reserveRateD","type":"uint256"}],"name":"poolROI","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IConverterAnchor","name":"_poolAnchor","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"protectLiquidity","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_id","type":"uint256"},{"internalType":"uint32","name":"_portion","type":"uint32"}],"name":"removeLiquidity","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_id","type":"uint256"},{"internalType":"uint32","name":"_portion","type":"uint32"},{"internalType":"uint256","name":"_removeTimestamp","type":"uint256"}],"name":"removeLiquidityReturn","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"settings","outputs":[{"internalType":"contract ILiquidityProtectionSettings","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"store","outputs":[{"internalType":"contract ILiquidityProtectionStore","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newOwner","type":"address"}],"name":"transferStoreOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_id1","type":"uint256"},{"internalType":"uint256","name":"_id2","type":"uint256"}],"name":"unprotectLiquidity","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]