账户
0x53...bfac
0x53...BFAc

0x53...BFAc

US$0.00
此合同的源代码已经过验证!
合同元数据
编译器
0.8.7+commit.e28d00a7
语言
Solidity
合同源代码
文件 1 的 6:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
合同源代码
文件 2 的 6:LinkTokenInterface.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface LinkTokenInterface {
  function allowance(address owner, address spender) external view returns (uint256 remaining);

  function approve(address spender, uint256 value) external returns (bool success);

  function balanceOf(address owner) external view returns (uint256 balance);

  function decimals() external view returns (uint8 decimalPlaces);

  function decreaseApproval(address spender, uint256 addedValue) external returns (bool success);

  function increaseApproval(address spender, uint256 subtractedValue) external;

  function name() external view returns (string memory tokenName);

  function symbol() external view returns (string memory tokenSymbol);

  function totalSupply() external view returns (uint256 totalTokensIssued);

  function transfer(address to, uint256 value) external returns (bool success);

  function transferAndCall(
    address to,
    uint256 value,
    bytes calldata data
  ) external returns (bool success);

  function transferFrom(
    address from,
    address to,
    uint256 value
  ) external returns (bool success);
}
合同源代码
文件 3 的 6:Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
合同源代码
文件 4 的 6:RandomNumberParallel.sol
pragma solidity ^0.8.0;
// SPDX-License-Identifier: MIT

import "@chainlink/contracts/src/v0.8/interfaces/LinkTokenInterface.sol";
import "@chainlink/contracts/src/v0.8/interfaces/VRFCoordinatorV2Interface.sol";
import "@chainlink/contracts/src/v0.8/VRFConsumerBaseV2.sol";
import "@openzeppelin/contracts/access/Ownable.sol";

/*
 * @title Random Number Integer Generator Contract
 * @notice This contract fetches verified random numbers which can then be used offchain 
 */


/**
* @dev Data required to create the random number for a given VFR request
*/
struct RandomNumberRequested {
    uint minValue; // minimum value of the random number (inclusive)
    uint maxValue; // maximum value of the random number (inclusive)
    string title; // reason for the random number request
    uint randomWords; // response value from VRF
}

contract RandomNumberParallel is VRFConsumerBaseV2, Ownable {
    // Chainlink Parameters
    VRFCoordinatorV2Interface internal COORDINATOR;
    LinkTokenInterface internal LINKTOKEN;

    uint64 internal s_subscriptionId = 17; // mainnet
    address internal vrfCoordinator =
    0x271682DEB8C4E0901D1a1550aD2e64D568E69909;  // mainnet
    address internal link = 0x514910771AF9Ca656af840dff83E8264EcF986CA; // mainnet
    bytes32 internal keyHash =
    0x8af398995b04c28e9951adb9721ef74c74f93e6a478f39e7e0777be13527e7ef; // mainnet

    //uint64 internal s_subscriptionId = 6133; // rinkeby
    //address internal vrfCoordinator =
    //0x6168499c0cFfCaCD319c818142124B7A15E857ab; // rinkeby
    //bytes32 internal keyHash =
    //0xd89b2bf150e3b9e13446986e571fb9cab24b13cea0a43ea20a6049a85cc807cc;  // rinkeby
    //address internal link = 0x01BE23585060835E02B77ef475b0Cc51aA1e0709; // rinkeby

    uint32 internal callbackGasLimit = 2000000;
    uint16 requestConfirmations = 3;
    uint32 numWords = 1;

    uint256[] public allRandomNumbers;
    mapping(uint => uint) public blockToRandomNumber;
    mapping(uint => RandomNumberRequested) public requestIdToRandomNumberMetaData;

    event RandomNumberGenerated(
        uint randomNumber, 
        uint256 chainlinkRequestId,
        string title);

    constructor(
    ) VRFConsumerBaseV2(vrfCoordinator) {
        COORDINATOR = VRFCoordinatorV2Interface(vrfCoordinator);
        LINKTOKEN = LinkTokenInterface(link);
    }
    
    /*
     * @notice request a random integer within given bounds
     * @param _minValue - minimum value of the random number (inclusive)
     * @param _maxValue - maximum value of the random number (inclusive)
     * @param _title - reason for the random number request
     * @return requestID - id of the request rng for chainlink response
     */
    function requestRandomWords(
        uint _minValue,
        uint _maxValue,
        string memory _title
    ) public onlyOwner returns (uint256 requestID) {
        requestID = COORDINATOR.requestRandomWords(
            keyHash,
            s_subscriptionId,
            requestConfirmations,
            callbackGasLimit,
            numWords
        );
        RandomNumberRequested storage newRng = requestIdToRandomNumberMetaData[requestID];
        newRng.minValue = _minValue;
        newRng.maxValue = _maxValue;
        newRng.title = _title;
    }

    // callback function called by chainlink
    function fulfillRandomWords(uint256 requestID, uint256[] memory randomWords)
    internal
    override
    {
        // get the random number
        uint randomRange = requestIdToRandomNumberMetaData[requestID].maxValue + 1 - 
        requestIdToRandomNumberMetaData[requestID].minValue;
        uint randomNumber = randomWords[0] % randomRange;
        randomNumber = randomNumber + requestIdToRandomNumberMetaData[requestID].minValue;
        requestIdToRandomNumberMetaData[requestID].randomWords = randomWords[0];

        require(blockToRandomNumber[block.number] == 0, "already fetched random for this block");

        blockToRandomNumber[block.number] = randomWords[0];
        emit RandomNumberGenerated(randomNumber, requestID, requestIdToRandomNumberMetaData[requestID].title);
        allRandomNumbers.push(randomWords[0]);
    }
}
合同源代码
文件 5 的 6:VRFConsumerBaseV2.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/** ****************************************************************************
 * @notice Interface for contracts using VRF randomness
 * *****************************************************************************
 * @dev PURPOSE
 *
 * @dev Reggie the Random Oracle (not his real job) wants to provide randomness
 * @dev to Vera the verifier in such a way that Vera can be sure he's not
 * @dev making his output up to suit himself. Reggie provides Vera a public key
 * @dev to which he knows the secret key. Each time Vera provides a seed to
 * @dev Reggie, he gives back a value which is computed completely
 * @dev deterministically from the seed and the secret key.
 *
 * @dev Reggie provides a proof by which Vera can verify that the output was
 * @dev correctly computed once Reggie tells it to her, but without that proof,
 * @dev the output is indistinguishable to her from a uniform random sample
 * @dev from the output space.
 *
 * @dev The purpose of this contract is to make it easy for unrelated contracts
 * @dev to talk to Vera the verifier about the work Reggie is doing, to provide
 * @dev simple access to a verifiable source of randomness. It ensures 2 things:
 * @dev 1. The fulfillment came from the VRFCoordinator
 * @dev 2. The consumer contract implements fulfillRandomWords.
 * *****************************************************************************
 * @dev USAGE
 *
 * @dev Calling contracts must inherit from VRFConsumerBase, and can
 * @dev initialize VRFConsumerBase's attributes in their constructor as
 * @dev shown:
 *
 * @dev   contract VRFConsumer {
 * @dev     constructor(<other arguments>, address _vrfCoordinator, address _link)
 * @dev       VRFConsumerBase(_vrfCoordinator) public {
 * @dev         <initialization with other arguments goes here>
 * @dev       }
 * @dev   }
 *
 * @dev The oracle will have given you an ID for the VRF keypair they have
 * @dev committed to (let's call it keyHash). Create subscription, fund it
 * @dev and your consumer contract as a consumer of it (see VRFCoordinatorInterface
 * @dev subscription management functions).
 * @dev Call requestRandomWords(keyHash, subId, minimumRequestConfirmations,
 * @dev callbackGasLimit, numWords),
 * @dev see (VRFCoordinatorInterface for a description of the arguments).
 *
 * @dev Once the VRFCoordinator has received and validated the oracle's response
 * @dev to your request, it will call your contract's fulfillRandomWords method.
 *
 * @dev The randomness argument to fulfillRandomWords is a set of random words
 * @dev generated from your requestId and the blockHash of the request.
 *
 * @dev If your contract could have concurrent requests open, you can use the
 * @dev requestId returned from requestRandomWords to track which response is associated
 * @dev with which randomness request.
 * @dev See "SECURITY CONSIDERATIONS" for principles to keep in mind,
 * @dev if your contract could have multiple requests in flight simultaneously.
 *
 * @dev Colliding `requestId`s are cryptographically impossible as long as seeds
 * @dev differ.
 *
 * *****************************************************************************
 * @dev SECURITY CONSIDERATIONS
 *
 * @dev A method with the ability to call your fulfillRandomness method directly
 * @dev could spoof a VRF response with any random value, so it's critical that
 * @dev it cannot be directly called by anything other than this base contract
 * @dev (specifically, by the VRFConsumerBase.rawFulfillRandomness method).
 *
 * @dev For your users to trust that your contract's random behavior is free
 * @dev from malicious interference, it's best if you can write it so that all
 * @dev behaviors implied by a VRF response are executed *during* your
 * @dev fulfillRandomness method. If your contract must store the response (or
 * @dev anything derived from it) and use it later, you must ensure that any
 * @dev user-significant behavior which depends on that stored value cannot be
 * @dev manipulated by a subsequent VRF request.
 *
 * @dev Similarly, both miners and the VRF oracle itself have some influence
 * @dev over the order in which VRF responses appear on the blockchain, so if
 * @dev your contract could have multiple VRF requests in flight simultaneously,
 * @dev you must ensure that the order in which the VRF responses arrive cannot
 * @dev be used to manipulate your contract's user-significant behavior.
 *
 * @dev Since the block hash of the block which contains the requestRandomness
 * @dev call is mixed into the input to the VRF *last*, a sufficiently powerful
 * @dev miner could, in principle, fork the blockchain to evict the block
 * @dev containing the request, forcing the request to be included in a
 * @dev different block with a different hash, and therefore a different input
 * @dev to the VRF. However, such an attack would incur a substantial economic
 * @dev cost. This cost scales with the number of blocks the VRF oracle waits
 * @dev until it calls responds to a request. It is for this reason that
 * @dev that you can signal to an oracle you'd like them to wait longer before
 * @dev responding to the request (however this is not enforced in the contract
 * @dev and so remains effective only in the case of unmodified oracle software).
 */
abstract contract VRFConsumerBaseV2 {
  error OnlyCoordinatorCanFulfill(address have, address want);
  address private immutable vrfCoordinator;

  /**
   * @param _vrfCoordinator address of VRFCoordinator contract
   */
  constructor(address _vrfCoordinator) {
    vrfCoordinator = _vrfCoordinator;
  }

  /**
   * @notice fulfillRandomness handles the VRF response. Your contract must
   * @notice implement it. See "SECURITY CONSIDERATIONS" above for important
   * @notice principles to keep in mind when implementing your fulfillRandomness
   * @notice method.
   *
   * @dev VRFConsumerBaseV2 expects its subcontracts to have a method with this
   * @dev signature, and will call it once it has verified the proof
   * @dev associated with the randomness. (It is triggered via a call to
   * @dev rawFulfillRandomness, below.)
   *
   * @param requestId The Id initially returned by requestRandomness
   * @param randomWords the VRF output expanded to the requested number of words
   */
  function fulfillRandomWords(uint256 requestId, uint256[] memory randomWords) internal virtual;

  // rawFulfillRandomness is called by VRFCoordinator when it receives a valid VRF
  // proof. rawFulfillRandomness then calls fulfillRandomness, after validating
  // the origin of the call
  function rawFulfillRandomWords(uint256 requestId, uint256[] memory randomWords) external {
    if (msg.sender != vrfCoordinator) {
      revert OnlyCoordinatorCanFulfill(msg.sender, vrfCoordinator);
    }
    fulfillRandomWords(requestId, randomWords);
  }
}
合同源代码
文件 6 的 6:VRFCoordinatorV2Interface.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface VRFCoordinatorV2Interface {
  /**
   * @notice Get configuration relevant for making requests
   * @return minimumRequestConfirmations global min for request confirmations
   * @return maxGasLimit global max for request gas limit
   * @return s_provingKeyHashes list of registered key hashes
   */
  function getRequestConfig()
    external
    view
    returns (
      uint16,
      uint32,
      bytes32[] memory
    );

  /**
   * @notice Request a set of random words.
   * @param keyHash - Corresponds to a particular oracle job which uses
   * that key for generating the VRF proof. Different keyHash's have different gas price
   * ceilings, so you can select a specific one to bound your maximum per request cost.
   * @param subId  - The ID of the VRF subscription. Must be funded
   * with the minimum subscription balance required for the selected keyHash.
   * @param minimumRequestConfirmations - How many blocks you'd like the
   * oracle to wait before responding to the request. See SECURITY CONSIDERATIONS
   * for why you may want to request more. The acceptable range is
   * [minimumRequestBlockConfirmations, 200].
   * @param callbackGasLimit - How much gas you'd like to receive in your
   * fulfillRandomWords callback. Note that gasleft() inside fulfillRandomWords
   * may be slightly less than this amount because of gas used calling the function
   * (argument decoding etc.), so you may need to request slightly more than you expect
   * to have inside fulfillRandomWords. The acceptable range is
   * [0, maxGasLimit]
   * @param numWords - The number of uint256 random values you'd like to receive
   * in your fulfillRandomWords callback. Note these numbers are expanded in a
   * secure way by the VRFCoordinator from a single random value supplied by the oracle.
   * @return requestId - A unique identifier of the request. Can be used to match
   * a request to a response in fulfillRandomWords.
   */
  function requestRandomWords(
    bytes32 keyHash,
    uint64 subId,
    uint16 minimumRequestConfirmations,
    uint32 callbackGasLimit,
    uint32 numWords
  ) external returns (uint256 requestId);

  /**
   * @notice Create a VRF subscription.
   * @return subId - A unique subscription id.
   * @dev You can manage the consumer set dynamically with addConsumer/removeConsumer.
   * @dev Note to fund the subscription, use transferAndCall. For example
   * @dev  LINKTOKEN.transferAndCall(
   * @dev    address(COORDINATOR),
   * @dev    amount,
   * @dev    abi.encode(subId));
   */
  function createSubscription() external returns (uint64 subId);

  /**
   * @notice Get a VRF subscription.
   * @param subId - ID of the subscription
   * @return balance - LINK balance of the subscription in juels.
   * @return reqCount - number of requests for this subscription, determines fee tier.
   * @return owner - owner of the subscription.
   * @return consumers - list of consumer address which are able to use this subscription.
   */
  function getSubscription(uint64 subId)
    external
    view
    returns (
      uint96 balance,
      uint64 reqCount,
      address owner,
      address[] memory consumers
    );

  /**
   * @notice Request subscription owner transfer.
   * @param subId - ID of the subscription
   * @param newOwner - proposed new owner of the subscription
   */
  function requestSubscriptionOwnerTransfer(uint64 subId, address newOwner) external;

  /**
   * @notice Request subscription owner transfer.
   * @param subId - ID of the subscription
   * @dev will revert if original owner of subId has
   * not requested that msg.sender become the new owner.
   */
  function acceptSubscriptionOwnerTransfer(uint64 subId) external;

  /**
   * @notice Add a consumer to a VRF subscription.
   * @param subId - ID of the subscription
   * @param consumer - New consumer which can use the subscription
   */
  function addConsumer(uint64 subId, address consumer) external;

  /**
   * @notice Remove a consumer from a VRF subscription.
   * @param subId - ID of the subscription
   * @param consumer - Consumer to remove from the subscription
   */
  function removeConsumer(uint64 subId, address consumer) external;

  /**
   * @notice Cancel a subscription
   * @param subId - ID of the subscription
   * @param to - Where to send the remaining LINK to
   */
  function cancelSubscription(uint64 subId, address to) external;
}
设置
{
  "compilationTarget": {
    "contracts/RandomNumberParallel.sol": "RandomNumberParallel"
  },
  "evmVersion": "london",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs",
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "remappings": []
}
ABI
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"have","type":"address"},{"internalType":"address","name":"want","type":"address"}],"name":"OnlyCoordinatorCanFulfill","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"randomNumber","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"chainlinkRequestId","type":"uint256"},{"indexed":false,"internalType":"string","name":"title","type":"string"}],"name":"RandomNumberGenerated","type":"event"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"allRandomNumbers","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"blockToRandomNumber","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"requestId","type":"uint256"},{"internalType":"uint256[]","name":"randomWords","type":"uint256[]"}],"name":"rawFulfillRandomWords","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"requestIdToRandomNumberMetaData","outputs":[{"internalType":"uint256","name":"minValue","type":"uint256"},{"internalType":"uint256","name":"maxValue","type":"uint256"},{"internalType":"string","name":"title","type":"string"},{"internalType":"uint256","name":"randomWords","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_minValue","type":"uint256"},{"internalType":"uint256","name":"_maxValue","type":"uint256"},{"internalType":"string","name":"_title","type":"string"}],"name":"requestRandomWords","outputs":[{"internalType":"uint256","name":"requestID","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]