// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
import { iOVM_BondManager } from "../../iOVM/verification/iOVM_BondManager.sol";
import { Lib_AddressResolver } from "../../libraries/resolver/Lib_AddressResolver.sol";
/// Minimal contract to be inherited by contracts consumed by users that provide
/// data for fraud proofs
abstract contract Abs_FraudContributor is Lib_AddressResolver {
/// Decorate your functions with this modifier to store how much total gas was
/// consumed by the sender, to reward users fairly
modifier contributesToFraudProof(bytes32 preStateRoot, bytes32 txHash) {
uint256 startGas = gasleft();
_;
uint256 gasSpent = startGas - gasleft();
iOVM_BondManager(resolve("OVM_BondManager"))
.recordGasSpent(preStateRoot, txHash, msg.sender, gasSpent);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
//require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
//require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../proxy/Initializable.sol";
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal initializer {
__Context_init_unchained();
}
function __Context_init_unchained() internal initializer {
}
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
// Check the signature length
if (signature.length != 65) {
revert("ECDSA: invalid signature length");
}
// Divide the signature in r, s and v variables
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
// solhint-disable-next-line no-inline-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return recover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover-bytes32-bytes-} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
require(uint256(s) <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, "ECDSA: invalid signature 's' value");
require(v == 27 || v == 28, "ECDSA: invalid signature 'v' value");
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
require(signer != address(0), "ECDSA: invalid signature");
return signer;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* replicates the behavior of the
* https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign[`eth_sign`]
* JSON-RPC method.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Library used to query support of an interface declared via {IERC165}.
*
* Note that these functions return the actual result of the query: they do not
* `revert` if an interface is not supported. It is up to the caller to decide
* what to do in these cases.
*/
library ERC165Checker {
// As per the EIP-165 spec, no interface should ever match 0xffffffff
bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
/*
* bytes4(keccak256('supportsInterface(bytes4)')) == 0x01ffc9a7
*/
bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7;
/**
* @dev Returns true if `account` supports the {IERC165} interface,
*/
function supportsERC165(address account) internal view returns (bool) {
// Any contract that implements ERC165 must explicitly indicate support of
// InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
return _supportsERC165Interface(account, _INTERFACE_ID_ERC165) &&
!_supportsERC165Interface(account, _INTERFACE_ID_INVALID);
}
/**
* @dev Returns true if `account` supports the interface defined by
* `interfaceId`. Support for {IERC165} itself is queried automatically.
*
* See {IERC165-supportsInterface}.
*/
function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
// query support of both ERC165 as per the spec and support of _interfaceId
return supportsERC165(account) &&
_supportsERC165Interface(account, interfaceId);
}
/**
* @dev Returns a boolean array where each value corresponds to the
* interfaces passed in and whether they're supported or not. This allows
* you to batch check interfaces for a contract where your expectation
* is that some interfaces may not be supported.
*
* See {IERC165-supportsInterface}.
*
* _Available since v3.4._
*/
function getSupportedInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool[] memory) {
// an array of booleans corresponding to interfaceIds and whether they're supported or not
bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
// query support of ERC165 itself
if (supportsERC165(account)) {
// query support of each interface in interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);
}
}
return interfaceIdsSupported;
}
/**
* @dev Returns true if `account` supports all the interfaces defined in
* `interfaceIds`. Support for {IERC165} itself is queried automatically.
*
* Batch-querying can lead to gas savings by skipping repeated checks for
* {IERC165} support.
*
* See {IERC165-supportsInterface}.
*/
function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
// query support of ERC165 itself
if (!supportsERC165(account)) {
return false;
}
// query support of each interface in _interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
if (!_supportsERC165Interface(account, interfaceIds[i])) {
return false;
}
}
// all interfaces supported
return true;
}
/**
* @notice Query if a contract implements an interface, does not check ERC165 support
* @param account The address of the contract to query for support of an interface
* @param interfaceId The interface identifier, as specified in ERC-165
* @return true if the contract at account indicates support of the interface with
* identifier interfaceId, false otherwise
* @dev Assumes that account contains a contract that supports ERC165, otherwise
* the behavior of this method is undefined. This precondition can be checked
* with {supportsERC165}.
* Interface identification is specified in ERC-165.
*/
function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) {
// success determines whether the staticcall succeeded and result determines
// whether the contract at account indicates support of _interfaceId
(bool success, bool result) = _callERC165SupportsInterface(account, interfaceId);
return (success && result);
}
/**
* @notice Calls the function with selector 0x01ffc9a7 (ERC165) and suppresses throw
* @param account The address of the contract to query for support of an interface
* @param interfaceId The interface identifier, as specified in ERC-165
* @return success true if the STATICCALL succeeded, false otherwise
* @return result true if the STATICCALL succeeded and the contract at account
* indicates support of the interface with identifier interfaceId, false otherwise
*/
function _callERC165SupportsInterface(address account, bytes4 interfaceId)
private
view
returns (bool, bool)
{
bytes memory encodedParams = abi.encodeWithSelector(_INTERFACE_ID_ERC165, interfaceId);
(bool success, bytes memory result) = account.staticcall{ gas: 30000 }(encodedParams);
if (result.length < 32) return (false, false);
return (success, abi.decode(result, (bool)));
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../../utils/Context.sol";
import "./IERC20.sol";
import "../../math/SafeMath.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name_, string memory symbol_) public {
_name = name_;
_symbol = symbol_;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal virtual {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.16 <0.8.0;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC165 } from "@openzeppelin/contracts/introspection/IERC165.sol";
interface IL2StandardERC20 is IERC20, IERC165 {
function l1Token() external returns (address);
function mint(address _to, uint256 _amount) external;
function burn(address _from, uint256 _amount) external;
event Mint(address indexed _account, uint256 _amount);
event Burn(address indexed _account, uint256 _amount);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/// @title Interface for WETH9. Also contains the non-ERC20 events
/// normally present in the WETH9 implementation.
interface IWETH9 is IERC20 {
event Deposit(address indexed dst, uint256 wad);
event Withdrawal(address indexed src, uint256 wad);
/// @notice Deposit ether to get wrapped ether
function deposit() external payable;
/// @notice Withdraw wrapped ether to get ether
function withdraw(uint256) external;
}
// SPDX-License-Identifier: MIT
// solhint-disable-next-line compiler-version
pragma solidity >=0.4.24 <0.8.0;
import "../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
*/
bool private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Modifier to protect an initializer function from being invoked twice.
*/
modifier initializer() {
require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized");
bool isTopLevelCall = !_initializing;
if (isTopLevelCall) {
_initializing = true;
_initialized = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
}
}
/// @dev Returns true if and only if the function is running in the constructor
function _isConstructor() private view returns (bool) {
return !AddressUpgradeable.isContract(address(this));
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.16 <0.8.0;
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./IL2StandardERC20.sol";
contract L2StandardERC20 is IL2StandardERC20, ERC20 {
address public override l1Token;
address public l2Bridge;
/**
* @param _l2Bridge Address of the L2 standard bridge.
* @param _l1Token Address of the corresponding L1 token.
* @param _name ERC20 name.
* @param _symbol ERC20 symbol.
*/
constructor(
address _l2Bridge,
address _l1Token,
string memory _name,
string memory _symbol
)
ERC20(_name, _symbol) {
l1Token = _l1Token;
l2Bridge = _l2Bridge;
}
modifier onlyL2Bridge {
require(msg.sender == l2Bridge, "Only L2 Bridge can mint and burn");
_;
}
function supportsInterface(bytes4 _interfaceId) public override pure returns (bool) {
bytes4 firstSupportedInterface = bytes4(keccak256("supportsInterface(bytes4)")); // ERC165
bytes4 secondSupportedInterface = IL2StandardERC20.l1Token.selector
^ IL2StandardERC20.mint.selector
^ IL2StandardERC20.burn.selector;
return _interfaceId == firstSupportedInterface || _interfaceId == secondSupportedInterface;
}
function mint(address _to, uint256 _amount) public virtual override onlyL2Bridge {
_mint(_to, _amount);
emit Mint(_to, _amount);
}
function burn(address _from, uint256 _amount) public virtual override onlyL2Bridge {
_burn(_from, _amount);
emit Burn(_from, _amount);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* External Imports */
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
/**
* @title Lib_AddressManager
*/
contract Lib_AddressManager is Ownable {
/**********
* Events *
**********/
event AddressSet(
string indexed _name,
address _newAddress,
address _oldAddress
);
/*************
* Variables *
*************/
mapping (bytes32 => address) private addresses;
/********************
* Public Functions *
********************/
/**
* Changes the address associated with a particular name.
* @param _name String name to associate an address with.
* @param _address Address to associate with the name.
*/
function setAddress(
string memory _name,
address _address
)
external
onlyOwner
{
bytes32 nameHash = _getNameHash(_name);
address oldAddress = addresses[nameHash];
addresses[nameHash] = _address;
emit AddressSet(
_name,
_address,
oldAddress
);
}
/**
* Retrieves the address associated with a given name.
* @param _name Name to retrieve an address for.
* @return Address associated with the given name.
*/
function getAddress(
string memory _name
)
external
view
returns (
address
)
{
return addresses[_getNameHash(_name)];
}
/**********************
* Internal Functions *
**********************/
/**
* Computes the hash of a name.
* @param _name Name to compute a hash for.
* @return Hash of the given name.
*/
function _getNameHash(
string memory _name
)
internal
pure
returns (
bytes32
)
{
return keccak256(abi.encodePacked(_name));
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Library Imports */
import { Lib_AddressManager } from "./Lib_AddressManager.sol";
/**
* @title Lib_AddressResolver
*/
abstract contract Lib_AddressResolver {
/*************
* Variables *
*************/
Lib_AddressManager public libAddressManager;
/***************
* Constructor *
***************/
/**
* @param _libAddressManager Address of the Lib_AddressManager.
*/
constructor(
address _libAddressManager
) {
libAddressManager = Lib_AddressManager(_libAddressManager);
}
/********************
* Public Functions *
********************/
/**
* Resolves the address associated with a given name.
* @param _name Name to resolve an address for.
* @return Address associated with the given name.
*/
function resolve(
string memory _name
)
public
view
returns (
address
)
{
return libAddressManager.getAddress(_name);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/**
* @title Lib_Buffer
* @dev This library implements a bytes32 storage array with some additional gas-optimized
* functionality. In particular, it encodes its length as a uint40, and tightly packs this with an
* overwritable "extra data" field so we can store more information with a single SSTORE.
*/
library Lib_Buffer {
/*************
* Libraries *
*************/
using Lib_Buffer for Buffer;
/***********
* Structs *
***********/
struct Buffer {
bytes32 context;
mapping (uint256 => bytes32) buf;
}
struct BufferContext {
// Stores the length of the array. Uint40 is way more elements than we'll ever reasonably
// need in an array and we get an extra 27 bytes of extra data to play with.
uint40 length;
// Arbitrary extra data that can be modified whenever the length is updated. Useful for
// squeezing out some gas optimizations.
bytes27 extraData;
}
/**********************
* Internal Functions *
**********************/
/**
* Pushes a single element to the buffer.
* @param _self Buffer to access.
* @param _value Value to push to the buffer.
* @param _extraData Global extra data.
*/
function push(
Buffer storage _self,
bytes32 _value,
bytes27 _extraData
)
internal
{
BufferContext memory ctx = _self.getContext();
_self.buf[ctx.length] = _value;
// Bump the global index and insert our extra data, then save the context.
ctx.length++;
ctx.extraData = _extraData;
_self.setContext(ctx);
}
/**
* Pushes a single element to the buffer.
* @param _self Buffer to access.
* @param _value Value to push to the buffer.
*/
function push(
Buffer storage _self,
bytes32 _value
)
internal
{
BufferContext memory ctx = _self.getContext();
_self.push(
_value,
ctx.extraData
);
}
/**
* Retrieves an element from the buffer.
* @param _self Buffer to access.
* @param _index Element index to retrieve.
* @return Value of the element at the given index.
*/
function get(
Buffer storage _self,
uint256 _index
)
internal
view
returns (
bytes32
)
{
BufferContext memory ctx = _self.getContext();
require(
_index < ctx.length,
"Index out of bounds."
);
return _self.buf[_index];
}
/**
* Deletes all elements after (and including) a given index.
* @param _self Buffer to access.
* @param _index Index of the element to delete from (inclusive).
* @param _extraData Optional global extra data.
*/
function deleteElementsAfterInclusive(
Buffer storage _self,
uint40 _index,
bytes27 _extraData
)
internal
{
BufferContext memory ctx = _self.getContext();
require(
_index < ctx.length,
"Index out of bounds."
);
// Set our length and extra data, save the context.
ctx.length = _index;
ctx.extraData = _extraData;
_self.setContext(ctx);
}
/**
* Deletes all elements after (and including) a given index.
* @param _self Buffer to access.
* @param _index Index of the element to delete from (inclusive).
*/
function deleteElementsAfterInclusive(
Buffer storage _self,
uint40 _index
)
internal
{
BufferContext memory ctx = _self.getContext();
_self.deleteElementsAfterInclusive(
_index,
ctx.extraData
);
}
/**
* Retrieves the current global index.
* @param _self Buffer to access.
* @return Current global index.
*/
function getLength(
Buffer storage _self
)
internal
view
returns (
uint40
)
{
BufferContext memory ctx = _self.getContext();
return ctx.length;
}
/**
* Changes current global extra data.
* @param _self Buffer to access.
* @param _extraData New global extra data.
*/
function setExtraData(
Buffer storage _self,
bytes27 _extraData
)
internal
{
BufferContext memory ctx = _self.getContext();
ctx.extraData = _extraData;
_self.setContext(ctx);
}
/**
* Retrieves the current global extra data.
* @param _self Buffer to access.
* @return Current global extra data.
*/
function getExtraData(
Buffer storage _self
)
internal
view
returns (
bytes27
)
{
BufferContext memory ctx = _self.getContext();
return ctx.extraData;
}
/**
* Sets the current buffer context.
* @param _self Buffer to access.
* @param _ctx Current buffer context.
*/
function setContext(
Buffer storage _self,
BufferContext memory _ctx
)
internal
{
bytes32 context;
uint40 length = _ctx.length;
bytes27 extraData = _ctx.extraData;
assembly {
context := length
context := or(context, extraData)
}
if (_self.context != context) {
_self.context = context;
}
}
/**
* Retrieves the current buffer context.
* @param _self Buffer to access.
* @return Current buffer context.
*/
function getContext(
Buffer storage _self
)
internal
view
returns (
BufferContext memory
)
{
bytes32 context = _self.context;
uint40 length;
bytes27 extraData;
assembly {
// solhint-disable-next-line max-line-length
length := and(context, 0x000000000000000000000000000000000000000000000000000000FFFFFFFFFF)
// solhint-disable-next-line max-line-length
extraData := and(context, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000000000)
}
return BufferContext({
length: length,
extraData: extraData
});
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/**
* @title Lib_Byte32Utils
*/
library Lib_Bytes32Utils {
/**********************
* Internal Functions *
**********************/
/**
* Converts a bytes32 value to a boolean. Anything non-zero will be converted to "true."
* @param _in Input bytes32 value.
* @return Bytes32 as a boolean.
*/
function toBool(
bytes32 _in
)
internal
pure
returns (
bool
)
{
return _in != 0;
}
/**
* Converts a boolean to a bytes32 value.
* @param _in Input boolean value.
* @return Boolean as a bytes32.
*/
function fromBool(
bool _in
)
internal
pure
returns (
bytes32
)
{
return bytes32(uint256(_in ? 1 : 0));
}
/**
* Converts a bytes32 value to an address. Takes the *last* 20 bytes.
* @param _in Input bytes32 value.
* @return Bytes32 as an address.
*/
function toAddress(
bytes32 _in
)
internal
pure
returns (
address
)
{
return address(uint160(uint256(_in)));
}
/**
* Converts an address to a bytes32.
* @param _in Input address value.
* @return Address as a bytes32.
*/
function fromAddress(
address _in
)
internal
pure
returns (
bytes32
)
{
return bytes32(uint256(_in));
}
/**
* Removes the leading zeros from a bytes32 value and returns a new (smaller) bytes value.
* @param _in Input bytes32 value.
* @return Bytes32 without any leading zeros.
*/
function removeLeadingZeros(
bytes32 _in
)
internal
pure
returns (
bytes memory
)
{
bytes memory out;
assembly {
// Figure out how many leading zero bytes to remove.
let shift := 0
for { let i := 0 } and(lt(i, 32), eq(byte(i, _in), 0)) { i := add(i, 1) } {
shift := add(shift, 1)
}
// Reserve some space for our output and fix the free memory pointer.
out := mload(0x40)
mstore(0x40, add(out, 0x40))
// Shift the value and store it into the output bytes.
mstore(add(out, 0x20), shl(mul(shift, 8), _in))
// Store the new size (with leading zero bytes removed) in the output byte size.
mstore(out, sub(32, shift))
}
return out;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/**
* @title Lib_BytesUtils
*/
library Lib_BytesUtils {
/**********************
* Internal Functions *
**********************/
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
)
internal
pure
returns (
bytes memory
)
{
require(_length + 31 >= _length, "slice_overflow");
require(_start + _length >= _start, "slice_overflow");
require(_bytes.length >= _start + _length, "slice_outOfBounds");
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function slice(
bytes memory _bytes,
uint256 _start
)
internal
pure
returns (
bytes memory
)
{
if (_start >= _bytes.length) {
return bytes("");
}
return slice(_bytes, _start, _bytes.length - _start);
}
function toBytes32PadLeft(
bytes memory _bytes
)
internal
pure
returns (
bytes32
)
{
bytes32 ret;
uint256 len = _bytes.length <= 32 ? _bytes.length : 32;
assembly {
ret := shr(mul(sub(32, len), 8), mload(add(_bytes, 32)))
}
return ret;
}
function toBytes32(
bytes memory _bytes
)
internal
pure
returns (
bytes32
)
{
if (_bytes.length < 32) {
bytes32 ret;
assembly {
ret := mload(add(_bytes, 32))
}
return ret;
}
return abi.decode(_bytes,(bytes32)); // will truncate if input length > 32 bytes
}
function toUint256(
bytes memory _bytes
)
internal
pure
returns (
uint256
)
{
return uint256(toBytes32(_bytes));
}
function toUint24(
bytes memory _bytes,
uint256 _start
)
internal
pure
returns (
uint24
)
{
require(_start + 3 >= _start, "toUint24_overflow");
require(_bytes.length >= _start + 3 , "toUint24_outOfBounds");
uint24 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x3), _start))
}
return tempUint;
}
function toUint8(
bytes memory _bytes,
uint256 _start
)
internal
pure
returns (
uint8
)
{
require(_start + 1 >= _start, "toUint8_overflow");
require(_bytes.length >= _start + 1 , "toUint8_outOfBounds");
uint8 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x1), _start))
}
return tempUint;
}
function toAddress(
bytes memory _bytes,
uint256 _start
)
internal
pure
returns (
address
)
{
require(_start + 20 >= _start, "toAddress_overflow");
require(_bytes.length >= _start + 20, "toAddress_outOfBounds");
address tempAddress;
assembly {
tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
}
return tempAddress;
}
function toNibbles(
bytes memory _bytes
)
internal
pure
returns (
bytes memory
)
{
bytes memory nibbles = new bytes(_bytes.length * 2);
for (uint256 i = 0; i < _bytes.length; i++) {
nibbles[i * 2] = _bytes[i] >> 4;
nibbles[i * 2 + 1] = bytes1(uint8(_bytes[i]) % 16);
}
return nibbles;
}
function fromNibbles(
bytes memory _bytes
)
internal
pure
returns (
bytes memory
)
{
bytes memory ret = new bytes(_bytes.length / 2);
for (uint256 i = 0; i < ret.length; i++) {
ret[i] = (_bytes[i * 2] << 4) | (_bytes[i * 2 + 1]);
}
return ret;
}
function equal(
bytes memory _bytes,
bytes memory _other
)
internal
pure
returns (
bool
)
{
return keccak256(_bytes) == keccak256(_other);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_RLPReader } from "../rlp/Lib_RLPReader.sol";
/**
* @title Lib_CrossDomainUtils
*/
library Lib_CrossDomainUtils {
/**
* Generates the correct cross domain calldata for a message.
* @param _target Target contract address.
* @param _sender Message sender address.
* @param _message Message to send to the target.
* @param _messageNonce Nonce for the provided message.
* @return ABI encoded cross domain calldata.
*/
function encodeXDomainCalldata(
address _target,
address _sender,
bytes memory _message,
uint256 _messageNonce
)
internal
pure
returns (
bytes memory
)
{
return abi.encodeWithSignature(
"relayMessage(address,address,bytes,uint256)",
_target,
_sender,
_message,
_messageNonce
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_RLPReader } from "../rlp/Lib_RLPReader.sol";
import { Lib_RLPWriter } from "../rlp/Lib_RLPWriter.sol";
/**
* @title Lib_EIP155Tx
* @dev A simple library for dealing with the transaction type defined by EIP155:
* https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
*/
library Lib_EIP155Tx {
/***********
* Structs *
***********/
// Struct representing an EIP155 transaction. See EIP link above for more information.
struct EIP155Tx {
// These fields correspond to the actual RLP-encoded fields specified by EIP155.
uint256 nonce;
uint256 gasPrice;
uint256 gasLimit;
address to;
uint256 value;
bytes data;
uint8 v;
bytes32 r;
bytes32 s;
// Chain ID to associate this transaction with. Used all over the place, seemed easier to
// set this once when we create the transaction rather than providing it as an input to
// each function. I don't see a strong need to have a transaction with a mutable chain ID.
uint256 chainId;
// The ECDSA "recovery parameter," should always be 0 or 1. EIP155 specifies that:
// `v = {0,1} + CHAIN_ID * 2 + 35`
// Where `{0,1}` is a stand in for our `recovery_parameter`. Now computing our formula for
// the recovery parameter:
// 1. `v = {0,1} + CHAIN_ID * 2 + 35`
// 2. `v = recovery_parameter + CHAIN_ID * 2 + 35`
// 3. `v - CHAIN_ID * 2 - 35 = recovery_parameter`
// So we're left with the final formula:
// `recovery_parameter = v - CHAIN_ID * 2 - 35`
// NOTE: This variable is a uint8 because `v` is inherently limited to a uint8. If we
// didn't use a uint8, then recovery_parameter would always be a negative number for chain
// IDs greater than 110 (`255 - 110 * 2 - 35 = 0`). So we need to wrap around to support
// anything larger.
uint8 recoveryParam;
// Whether or not the transaction is a creation. Necessary because we can't make an address
// "nil". Using the zero address creates a potential conflict if the user did actually
// intend to send a transaction to the zero address.
bool isCreate;
}
// Lets us use nicer syntax.
using Lib_EIP155Tx for EIP155Tx;
/**********************
* Internal Functions *
**********************/
/**
* Decodes an EIP155 transaction and attaches a given Chain ID.
* Transaction *must* be RLP-encoded.
* @param _encoded RLP-encoded EIP155 transaction.
* @param _chainId Chain ID to assocaite with this transaction.
* @return Parsed transaction.
*/
function decode(
bytes memory _encoded,
uint256 _chainId
)
internal
pure
returns (
EIP155Tx memory
)
{
Lib_RLPReader.RLPItem[] memory decoded = Lib_RLPReader.readList(_encoded);
// Note formula above about how recoveryParam is computed.
uint8 v = uint8(Lib_RLPReader.readUint256(decoded[6]));
uint8 recoveryParam = uint8(v - 2 * _chainId - 35);
// Recovery param being anything other than 0 or 1 indicates that we have the wrong chain
// ID.
require(
recoveryParam < 2,
"Lib_EIP155Tx: Transaction signed with wrong chain ID"
);
// Creations can be detected by looking at the byte length here.
bool isCreate = Lib_RLPReader.readBytes(decoded[3]).length == 0;
return EIP155Tx({
nonce: Lib_RLPReader.readUint256(decoded[0]),
gasPrice: Lib_RLPReader.readUint256(decoded[1]),
gasLimit: Lib_RLPReader.readUint256(decoded[2]),
to: Lib_RLPReader.readAddress(decoded[3]),
value: Lib_RLPReader.readUint256(decoded[4]),
data: Lib_RLPReader.readBytes(decoded[5]),
v: v,
r: Lib_RLPReader.readBytes32(decoded[7]),
s: Lib_RLPReader.readBytes32(decoded[8]),
chainId: _chainId,
recoveryParam: recoveryParam,
isCreate: isCreate
});
}
/**
* Encodes an EIP155 transaction into RLP.
* @param _transaction EIP155 transaction to encode.
* @param _includeSignature Whether or not to encode the signature.
* @return RLP-encoded transaction.
*/
function encode(
EIP155Tx memory _transaction,
bool _includeSignature
)
internal
pure
returns (
bytes memory
)
{
bytes[] memory raw = new bytes[](9);
raw[0] = Lib_RLPWriter.writeUint(_transaction.nonce);
raw[1] = Lib_RLPWriter.writeUint(_transaction.gasPrice);
raw[2] = Lib_RLPWriter.writeUint(_transaction.gasLimit);
// We write the encoding of empty bytes when the transaction is a creation, *not* the zero
// address as one might assume.
if (_transaction.isCreate) {
raw[3] = Lib_RLPWriter.writeBytes("");
} else {
raw[3] = Lib_RLPWriter.writeAddress(_transaction.to);
}
raw[4] = Lib_RLPWriter.writeUint(_transaction.value);
raw[5] = Lib_RLPWriter.writeBytes(_transaction.data);
if (_includeSignature) {
raw[6] = Lib_RLPWriter.writeUint(_transaction.v);
raw[7] = Lib_RLPWriter.writeBytes32(_transaction.r);
raw[8] = Lib_RLPWriter.writeBytes32(_transaction.s);
} else {
// Chain ID *is* included in the unsigned transaction.
raw[6] = Lib_RLPWriter.writeUint(_transaction.chainId);
raw[7] = Lib_RLPWriter.writeBytes("");
raw[8] = Lib_RLPWriter.writeBytes("");
}
return Lib_RLPWriter.writeList(raw);
}
/**
* Computes the hash of an EIP155 transaction. Assumes that you don't want to include the
* signature in this hash because that's a very uncommon usecase. If you really want to include
* the signature, just encode with the signature and take the hash yourself.
*/
function hash(
EIP155Tx memory _transaction
)
internal
pure
returns (
bytes32
)
{
return keccak256(
_transaction.encode(false)
);
}
/**
* Computes the sender of an EIP155 transaction.
* @param _transaction EIP155 transaction to get a sender for.
* @return Address corresponding to the private key that signed this transaction.
*/
function sender(
EIP155Tx memory _transaction
)
internal
pure
returns (
address
)
{
return ecrecover(
_transaction.hash(),
_transaction.recoveryParam + 27,
_transaction.r,
_transaction.s
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/**
* @title Lib_ErrorUtils
*/
library Lib_ErrorUtils {
/**********************
* Internal Functions *
**********************/
/**
* Encodes an error string into raw solidity-style revert data.
* (i.e. ascii bytes, prefixed with bytes4(keccak("Error(string))"))
* Ref: https://docs.soliditylang.org/en/v0.8.2/control-structures.html?highlight=Error(string)
* #panic-via-assert-and-error-via-require
* @param _reason Reason for the reversion.
* @return Standard solidity revert data for the given reason.
*/
function encodeRevertString(
string memory _reason
)
internal
pure
returns (
bytes memory
)
{
return abi.encodeWithSignature(
"Error(string)",
_reason
);
}
}
// SPDX-License-Identifier: MIT
// @unsupported: ovm
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_RLPWriter } from "../rlp/Lib_RLPWriter.sol";
import { Lib_Bytes32Utils } from "./Lib_Bytes32Utils.sol";
/**
* @title Lib_EthUtils
*/
library Lib_EthUtils {
/**********************
* Internal Functions *
**********************/
/**
* Gets the code for a given address.
* @param _address Address to get code for.
* @param _offset Offset to start reading from.
* @param _length Number of bytes to read.
* @return Code read from the contract.
*/
function getCode(
address _address,
uint256 _offset,
uint256 _length
)
internal
view
returns (
bytes memory
)
{
bytes memory code;
assembly {
code := mload(0x40)
mstore(0x40, add(code, add(_length, 0x20)))
mstore(code, _length)
extcodecopy(_address, add(code, 0x20), _offset, _length)
}
return code;
}
/**
* Gets the full code for a given address.
* @param _address Address to get code for.
* @return Full code of the contract.
*/
function getCode(
address _address
)
internal
view
returns (
bytes memory
)
{
return getCode(
_address,
0,
getCodeSize(_address)
);
}
/**
* Gets the size of a contract's code in bytes.
* @param _address Address to get code size for.
* @return Size of the contract's code in bytes.
*/
function getCodeSize(
address _address
)
internal
view
returns (
uint256
)
{
uint256 codeSize;
assembly {
codeSize := extcodesize(_address)
}
return codeSize;
}
/**
* Gets the hash of a contract's code.
* @param _address Address to get a code hash for.
* @return Hash of the contract's code.
*/
function getCodeHash(
address _address
)
internal
view
returns (
bytes32
)
{
bytes32 codeHash;
assembly {
codeHash := extcodehash(_address)
}
return codeHash;
}
/**
* Creates a contract with some given initialization code.
* @param _code Contract initialization code.
* @return Address of the created contract.
*/
function createContract(
bytes memory _code
)
internal
returns (
address
)
{
address created;
assembly {
created := create(
0,
add(_code, 0x20),
mload(_code)
)
}
return created;
}
/**
* Computes the address that would be generated by CREATE.
* @param _creator Address creating the contract.
* @param _nonce Creator's nonce.
* @return Address to be generated by CREATE.
*/
function getAddressForCREATE(
address _creator,
uint256 _nonce
)
internal
pure
returns (
address
)
{
bytes[] memory encoded = new bytes[](2);
encoded[0] = Lib_RLPWriter.writeAddress(_creator);
encoded[1] = Lib_RLPWriter.writeUint(_nonce);
bytes memory encodedList = Lib_RLPWriter.writeList(encoded);
return Lib_Bytes32Utils.toAddress(keccak256(encodedList));
}
/**
* Computes the address that would be generated by CREATE2.
* @param _creator Address creating the contract.
* @param _bytecode Bytecode of the contract to be created.
* @param _salt 32 byte salt value mixed into the hash.
* @return Address to be generated by CREATE2.
*/
function getAddressForCREATE2(
address _creator,
bytes memory _bytecode,
bytes32 _salt
)
internal
pure
returns (
address
)
{
bytes32 hashedData = keccak256(abi.encodePacked(
byte(0xff),
_creator,
_salt,
keccak256(_bytecode)
));
return Lib_Bytes32Utils.toAddress(hashedData);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Library Imports */
import { Lib_ErrorUtils } from "../utils/Lib_ErrorUtils.sol";
import { Lib_PredeployAddresses } from "../constants/Lib_PredeployAddresses.sol";
/**
* @title Lib_ExecutionManagerWrapper
* @dev This library acts as a utility for easily calling the OVM_ExecutionManagerWrapper, the
* predeployed contract which exposes the `kall` builtin. Effectively, this contract allows the
* user to trigger OVM opcodes by directly calling the OVM_ExecutionManger.
*
* Compiler used: solc
* Runtime target: OVM
*/
library Lib_ExecutionManagerWrapper {
/**********************
* Internal Functions *
**********************/
/**
* Performs a safe ovmCREATE call.
* @param _bytecode Code for the new contract.
* @return Address of the created contract.
*/
function ovmCREATE(
bytes memory _bytecode
)
internal
returns (
address,
bytes memory
)
{
bytes memory returndata = _callWrapperContract(
abi.encodeWithSignature(
"ovmCREATE(bytes)",
_bytecode
)
);
return abi.decode(returndata, (address, bytes));
}
/**
* Performs a safe ovmGETNONCE call.
* @return Result of calling ovmGETNONCE.
*/
function ovmGETNONCE()
internal
returns (
uint256
)
{
bytes memory returndata = _callWrapperContract(
abi.encodeWithSignature(
"ovmGETNONCE()"
)
);
return abi.decode(returndata, (uint256));
}
/**
* Performs a safe ovmINCREMENTNONCE call.
*/
function ovmINCREMENTNONCE()
internal
{
_callWrapperContract(
abi.encodeWithSignature(
"ovmINCREMENTNONCE()"
)
);
}
/**
* Performs a safe ovmCREATEEOA call.
* @param _messageHash Message hash which was signed by EOA
* @param _v v value of signature (0 or 1)
* @param _r r value of signature
* @param _s s value of signature
*/
function ovmCREATEEOA(
bytes32 _messageHash,
uint8 _v,
bytes32 _r,
bytes32 _s
)
internal
{
_callWrapperContract(
abi.encodeWithSignature(
"ovmCREATEEOA(bytes32,uint8,bytes32,bytes32)",
_messageHash,
_v,
_r,
_s
)
);
}
/**
* Calls the ovmL1TXORIGIN opcode.
* @return Address that sent this message from L1.
*/
function ovmL1TXORIGIN()
internal
returns (
address
)
{
bytes memory returndata = _callWrapperContract(
abi.encodeWithSignature(
"ovmL1TXORIGIN()"
)
);
return abi.decode(returndata, (address));
}
/**
* Calls the ovmCHAINID opcode.
* @return Chain ID of the current network.
*/
function ovmCHAINID()
internal
returns (
uint256
)
{
bytes memory returndata = _callWrapperContract(
abi.encodeWithSignature(
"ovmCHAINID()"
)
);
return abi.decode(returndata, (uint256));
}
/**
* Performs a safe ovmADDRESS call.
* @return Result of calling ovmADDRESS.
*/
function ovmADDRESS()
internal
returns (
address
)
{
bytes memory returndata = _callWrapperContract(
abi.encodeWithSignature(
"ovmADDRESS()"
)
);
return abi.decode(returndata, (address));
}
/**
* Calls the value-enabled ovmCALL opcode.
* @param _gasLimit Amount of gas to be passed into this call.
* @param _address Address of the contract to call.
* @param _value ETH value to pass with the call.
* @param _calldata Data to send along with the call.
* @return _success Whether or not the call returned (rather than reverted).
* @return _returndata Data returned by the call.
*/
function ovmCALL(
uint256 _gasLimit,
address _address,
uint256 _value,
bytes memory _calldata
)
internal
returns (
bool,
bytes memory
)
{
bytes memory returndata = _callWrapperContract(
abi.encodeWithSignature(
"ovmCALL(uint256,address,uint256,bytes)",
_gasLimit,
_address,
_value,
_calldata
)
);
return abi.decode(returndata, (bool, bytes));
}
/**
* Calls the ovmBALANCE opcode.
* @param _address OVM account to query the balance of.
* @return Balance of the account.
*/
function ovmBALANCE(
address _address
)
internal
returns (
uint256
)
{
bytes memory returndata = _callWrapperContract(
abi.encodeWithSignature(
"ovmBALANCE(address)",
_address
)
);
return abi.decode(returndata, (uint256));
}
/**
* Calls the ovmCALLVALUE opcode.
* @return Value of the current call frame.
*/
function ovmCALLVALUE()
internal
returns (
uint256
)
{
bytes memory returndata = _callWrapperContract(
abi.encodeWithSignature(
"ovmCALLVALUE()"
)
);
return abi.decode(returndata, (uint256));
}
/*********************
* Private Functions *
*********************/
/**
* Performs an ovm interaction and the necessary safety checks.
* @param _calldata Data to send to the OVM_ExecutionManager (encoded with sighash).
* @return Data sent back by the OVM_ExecutionManager.
*/
function _callWrapperContract(
bytes memory _calldata
)
private
returns (
bytes memory
)
{
(bool success, bytes memory returndata) =
Lib_PredeployAddresses.EXECUTION_MANAGER_WRAPPER.delegatecall(_calldata);
if (success == true) {
return returndata;
} else {
assembly {
revert(add(returndata, 0x20), mload(returndata))
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/**
* @title Lib_MerkleTree
* @author River Keefer
*/
library Lib_MerkleTree {
/**********************
* Internal Functions *
**********************/
/**
* Calculates a merkle root for a list of 32-byte leaf hashes. WARNING: If the number
* of leaves passed in is not a power of two, it pads out the tree with zero hashes.
* If you do not know the original length of elements for the tree you are verifying, then
* this may allow empty leaves past _elements.length to pass a verification check down the line.
* Note that the _elements argument is modified, therefore it must not be used again afterwards
* @param _elements Array of hashes from which to generate a merkle root.
* @return Merkle root of the leaves, with zero hashes for non-powers-of-two (see above).
*/
function getMerkleRoot(
bytes32[] memory _elements
)
internal
pure
returns (
bytes32
)
{
require(
_elements.length > 0,
"Lib_MerkleTree: Must provide at least one leaf hash."
);
if (_elements.length == 1) {
return _elements[0];
}
uint256[16] memory defaults = [
0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563,
0x633dc4d7da7256660a892f8f1604a44b5432649cc8ec5cb3ced4c4e6ac94dd1d,
0x890740a8eb06ce9be422cb8da5cdafc2b58c0a5e24036c578de2a433c828ff7d,
0x3b8ec09e026fdc305365dfc94e189a81b38c7597b3d941c279f042e8206e0bd8,
0xecd50eee38e386bd62be9bedb990706951b65fe053bd9d8a521af753d139e2da,
0xdefff6d330bb5403f63b14f33b578274160de3a50df4efecf0e0db73bcdd3da5,
0x617bdd11f7c0a11f49db22f629387a12da7596f9d1704d7465177c63d88ec7d7,
0x292c23a9aa1d8bea7e2435e555a4a60e379a5a35f3f452bae60121073fb6eead,
0xe1cea92ed99acdcb045a6726b2f87107e8a61620a232cf4d7d5b5766b3952e10,
0x7ad66c0a68c72cb89e4fb4303841966e4062a76ab97451e3b9fb526a5ceb7f82,
0xe026cc5a4aed3c22a58cbd3d2ac754c9352c5436f638042dca99034e83636516,
0x3d04cffd8b46a874edf5cfae63077de85f849a660426697b06a829c70dd1409c,
0xad676aa337a485e4728a0b240d92b3ef7b3c372d06d189322bfd5f61f1e7203e,
0xa2fca4a49658f9fab7aa63289c91b7c7b6c832a6d0e69334ff5b0a3483d09dab,
0x4ebfd9cd7bca2505f7bef59cc1c12ecc708fff26ae4af19abe852afe9e20c862,
0x2def10d13dd169f550f578bda343d9717a138562e0093b380a1120789d53cf10
];
// Reserve memory space for our hashes.
bytes memory buf = new bytes(64);
// We'll need to keep track of left and right siblings.
bytes32 leftSibling;
bytes32 rightSibling;
// Number of non-empty nodes at the current depth.
uint256 rowSize = _elements.length;
// Current depth, counting from 0 at the leaves
uint256 depth = 0;
// Common sub-expressions
uint256 halfRowSize; // rowSize / 2
bool rowSizeIsOdd; // rowSize % 2 == 1
while (rowSize > 1) {
halfRowSize = rowSize / 2;
rowSizeIsOdd = rowSize % 2 == 1;
for (uint256 i = 0; i < halfRowSize; i++) {
leftSibling = _elements[(2 * i) ];
rightSibling = _elements[(2 * i) + 1];
assembly {
mstore(add(buf, 32), leftSibling )
mstore(add(buf, 64), rightSibling)
}
_elements[i] = keccak256(buf);
}
if (rowSizeIsOdd) {
leftSibling = _elements[rowSize - 1];
rightSibling = bytes32(defaults[depth]);
assembly {
mstore(add(buf, 32), leftSibling)
mstore(add(buf, 64), rightSibling)
}
_elements[halfRowSize] = keccak256(buf);
}
rowSize = halfRowSize + (rowSizeIsOdd ? 1 : 0);
depth++;
}
return _elements[0];
}
/**
* Verifies a merkle branch for the given leaf hash. Assumes the original length
* of leaves generated is a known, correct input, and does not return true for indices
* extending past that index (even if _siblings would be otherwise valid.)
* @param _root The Merkle root to verify against.
* @param _leaf The leaf hash to verify inclusion of.
* @param _index The index in the tree of this leaf.
* @param _siblings Array of sibline nodes in the inclusion proof, starting from depth 0
* (bottom of the tree).
* @param _totalLeaves The total number of leaves originally passed into.
* @return Whether or not the merkle branch and leaf passes verification.
*/
function verify(
bytes32 _root,
bytes32 _leaf,
uint256 _index,
bytes32[] memory _siblings,
uint256 _totalLeaves
)
internal
pure
returns (
bool
)
{
require(
_totalLeaves > 0,
"Lib_MerkleTree: Total leaves must be greater than zero."
);
require(
_index < _totalLeaves,
"Lib_MerkleTree: Index out of bounds."
);
require(
_siblings.length == _ceilLog2(_totalLeaves),
"Lib_MerkleTree: Total siblings does not correctly correspond to total leaves."
);
bytes32 computedRoot = _leaf;
for (uint256 i = 0; i < _siblings.length; i++) {
if ((_index & 1) == 1) {
computedRoot = keccak256(
abi.encodePacked(
_siblings[i],
computedRoot
)
);
} else {
computedRoot = keccak256(
abi.encodePacked(
computedRoot,
_siblings[i]
)
);
}
_index >>= 1;
}
return _root == computedRoot;
}
/*********************
* Private Functions *
*********************/
/**
* Calculates the integer ceiling of the log base 2 of an input.
* @param _in Unsigned input to calculate the log.
* @return ceil(log_base_2(_in))
*/
function _ceilLog2(
uint256 _in
)
private
pure
returns (
uint256
)
{
require(
_in > 0,
"Lib_MerkleTree: Cannot compute ceil(log_2) of 0."
);
if (_in == 1) {
return 0;
}
// Find the highest set bit (will be floor(log_2)).
// Borrowed with <3 from https://github.com/ethereum/solidity-examples
uint256 val = _in;
uint256 highest = 0;
for (uint256 i = 128; i >= 1; i >>= 1) {
if (val & (uint(1) << i) - 1 << i != 0) {
highest += i;
val >>= i;
}
}
// Increment by one if this is not a perfect logarithm.
if ((uint(1) << highest) != _in) {
highest += 1;
}
return highest;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Library Imports */
import { Lib_BytesUtils } from "../utils/Lib_BytesUtils.sol";
import { Lib_RLPReader } from "../rlp/Lib_RLPReader.sol";
import { Lib_RLPWriter } from "../rlp/Lib_RLPWriter.sol";
/**
* @title Lib_MerkleTrie
*/
library Lib_MerkleTrie {
/*******************
* Data Structures *
*******************/
enum NodeType {
BranchNode,
ExtensionNode,
LeafNode
}
struct TrieNode {
bytes encoded;
Lib_RLPReader.RLPItem[] decoded;
}
/**********************
* Contract Constants *
**********************/
// TREE_RADIX determines the number of elements per branch node.
uint256 constant TREE_RADIX = 16;
// Branch nodes have TREE_RADIX elements plus an additional `value` slot.
uint256 constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
// Leaf nodes and extension nodes always have two elements, a `path` and a `value`.
uint256 constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
// Prefixes are prepended to the `path` within a leaf or extension node and
// allow us to differentiate between the two node types. `ODD` or `EVEN` is
// determined by the number of nibbles within the unprefixed `path`. If the
// number of nibbles if even, we need to insert an extra padding nibble so
// the resulting prefixed `path` has an even number of nibbles.
uint8 constant PREFIX_EXTENSION_EVEN = 0;
uint8 constant PREFIX_EXTENSION_ODD = 1;
uint8 constant PREFIX_LEAF_EVEN = 2;
uint8 constant PREFIX_LEAF_ODD = 3;
// Just a utility constant. RLP represents `NULL` as 0x80.
bytes1 constant RLP_NULL = bytes1(0x80);
bytes constant RLP_NULL_BYTES = hex'80';
bytes32 constant internal KECCAK256_RLP_NULL_BYTES = keccak256(RLP_NULL_BYTES);
/**********************
* Internal Functions *
**********************/
/**
* @notice Verifies a proof that a given key/value pair is present in the
* Merkle trie.
* @param _key Key of the node to search for, as a hex string.
* @param _value Value of the node to search for, as a hex string.
* @param _proof Merkle trie inclusion proof for the desired node. Unlike
* traditional Merkle trees, this proof is executed top-down and consists
* of a list of RLP-encoded nodes that make a path down to the target node.
* @param _root Known root of the Merkle trie. Used to verify that the
* included proof is correctly constructed.
* @return _verified `true` if the k/v pair exists in the trie, `false` otherwise.
*/
function verifyInclusionProof(
bytes memory _key,
bytes memory _value,
bytes memory _proof,
bytes32 _root
)
internal
pure
returns (
bool _verified
)
{
(
bool exists,
bytes memory value
) = get(_key, _proof, _root);
return (
exists && Lib_BytesUtils.equal(_value, value)
);
}
/**
* @notice Updates a Merkle trie and returns a new root hash.
* @param _key Key of the node to update, as a hex string.
* @param _value Value of the node to update, as a hex string.
* @param _proof Merkle trie inclusion proof for the node *nearest* the
* target node. If the key exists, we can simply update the value.
* Otherwise, we need to modify the trie to handle the new k/v pair.
* @param _root Known root of the Merkle trie. Used to verify that the
* included proof is correctly constructed.
* @return _updatedRoot Root hash of the newly constructed trie.
*/
function update(
bytes memory _key,
bytes memory _value,
bytes memory _proof,
bytes32 _root
)
internal
pure
returns (
bytes32 _updatedRoot
)
{
// Special case when inserting the very first node.
if (_root == KECCAK256_RLP_NULL_BYTES) {
return getSingleNodeRootHash(_key, _value);
}
TrieNode[] memory proof = _parseProof(_proof);
(uint256 pathLength, bytes memory keyRemainder, ) = _walkNodePath(proof, _key, _root);
TrieNode[] memory newPath = _getNewPath(proof, pathLength, _key, keyRemainder, _value);
return _getUpdatedTrieRoot(newPath, _key);
}
/**
* @notice Retrieves the value associated with a given key.
* @param _key Key to search for, as hex bytes.
* @param _proof Merkle trie inclusion proof for the key.
* @param _root Known root of the Merkle trie.
* @return _exists Whether or not the key exists.
* @return _value Value of the key if it exists.
*/
function get(
bytes memory _key,
bytes memory _proof,
bytes32 _root
)
internal
pure
returns (
bool _exists,
bytes memory _value
)
{
TrieNode[] memory proof = _parseProof(_proof);
(uint256 pathLength, bytes memory keyRemainder, bool isFinalNode) =
_walkNodePath(proof, _key, _root);
bool exists = keyRemainder.length == 0;
require(
exists || isFinalNode,
"Provided proof is invalid."
);
bytes memory value = exists ? _getNodeValue(proof[pathLength - 1]) : bytes("");
return (
exists,
value
);
}
/**
* Computes the root hash for a trie with a single node.
* @param _key Key for the single node.
* @param _value Value for the single node.
* @return _updatedRoot Hash of the trie.
*/
function getSingleNodeRootHash(
bytes memory _key,
bytes memory _value
)
internal
pure
returns (
bytes32 _updatedRoot
)
{
return keccak256(_makeLeafNode(
Lib_BytesUtils.toNibbles(_key),
_value
).encoded);
}
/*********************
* Private Functions *
*********************/
/**
* @notice Walks through a proof using a provided key.
* @param _proof Inclusion proof to walk through.
* @param _key Key to use for the walk.
* @param _root Known root of the trie.
* @return _pathLength Length of the final path
* @return _keyRemainder Portion of the key remaining after the walk.
* @return _isFinalNode Whether or not we've hit a dead end.
*/
function _walkNodePath(
TrieNode[] memory _proof,
bytes memory _key,
bytes32 _root
)
private
pure
returns (
uint256 _pathLength,
bytes memory _keyRemainder,
bool _isFinalNode
)
{
uint256 pathLength = 0;
bytes memory key = Lib_BytesUtils.toNibbles(_key);
bytes32 currentNodeID = _root;
uint256 currentKeyIndex = 0;
uint256 currentKeyIncrement = 0;
TrieNode memory currentNode;
// Proof is top-down, so we start at the first element (root).
for (uint256 i = 0; i < _proof.length; i++) {
currentNode = _proof[i];
currentKeyIndex += currentKeyIncrement;
// Keep track of the proof elements we actually need.
// It's expensive to resize arrays, so this simply reduces gas costs.
pathLength += 1;
if (currentKeyIndex == 0) {
// First proof element is always the root node.
require(
keccak256(currentNode.encoded) == currentNodeID,
"Invalid root hash"
);
} else if (currentNode.encoded.length >= 32) {
// Nodes 32 bytes or larger are hashed inside branch nodes.
require(
keccak256(currentNode.encoded) == currentNodeID,
"Invalid large internal hash"
);
} else {
// Nodes smaller than 31 bytes aren't hashed.
require(
Lib_BytesUtils.toBytes32(currentNode.encoded) == currentNodeID,
"Invalid internal node hash"
);
}
if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
if (currentKeyIndex == key.length) {
// We've hit the end of the key
// meaning the value should be within this branch node.
break;
} else {
// We're not at the end of the key yet.
// Figure out what the next node ID should be and continue.
uint8 branchKey = uint8(key[currentKeyIndex]);
Lib_RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
currentNodeID = _getNodeID(nextNode);
currentKeyIncrement = 1;
continue;
}
} else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
bytes memory path = _getNodePath(currentNode);
uint8 prefix = uint8(path[0]);
uint8 offset = 2 - prefix % 2;
bytes memory pathRemainder = Lib_BytesUtils.slice(path, offset);
bytes memory keyRemainder = Lib_BytesUtils.slice(key, currentKeyIndex);
uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
if (
pathRemainder.length == sharedNibbleLength &&
keyRemainder.length == sharedNibbleLength
) {
// The key within this leaf matches our key exactly.
// Increment the key index to reflect that we have no remainder.
currentKeyIndex += sharedNibbleLength;
}
// We've hit a leaf node, so our next node should be NULL.
currentNodeID = bytes32(RLP_NULL);
break;
} else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
if (sharedNibbleLength != pathRemainder.length) {
// Our extension node is not identical to the remainder.
// We've hit the end of this path
// updates will need to modify this extension.
currentNodeID = bytes32(RLP_NULL);
break;
} else {
// Our extension shares some nibbles.
// Carry on to the next node.
currentNodeID = _getNodeID(currentNode.decoded[1]);
currentKeyIncrement = sharedNibbleLength;
continue;
}
} else {
revert("Received a node with an unknown prefix");
}
} else {
revert("Received an unparseable node.");
}
}
// If our node ID is NULL, then we're at a dead end.
bool isFinalNode = currentNodeID == bytes32(RLP_NULL);
return (pathLength, Lib_BytesUtils.slice(key, currentKeyIndex), isFinalNode);
}
/**
* @notice Creates new nodes to support a k/v pair insertion into a given Merkle trie path.
* @param _path Path to the node nearest the k/v pair.
* @param _pathLength Length of the path. Necessary because the provided path may include
* additional nodes (e.g., it comes directly from a proof) and we can't resize in-memory
* arrays without costly duplication.
* @param _key Full original key.
* @param _keyRemainder Portion of the initial key that must be inserted into the trie.
* @param _value Value to insert at the given key.
* @return _newPath A new path with the inserted k/v pair and extra supporting nodes.
*/
function _getNewPath(
TrieNode[] memory _path,
uint256 _pathLength,
bytes memory _key,
bytes memory _keyRemainder,
bytes memory _value
)
private
pure
returns (
TrieNode[] memory _newPath
)
{
bytes memory keyRemainder = _keyRemainder;
// Most of our logic depends on the status of the last node in the path.
TrieNode memory lastNode = _path[_pathLength - 1];
NodeType lastNodeType = _getNodeType(lastNode);
// Create an array for newly created nodes.
// We need up to three new nodes, depending on the contents of the last node.
// Since array resizing is expensive, we'll keep track of the size manually.
// We're using an explicit `totalNewNodes += 1` after insertions for clarity.
TrieNode[] memory newNodes = new TrieNode[](3);
uint256 totalNewNodes = 0;
// solhint-disable-next-line max-line-length
// Reference: https://github.com/ethereumjs/merkle-patricia-tree/blob/c0a10395aab37d42c175a47114ebfcbd7efcf059/src/baseTrie.ts#L294-L313
bool matchLeaf = false;
if (lastNodeType == NodeType.LeafNode) {
uint256 l = 0;
if (_path.length > 0) {
for (uint256 i = 0; i < _path.length - 1; i++) {
if (_getNodeType(_path[i]) == NodeType.BranchNode) {
l++;
} else {
l += _getNodeKey(_path[i]).length;
}
}
}
if (
_getSharedNibbleLength(
_getNodeKey(lastNode),
Lib_BytesUtils.slice(Lib_BytesUtils.toNibbles(_key), l)
) == _getNodeKey(lastNode).length
&& keyRemainder.length == 0
) {
matchLeaf = true;
}
}
if (matchLeaf) {
// We've found a leaf node with the given key.
// Simply need to update the value of the node to match.
newNodes[totalNewNodes] = _makeLeafNode(_getNodeKey(lastNode), _value);
totalNewNodes += 1;
} else if (lastNodeType == NodeType.BranchNode) {
if (keyRemainder.length == 0) {
// We've found a branch node with the given key.
// Simply need to update the value of the node to match.
newNodes[totalNewNodes] = _editBranchValue(lastNode, _value);
totalNewNodes += 1;
} else {
// We've found a branch node, but it doesn't contain our key.
// Reinsert the old branch for now.
newNodes[totalNewNodes] = lastNode;
totalNewNodes += 1;
// Create a new leaf node, slicing our remainder since the first byte points
// to our branch node.
newNodes[totalNewNodes] =
_makeLeafNode(Lib_BytesUtils.slice(keyRemainder, 1), _value);
totalNewNodes += 1;
}
} else {
// Our last node is either an extension node or a leaf node with a different key.
bytes memory lastNodeKey = _getNodeKey(lastNode);
uint256 sharedNibbleLength = _getSharedNibbleLength(lastNodeKey, keyRemainder);
if (sharedNibbleLength != 0) {
// We've got some shared nibbles between the last node and our key remainder.
// We'll need to insert an extension node that covers these shared nibbles.
bytes memory nextNodeKey = Lib_BytesUtils.slice(lastNodeKey, 0, sharedNibbleLength);
newNodes[totalNewNodes] = _makeExtensionNode(nextNodeKey, _getNodeHash(_value));
totalNewNodes += 1;
// Cut down the keys since we've just covered these shared nibbles.
lastNodeKey = Lib_BytesUtils.slice(lastNodeKey, sharedNibbleLength);
keyRemainder = Lib_BytesUtils.slice(keyRemainder, sharedNibbleLength);
}
// Create an empty branch to fill in.
TrieNode memory newBranch = _makeEmptyBranchNode();
if (lastNodeKey.length == 0) {
// Key remainder was larger than the key for our last node.
// The value within our last node is therefore going to be shifted into
// a branch value slot.
newBranch = _editBranchValue(newBranch, _getNodeValue(lastNode));
} else {
// Last node key was larger than the key remainder.
// We're going to modify some index of our branch.
uint8 branchKey = uint8(lastNodeKey[0]);
// Move on to the next nibble.
lastNodeKey = Lib_BytesUtils.slice(lastNodeKey, 1);
if (lastNodeType == NodeType.LeafNode) {
// We're dealing with a leaf node.
// We'll modify the key and insert the old leaf node into the branch index.
TrieNode memory modifiedLastNode =
_makeLeafNode(lastNodeKey, _getNodeValue(lastNode));
newBranch =
_editBranchIndex(
newBranch,
branchKey,
_getNodeHash(modifiedLastNode.encoded));
} else if (lastNodeKey.length != 0) {
// We're dealing with a shrinking extension node.
// We need to modify the node to decrease the size of the key.
TrieNode memory modifiedLastNode =
_makeExtensionNode(lastNodeKey, _getNodeValue(lastNode));
newBranch =
_editBranchIndex(
newBranch,
branchKey,
_getNodeHash(modifiedLastNode.encoded));
} else {
// We're dealing with an unnecessary extension node.
// We're going to delete the node entirely.
// Simply insert its current value into the branch index.
newBranch = _editBranchIndex(newBranch, branchKey, _getNodeValue(lastNode));
}
}
if (keyRemainder.length == 0) {
// We've got nothing left in the key remainder.
// Simply insert the value into the branch value slot.
newBranch = _editBranchValue(newBranch, _value);
// Push the branch into the list of new nodes.
newNodes[totalNewNodes] = newBranch;
totalNewNodes += 1;
} else {
// We've got some key remainder to work with.
// We'll be inserting a leaf node into the trie.
// First, move on to the next nibble.
keyRemainder = Lib_BytesUtils.slice(keyRemainder, 1);
// Push the branch into the list of new nodes.
newNodes[totalNewNodes] = newBranch;
totalNewNodes += 1;
// Push a new leaf node for our k/v pair.
newNodes[totalNewNodes] = _makeLeafNode(keyRemainder, _value);
totalNewNodes += 1;
}
}
// Finally, join the old path with our newly created nodes.
// Since we're overwriting the last node in the path, we use `_pathLength - 1`.
return _joinNodeArrays(_path, _pathLength - 1, newNodes, totalNewNodes);
}
/**
* @notice Computes the trie root from a given path.
* @param _nodes Path to some k/v pair.
* @param _key Key for the k/v pair.
* @return _updatedRoot Root hash for the updated trie.
*/
function _getUpdatedTrieRoot(
TrieNode[] memory _nodes,
bytes memory _key
)
private
pure
returns (
bytes32 _updatedRoot
)
{
bytes memory key = Lib_BytesUtils.toNibbles(_key);
// Some variables to keep track of during iteration.
TrieNode memory currentNode;
NodeType currentNodeType;
bytes memory previousNodeHash;
// Run through the path backwards to rebuild our root hash.
for (uint256 i = _nodes.length; i > 0; i--) {
// Pick out the current node.
currentNode = _nodes[i - 1];
currentNodeType = _getNodeType(currentNode);
if (currentNodeType == NodeType.LeafNode) {
// Leaf nodes are already correctly encoded.
// Shift the key over to account for the nodes key.
bytes memory nodeKey = _getNodeKey(currentNode);
key = Lib_BytesUtils.slice(key, 0, key.length - nodeKey.length);
} else if (currentNodeType == NodeType.ExtensionNode) {
// Shift the key over to account for the nodes key.
bytes memory nodeKey = _getNodeKey(currentNode);
key = Lib_BytesUtils.slice(key, 0, key.length - nodeKey.length);
// If this node is the last element in the path, it'll be correctly encoded
// and we can skip this part.
if (previousNodeHash.length > 0) {
// Re-encode the node based on the previous node.
currentNode = _editExtensionNodeValue(currentNode, previousNodeHash);
}
} else if (currentNodeType == NodeType.BranchNode) {
// If this node is the last element in the path, it'll be correctly encoded
// and we can skip this part.
if (previousNodeHash.length > 0) {
// Re-encode the node based on the previous node.
uint8 branchKey = uint8(key[key.length - 1]);
key = Lib_BytesUtils.slice(key, 0, key.length - 1);
currentNode = _editBranchIndex(currentNode, branchKey, previousNodeHash);
}
}
// Compute the node hash for the next iteration.
previousNodeHash = _getNodeHash(currentNode.encoded);
}
// Current node should be the root at this point.
// Simply return the hash of its encoding.
return keccak256(currentNode.encoded);
}
/**
* @notice Parses an RLP-encoded proof into something more useful.
* @param _proof RLP-encoded proof to parse.
* @return _parsed Proof parsed into easily accessible structs.
*/
function _parseProof(
bytes memory _proof
)
private
pure
returns (
TrieNode[] memory _parsed
)
{
Lib_RLPReader.RLPItem[] memory nodes = Lib_RLPReader.readList(_proof);
TrieNode[] memory proof = new TrieNode[](nodes.length);
for (uint256 i = 0; i < nodes.length; i++) {
bytes memory encoded = Lib_RLPReader.readBytes(nodes[i]);
proof[i] = TrieNode({
encoded: encoded,
decoded: Lib_RLPReader.readList(encoded)
});
}
return proof;
}
/**
* @notice Picks out the ID for a node. Node ID is referred to as the
* "hash" within the specification, but nodes < 32 bytes are not actually
* hashed.
* @param _node Node to pull an ID for.
* @return _nodeID ID for the node, depending on the size of its contents.
*/
function _getNodeID(
Lib_RLPReader.RLPItem memory _node
)
private
pure
returns (
bytes32 _nodeID
)
{
bytes memory nodeID;
if (_node.length < 32) {
// Nodes smaller than 32 bytes are RLP encoded.
nodeID = Lib_RLPReader.readRawBytes(_node);
} else {
// Nodes 32 bytes or larger are hashed.
nodeID = Lib_RLPReader.readBytes(_node);
}
return Lib_BytesUtils.toBytes32(nodeID);
}
/**
* @notice Gets the path for a leaf or extension node.
* @param _node Node to get a path for.
* @return _path Node path, converted to an array of nibbles.
*/
function _getNodePath(
TrieNode memory _node
)
private
pure
returns (
bytes memory _path
)
{
return Lib_BytesUtils.toNibbles(Lib_RLPReader.readBytes(_node.decoded[0]));
}
/**
* @notice Gets the key for a leaf or extension node. Keys are essentially
* just paths without any prefix.
* @param _node Node to get a key for.
* @return _key Node key, converted to an array of nibbles.
*/
function _getNodeKey(
TrieNode memory _node
)
private
pure
returns (
bytes memory _key
)
{
return _removeHexPrefix(_getNodePath(_node));
}
/**
* @notice Gets the path for a node.
* @param _node Node to get a value for.
* @return _value Node value, as hex bytes.
*/
function _getNodeValue(
TrieNode memory _node
)
private
pure
returns (
bytes memory _value
)
{
return Lib_RLPReader.readBytes(_node.decoded[_node.decoded.length - 1]);
}
/**
* @notice Computes the node hash for an encoded node. Nodes < 32 bytes
* are not hashed, all others are keccak256 hashed.
* @param _encoded Encoded node to hash.
* @return _hash Hash of the encoded node. Simply the input if < 32 bytes.
*/
function _getNodeHash(
bytes memory _encoded
)
private
pure
returns (
bytes memory _hash
)
{
if (_encoded.length < 32) {
return _encoded;
} else {
return abi.encodePacked(keccak256(_encoded));
}
}
/**
* @notice Determines the type for a given node.
* @param _node Node to determine a type for.
* @return _type Type of the node; BranchNode/ExtensionNode/LeafNode.
*/
function _getNodeType(
TrieNode memory _node
)
private
pure
returns (
NodeType _type
)
{
if (_node.decoded.length == BRANCH_NODE_LENGTH) {
return NodeType.BranchNode;
} else if (_node.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
bytes memory path = _getNodePath(_node);
uint8 prefix = uint8(path[0]);
if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
return NodeType.LeafNode;
} else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
return NodeType.ExtensionNode;
}
}
revert("Invalid node type");
}
/**
* @notice Utility; determines the number of nibbles shared between two
* nibble arrays.
* @param _a First nibble array.
* @param _b Second nibble array.
* @return _shared Number of shared nibbles.
*/
function _getSharedNibbleLength(
bytes memory _a,
bytes memory _b
)
private
pure
returns (
uint256 _shared
)
{
uint256 i = 0;
while (_a.length > i && _b.length > i && _a[i] == _b[i]) {
i++;
}
return i;
}
/**
* @notice Utility; converts an RLP-encoded node into our nice struct.
* @param _raw RLP-encoded node to convert.
* @return _node Node as a TrieNode struct.
*/
function _makeNode(
bytes[] memory _raw
)
private
pure
returns (
TrieNode memory _node
)
{
bytes memory encoded = Lib_RLPWriter.writeList(_raw);
return TrieNode({
encoded: encoded,
decoded: Lib_RLPReader.readList(encoded)
});
}
/**
* @notice Utility; converts an RLP-decoded node into our nice struct.
* @param _items RLP-decoded node to convert.
* @return _node Node as a TrieNode struct.
*/
function _makeNode(
Lib_RLPReader.RLPItem[] memory _items
)
private
pure
returns (
TrieNode memory _node
)
{
bytes[] memory raw = new bytes[](_items.length);
for (uint256 i = 0; i < _items.length; i++) {
raw[i] = Lib_RLPReader.readRawBytes(_items[i]);
}
return _makeNode(raw);
}
/**
* @notice Creates a new extension node.
* @param _key Key for the extension node, unprefixed.
* @param _value Value for the extension node.
* @return _node New extension node with the given k/v pair.
*/
function _makeExtensionNode(
bytes memory _key,
bytes memory _value
)
private
pure
returns (
TrieNode memory _node
)
{
bytes[] memory raw = new bytes[](2);
bytes memory key = _addHexPrefix(_key, false);
raw[0] = Lib_RLPWriter.writeBytes(Lib_BytesUtils.fromNibbles(key));
raw[1] = Lib_RLPWriter.writeBytes(_value);
return _makeNode(raw);
}
/**
* Creates a new extension node with the same key but a different value.
* @param _node Extension node to copy and modify.
* @param _value New value for the extension node.
* @return New node with the same key and different value.
*/
function _editExtensionNodeValue(
TrieNode memory _node,
bytes memory _value
)
private
pure
returns (
TrieNode memory
)
{
bytes[] memory raw = new bytes[](2);
bytes memory key = _addHexPrefix(_getNodeKey(_node), false);
raw[0] = Lib_RLPWriter.writeBytes(Lib_BytesUtils.fromNibbles(key));
if (_value.length < 32) {
raw[1] = _value;
} else {
raw[1] = Lib_RLPWriter.writeBytes(_value);
}
return _makeNode(raw);
}
/**
* @notice Creates a new leaf node.
* @dev This function is essentially identical to `_makeExtensionNode`.
* Although we could route both to a single method with a flag, it's
* more gas efficient to keep them separate and duplicate the logic.
* @param _key Key for the leaf node, unprefixed.
* @param _value Value for the leaf node.
* @return _node New leaf node with the given k/v pair.
*/
function _makeLeafNode(
bytes memory _key,
bytes memory _value
)
private
pure
returns (
TrieNode memory _node
)
{
bytes[] memory raw = new bytes[](2);
bytes memory key = _addHexPrefix(_key, true);
raw[0] = Lib_RLPWriter.writeBytes(Lib_BytesUtils.fromNibbles(key));
raw[1] = Lib_RLPWriter.writeBytes(_value);
return _makeNode(raw);
}
/**
* @notice Creates an empty branch node.
* @return _node Empty branch node as a TrieNode struct.
*/
function _makeEmptyBranchNode()
private
pure
returns (
TrieNode memory _node
)
{
bytes[] memory raw = new bytes[](BRANCH_NODE_LENGTH);
for (uint256 i = 0; i < raw.length; i++) {
raw[i] = RLP_NULL_BYTES;
}
return _makeNode(raw);
}
/**
* @notice Modifies the value slot for a given branch.
* @param _branch Branch node to modify.
* @param _value Value to insert into the branch.
* @return _updatedNode Modified branch node.
*/
function _editBranchValue(
TrieNode memory _branch,
bytes memory _value
)
private
pure
returns (
TrieNode memory _updatedNode
)
{
bytes memory encoded = Lib_RLPWriter.writeBytes(_value);
_branch.decoded[_branch.decoded.length - 1] = Lib_RLPReader.toRLPItem(encoded);
return _makeNode(_branch.decoded);
}
/**
* @notice Modifies a slot at an index for a given branch.
* @param _branch Branch node to modify.
* @param _index Slot index to modify.
* @param _value Value to insert into the slot.
* @return _updatedNode Modified branch node.
*/
function _editBranchIndex(
TrieNode memory _branch,
uint8 _index,
bytes memory _value
)
private
pure
returns (
TrieNode memory _updatedNode
)
{
bytes memory encoded = _value.length < 32 ? _value : Lib_RLPWriter.writeBytes(_value);
_branch.decoded[_index] = Lib_RLPReader.toRLPItem(encoded);
return _makeNode(_branch.decoded);
}
/**
* @notice Utility; adds a prefix to a key.
* @param _key Key to prefix.
* @param _isLeaf Whether or not the key belongs to a leaf.
* @return _prefixedKey Prefixed key.
*/
function _addHexPrefix(
bytes memory _key,
bool _isLeaf
)
private
pure
returns (
bytes memory _prefixedKey
)
{
uint8 prefix = _isLeaf ? uint8(0x02) : uint8(0x00);
uint8 offset = uint8(_key.length % 2);
bytes memory prefixed = new bytes(2 - offset);
prefixed[0] = bytes1(prefix + offset);
return abi.encodePacked(prefixed, _key);
}
/**
* @notice Utility; removes a prefix from a path.
* @param _path Path to remove the prefix from.
* @return _unprefixedKey Unprefixed key.
*/
function _removeHexPrefix(
bytes memory _path
)
private
pure
returns (
bytes memory _unprefixedKey
)
{
if (uint8(_path[0]) % 2 == 0) {
return Lib_BytesUtils.slice(_path, 2);
} else {
return Lib_BytesUtils.slice(_path, 1);
}
}
/**
* @notice Utility; combines two node arrays. Array lengths are required
* because the actual lengths may be longer than the filled lengths.
* Array resizing is extremely costly and should be avoided.
* @param _a First array to join.
* @param _aLength Length of the first array.
* @param _b Second array to join.
* @param _bLength Length of the second array.
* @return _joined Combined node array.
*/
function _joinNodeArrays(
TrieNode[] memory _a,
uint256 _aLength,
TrieNode[] memory _b,
uint256 _bLength
)
private
pure
returns (
TrieNode[] memory _joined
)
{
TrieNode[] memory ret = new TrieNode[](_aLength + _bLength);
// Copy elements from the first array.
for (uint256 i = 0; i < _aLength; i++) {
ret[i] = _a[i];
}
// Copy elements from the second array.
for (uint256 i = 0; i < _bLength; i++) {
ret[i + _aLength] = _b[i];
}
return ret;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_RLPReader } from "../rlp/Lib_RLPReader.sol";
import { Lib_RLPWriter } from "../rlp/Lib_RLPWriter.sol";
import { Lib_BytesUtils } from "../utils/Lib_BytesUtils.sol";
import { Lib_Bytes32Utils } from "../utils/Lib_Bytes32Utils.sol";
/**
* @title Lib_OVMCodec
*/
library Lib_OVMCodec {
/*********
* Enums *
*********/
enum QueueOrigin {
SEQUENCER_QUEUE,
L1TOL2_QUEUE
}
/***********
* Structs *
***********/
struct Account {
uint256 nonce;
uint256 balance;
bytes32 storageRoot;
bytes32 codeHash;
address ethAddress;
bool isFresh;
}
struct EVMAccount {
uint256 nonce;
uint256 balance;
bytes32 storageRoot;
bytes32 codeHash;
}
struct ChainBatchHeader {
uint256 batchIndex;
bytes32 batchRoot;
uint256 batchSize;
uint256 prevTotalElements;
bytes extraData;
}
struct ChainInclusionProof {
uint256 index;
bytes32[] siblings;
}
struct Transaction {
uint256 timestamp;
uint256 blockNumber;
QueueOrigin l1QueueOrigin;
address l1TxOrigin;
address entrypoint;
uint256 gasLimit;
bytes data;
}
struct TransactionChainElement {
bool isSequenced;
uint256 queueIndex; // QUEUED TX ONLY
uint256 timestamp; // SEQUENCER TX ONLY
uint256 blockNumber; // SEQUENCER TX ONLY
bytes txData; // SEQUENCER TX ONLY
}
struct QueueElement {
bytes32 transactionHash;
uint40 timestamp;
uint40 blockNumber;
}
/**********************
* Internal Functions *
**********************/
/**
* Encodes a standard OVM transaction.
* @param _transaction OVM transaction to encode.
* @return Encoded transaction bytes.
*/
function encodeTransaction(
Transaction memory _transaction
)
internal
pure
returns (
bytes memory
)
{
return abi.encodePacked(
_transaction.timestamp,
_transaction.blockNumber,
_transaction.l1QueueOrigin,
_transaction.l1TxOrigin,
_transaction.entrypoint,
_transaction.gasLimit,
_transaction.data
);
}
/**
* Hashes a standard OVM transaction.
* @param _transaction OVM transaction to encode.
* @return Hashed transaction
*/
function hashTransaction(
Transaction memory _transaction
)
internal
pure
returns (
bytes32
)
{
return keccak256(encodeTransaction(_transaction));
}
/**
* Converts an OVM account to an EVM account.
* @param _in OVM account to convert.
* @return Converted EVM account.
*/
function toEVMAccount(
Account memory _in
)
internal
pure
returns (
EVMAccount memory
)
{
return EVMAccount({
nonce: _in.nonce,
balance: _in.balance,
storageRoot: _in.storageRoot,
codeHash: _in.codeHash
});
}
/**
* @notice RLP-encodes an account state struct.
* @param _account Account state struct.
* @return RLP-encoded account state.
*/
function encodeEVMAccount(
EVMAccount memory _account
)
internal
pure
returns (
bytes memory
)
{
bytes[] memory raw = new bytes[](4);
// Unfortunately we can't create this array outright because
// Lib_RLPWriter.writeList will reject fixed-size arrays. Assigning
// index-by-index circumvents this issue.
raw[0] = Lib_RLPWriter.writeBytes(
Lib_Bytes32Utils.removeLeadingZeros(
bytes32(_account.nonce)
)
);
raw[1] = Lib_RLPWriter.writeBytes(
Lib_Bytes32Utils.removeLeadingZeros(
bytes32(_account.balance)
)
);
raw[2] = Lib_RLPWriter.writeBytes(abi.encodePacked(_account.storageRoot));
raw[3] = Lib_RLPWriter.writeBytes(abi.encodePacked(_account.codeHash));
return Lib_RLPWriter.writeList(raw);
}
/**
* @notice Decodes an RLP-encoded account state into a useful struct.
* @param _encoded RLP-encoded account state.
* @return Account state struct.
*/
function decodeEVMAccount(
bytes memory _encoded
)
internal
pure
returns (
EVMAccount memory
)
{
Lib_RLPReader.RLPItem[] memory accountState = Lib_RLPReader.readList(_encoded);
return EVMAccount({
nonce: Lib_RLPReader.readUint256(accountState[0]),
balance: Lib_RLPReader.readUint256(accountState[1]),
storageRoot: Lib_RLPReader.readBytes32(accountState[2]),
codeHash: Lib_RLPReader.readBytes32(accountState[3])
});
}
/**
* Calculates a hash for a given batch header.
* @param _batchHeader Header to hash.
* @return Hash of the header.
*/
function hashBatchHeader(
Lib_OVMCodec.ChainBatchHeader memory _batchHeader
)
internal
pure
returns (
bytes32
)
{
return keccak256(
abi.encode(
_batchHeader.batchRoot,
_batchHeader.batchSize,
_batchHeader.prevTotalElements,
_batchHeader.extraData
)
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/**
* @title Lib_PredeployAddresses
*/
library Lib_PredeployAddresses {
address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
address internal constant ECDSA_CONTRACT_ACCOUNT = 0x4200000000000000000000000000000000000003;
address internal constant SEQUENCER_ENTRYPOINT = 0x4200000000000000000000000000000000000005;
address payable internal constant OVM_ETH = 0x4200000000000000000000000000000000000006;
// solhint-disable-next-line max-line-length
address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
address internal constant LIB_ADDRESS_MANAGER = 0x4200000000000000000000000000000000000008;
address internal constant PROXY_EOA = 0x4200000000000000000000000000000000000009;
// solhint-disable-next-line max-line-length
address internal constant EXECUTION_MANAGER_WRAPPER = 0x420000000000000000000000000000000000000B;
address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
address internal constant ERC1820_REGISTRY = 0x1820a4B7618BdE71Dce8cdc73aAB6C95905faD24;
address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/**
* @title Lib_RLPReader
* @dev Adapted from "RLPReader" by Hamdi Allam (hamdi.allam97@gmail.com).
*/
library Lib_RLPReader {
/*************
* Constants *
*************/
uint256 constant internal MAX_LIST_LENGTH = 32;
/*********
* Enums *
*********/
enum RLPItemType {
DATA_ITEM,
LIST_ITEM
}
/***********
* Structs *
***********/
struct RLPItem {
uint256 length;
uint256 ptr;
}
/**********************
* Internal Functions *
**********************/
/**
* Converts bytes to a reference to memory position and length.
* @param _in Input bytes to convert.
* @return Output memory reference.
*/
function toRLPItem(
bytes memory _in
)
internal
pure
returns (
RLPItem memory
)
{
uint256 ptr;
assembly {
ptr := add(_in, 32)
}
return RLPItem({
length: _in.length,
ptr: ptr
});
}
/**
* Reads an RLP list value into a list of RLP items.
* @param _in RLP list value.
* @return Decoded RLP list items.
*/
function readList(
RLPItem memory _in
)
internal
pure
returns (
RLPItem[] memory
)
{
(
uint256 listOffset,
,
RLPItemType itemType
) = _decodeLength(_in);
require(
itemType == RLPItemType.LIST_ITEM,
"Invalid RLP list value."
);
// Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
// writing to the length. Since we can't know the number of RLP items without looping over
// the entire input, we'd have to loop twice to accurately size this array. It's easier to
// simply set a reasonable maximum list length and decrease the size before we finish.
RLPItem[] memory out = new RLPItem[](MAX_LIST_LENGTH);
uint256 itemCount = 0;
uint256 offset = listOffset;
while (offset < _in.length) {
require(
itemCount < MAX_LIST_LENGTH,
"Provided RLP list exceeds max list length."
);
(
uint256 itemOffset,
uint256 itemLength,
) = _decodeLength(RLPItem({
length: _in.length - offset,
ptr: _in.ptr + offset
}));
out[itemCount] = RLPItem({
length: itemLength + itemOffset,
ptr: _in.ptr + offset
});
itemCount += 1;
offset += itemOffset + itemLength;
}
// Decrease the array size to match the actual item count.
assembly {
mstore(out, itemCount)
}
return out;
}
/**
* Reads an RLP list value into a list of RLP items.
* @param _in RLP list value.
* @return Decoded RLP list items.
*/
function readList(
bytes memory _in
)
internal
pure
returns (
RLPItem[] memory
)
{
return readList(
toRLPItem(_in)
);
}
/**
* Reads an RLP bytes value into bytes.
* @param _in RLP bytes value.
* @return Decoded bytes.
*/
function readBytes(
RLPItem memory _in
)
internal
pure
returns (
bytes memory
)
{
(
uint256 itemOffset,
uint256 itemLength,
RLPItemType itemType
) = _decodeLength(_in);
require(
itemType == RLPItemType.DATA_ITEM,
"Invalid RLP bytes value."
);
return _copy(_in.ptr, itemOffset, itemLength);
}
/**
* Reads an RLP bytes value into bytes.
* @param _in RLP bytes value.
* @return Decoded bytes.
*/
function readBytes(
bytes memory _in
)
internal
pure
returns (
bytes memory
)
{
return readBytes(
toRLPItem(_in)
);
}
/**
* Reads an RLP string value into a string.
* @param _in RLP string value.
* @return Decoded string.
*/
function readString(
RLPItem memory _in
)
internal
pure
returns (
string memory
)
{
return string(readBytes(_in));
}
/**
* Reads an RLP string value into a string.
* @param _in RLP string value.
* @return Decoded string.
*/
function readString(
bytes memory _in
)
internal
pure
returns (
string memory
)
{
return readString(
toRLPItem(_in)
);
}
/**
* Reads an RLP bytes32 value into a bytes32.
* @param _in RLP bytes32 value.
* @return Decoded bytes32.
*/
function readBytes32(
RLPItem memory _in
)
internal
pure
returns (
bytes32
)
{
require(
_in.length <= 33,
"Invalid RLP bytes32 value."
);
(
uint256 itemOffset,
uint256 itemLength,
RLPItemType itemType
) = _decodeLength(_in);
require(
itemType == RLPItemType.DATA_ITEM,
"Invalid RLP bytes32 value."
);
uint256 ptr = _in.ptr + itemOffset;
bytes32 out;
assembly {
out := mload(ptr)
// Shift the bytes over to match the item size.
if lt(itemLength, 32) {
out := div(out, exp(256, sub(32, itemLength)))
}
}
return out;
}
/**
* Reads an RLP bytes32 value into a bytes32.
* @param _in RLP bytes32 value.
* @return Decoded bytes32.
*/
function readBytes32(
bytes memory _in
)
internal
pure
returns (
bytes32
)
{
return readBytes32(
toRLPItem(_in)
);
}
/**
* Reads an RLP uint256 value into a uint256.
* @param _in RLP uint256 value.
* @return Decoded uint256.
*/
function readUint256(
RLPItem memory _in
)
internal
pure
returns (
uint256
)
{
return uint256(readBytes32(_in));
}
/**
* Reads an RLP uint256 value into a uint256.
* @param _in RLP uint256 value.
* @return Decoded uint256.
*/
function readUint256(
bytes memory _in
)
internal
pure
returns (
uint256
)
{
return readUint256(
toRLPItem(_in)
);
}
/**
* Reads an RLP bool value into a bool.
* @param _in RLP bool value.
* @return Decoded bool.
*/
function readBool(
RLPItem memory _in
)
internal
pure
returns (
bool
)
{
require(
_in.length == 1,
"Invalid RLP boolean value."
);
uint256 ptr = _in.ptr;
uint256 out;
assembly {
out := byte(0, mload(ptr))
}
require(
out == 0 || out == 1,
"Lib_RLPReader: Invalid RLP boolean value, must be 0 or 1"
);
return out != 0;
}
/**
* Reads an RLP bool value into a bool.
* @param _in RLP bool value.
* @return Decoded bool.
*/
function readBool(
bytes memory _in
)
internal
pure
returns (
bool
)
{
return readBool(
toRLPItem(_in)
);
}
/**
* Reads an RLP address value into a address.
* @param _in RLP address value.
* @return Decoded address.
*/
function readAddress(
RLPItem memory _in
)
internal
pure
returns (
address
)
{
if (_in.length == 1) {
return address(0);
}
require(
_in.length == 21,
"Invalid RLP address value."
);
return address(readUint256(_in));
}
/**
* Reads an RLP address value into a address.
* @param _in RLP address value.
* @return Decoded address.
*/
function readAddress(
bytes memory _in
)
internal
pure
returns (
address
)
{
return readAddress(
toRLPItem(_in)
);
}
/**
* Reads the raw bytes of an RLP item.
* @param _in RLP item to read.
* @return Raw RLP bytes.
*/
function readRawBytes(
RLPItem memory _in
)
internal
pure
returns (
bytes memory
)
{
return _copy(_in);
}
/*********************
* Private Functions *
*********************/
/**
* Decodes the length of an RLP item.
* @param _in RLP item to decode.
* @return Offset of the encoded data.
* @return Length of the encoded data.
* @return RLP item type (LIST_ITEM or DATA_ITEM).
*/
function _decodeLength(
RLPItem memory _in
)
private
pure
returns (
uint256,
uint256,
RLPItemType
)
{
require(
_in.length > 0,
"RLP item cannot be null."
);
uint256 ptr = _in.ptr;
uint256 prefix;
assembly {
prefix := byte(0, mload(ptr))
}
if (prefix <= 0x7f) {
// Single byte.
return (0, 1, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xb7) {
// Short string.
uint256 strLen = prefix - 0x80;
require(
_in.length > strLen,
"Invalid RLP short string."
);
return (1, strLen, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xbf) {
// Long string.
uint256 lenOfStrLen = prefix - 0xb7;
require(
_in.length > lenOfStrLen,
"Invalid RLP long string length."
);
uint256 strLen;
assembly {
// Pick out the string length.
strLen := div(
mload(add(ptr, 1)),
exp(256, sub(32, lenOfStrLen))
)
}
require(
_in.length > lenOfStrLen + strLen,
"Invalid RLP long string."
);
return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xf7) {
// Short list.
uint256 listLen = prefix - 0xc0;
require(
_in.length > listLen,
"Invalid RLP short list."
);
return (1, listLen, RLPItemType.LIST_ITEM);
} else {
// Long list.
uint256 lenOfListLen = prefix - 0xf7;
require(
_in.length > lenOfListLen,
"Invalid RLP long list length."
);
uint256 listLen;
assembly {
// Pick out the list length.
listLen := div(
mload(add(ptr, 1)),
exp(256, sub(32, lenOfListLen))
)
}
require(
_in.length > lenOfListLen + listLen,
"Invalid RLP long list."
);
return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
}
}
/**
* Copies the bytes from a memory location.
* @param _src Pointer to the location to read from.
* @param _offset Offset to start reading from.
* @param _length Number of bytes to read.
* @return Copied bytes.
*/
function _copy(
uint256 _src,
uint256 _offset,
uint256 _length
)
private
pure
returns (
bytes memory
)
{
bytes memory out = new bytes(_length);
if (out.length == 0) {
return out;
}
uint256 src = _src + _offset;
uint256 dest;
assembly {
dest := add(out, 32)
}
// Copy over as many complete words as we can.
for (uint256 i = 0; i < _length / 32; i++) {
assembly {
mstore(dest, mload(src))
}
src += 32;
dest += 32;
}
// Pick out the remaining bytes.
uint256 mask = 256 ** (32 - (_length % 32)) - 1;
assembly {
mstore(
dest,
or(
and(mload(src), not(mask)),
and(mload(dest), mask)
)
)
}
return out;
}
/**
* Copies an RLP item into bytes.
* @param _in RLP item to copy.
* @return Copied bytes.
*/
function _copy(
RLPItem memory _in
)
private
pure
returns (
bytes memory
)
{
return _copy(_in.ptr, 0, _in.length);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/**
* @title Lib_RLPWriter
* @author Bakaoh (with modifications)
*/
library Lib_RLPWriter {
/**********************
* Internal Functions *
**********************/
/**
* RLP encodes a byte string.
* @param _in The byte string to encode.
* @return The RLP encoded string in bytes.
*/
function writeBytes(
bytes memory _in
)
internal
pure
returns (
bytes memory
)
{
bytes memory encoded;
if (_in.length == 1 && uint8(_in[0]) < 128) {
encoded = _in;
} else {
encoded = abi.encodePacked(_writeLength(_in.length, 128), _in);
}
return encoded;
}
/**
* RLP encodes a list of RLP encoded byte byte strings.
* @param _in The list of RLP encoded byte strings.
* @return The RLP encoded list of items in bytes.
*/
function writeList(
bytes[] memory _in
)
internal
pure
returns (
bytes memory
)
{
bytes memory list = _flatten(_in);
return abi.encodePacked(_writeLength(list.length, 192), list);
}
/**
* RLP encodes a string.
* @param _in The string to encode.
* @return The RLP encoded string in bytes.
*/
function writeString(
string memory _in
)
internal
pure
returns (
bytes memory
)
{
return writeBytes(bytes(_in));
}
/**
* RLP encodes an address.
* @param _in The address to encode.
* @return The RLP encoded address in bytes.
*/
function writeAddress(
address _in
)
internal
pure
returns (
bytes memory
)
{
return writeBytes(abi.encodePacked(_in));
}
/**
* RLP encodes a bytes32 value.
* @param _in The bytes32 to encode.
* @return _out The RLP encoded bytes32 in bytes.
*/
function writeBytes32(
bytes32 _in
)
internal
pure
returns (
bytes memory _out
)
{
return writeBytes(abi.encodePacked(_in));
}
/**
* RLP encodes a uint.
* @param _in The uint256 to encode.
* @return The RLP encoded uint256 in bytes.
*/
function writeUint(
uint256 _in
)
internal
pure
returns (
bytes memory
)
{
return writeBytes(_toBinary(_in));
}
/**
* RLP encodes a bool.
* @param _in The bool to encode.
* @return The RLP encoded bool in bytes.
*/
function writeBool(
bool _in
)
internal
pure
returns (
bytes memory
)
{
bytes memory encoded = new bytes(1);
encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80));
return encoded;
}
/*********************
* Private Functions *
*********************/
/**
* Encode the first byte, followed by the `len` in binary form if `length` is more than 55.
* @param _len The length of the string or the payload.
* @param _offset 128 if item is string, 192 if item is list.
* @return RLP encoded bytes.
*/
function _writeLength(
uint256 _len,
uint256 _offset
)
private
pure
returns (
bytes memory
)
{
bytes memory encoded;
if (_len < 56) {
encoded = new bytes(1);
encoded[0] = byte(uint8(_len) + uint8(_offset));
} else {
uint256 lenLen;
uint256 i = 1;
while (_len / i != 0) {
lenLen++;
i *= 256;
}
encoded = new bytes(lenLen + 1);
encoded[0] = byte(uint8(lenLen) + uint8(_offset) + 55);
for(i = 1; i <= lenLen; i++) {
encoded[i] = byte(uint8((_len / (256**(lenLen-i))) % 256));
}
}
return encoded;
}
/**
* Encode integer in big endian binary form with no leading zeroes.
* @notice TODO: This should be optimized with assembly to save gas costs.
* @param _x The integer to encode.
* @return RLP encoded bytes.
*/
function _toBinary(
uint256 _x
)
private
pure
returns (
bytes memory
)
{
bytes memory b = abi.encodePacked(_x);
uint256 i = 0;
for (; i < 32; i++) {
if (b[i] != 0) {
break;
}
}
bytes memory res = new bytes(32 - i);
for (uint256 j = 0; j < res.length; j++) {
res[j] = b[i++];
}
return res;
}
/**
* Copies a piece of memory to another location.
* @notice From: https://github.com/Arachnid/solidity-stringutils/blob/master/src/strings.sol.
* @param _dest Destination location.
* @param _src Source location.
* @param _len Length of memory to copy.
*/
function _memcpy(
uint256 _dest,
uint256 _src,
uint256 _len
)
private
pure
{
uint256 dest = _dest;
uint256 src = _src;
uint256 len = _len;
for(; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
uint256 mask = 256 ** (32 - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
/**
* Flattens a list of byte strings into one byte string.
* @notice From: https://github.com/sammayo/solidity-rlp-encoder/blob/master/RLPEncode.sol.
* @param _list List of byte strings to flatten.
* @return The flattened byte string.
*/
function _flatten(
bytes[] memory _list
)
private
pure
returns (
bytes memory
)
{
if (_list.length == 0) {
return new bytes(0);
}
uint256 len;
uint256 i = 0;
for (; i < _list.length; i++) {
len += _list[i].length;
}
bytes memory flattened = new bytes(len);
uint256 flattenedPtr;
assembly { flattenedPtr := add(flattened, 0x20) }
for(i = 0; i < _list.length; i++) {
bytes memory item = _list[i];
uint256 listPtr;
assembly { listPtr := add(item, 0x20)}
_memcpy(flattenedPtr, listPtr, item.length);
flattenedPtr += _list[i].length;
}
return flattened;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Library Imports */
import { Lib_AddressManager } from "./Lib_AddressManager.sol";
/**
* @title Lib_ResolvedDelegateProxy
*/
contract Lib_ResolvedDelegateProxy {
/*************
* Variables *
*************/
// Using mappings to store fields to avoid overwriting storage slots in the
// implementation contract. For example, instead of storing these fields at
// storage slot `0` & `1`, they are stored at `keccak256(key + slot)`.
// See: https://solidity.readthedocs.io/en/v0.7.0/internals/layout_in_storage.html
// NOTE: Do not use this code in your own contract system.
// There is a known flaw in this contract, and we will remove it from the repository
// in the near future. Due to the very limited way that we are using it, this flaw is
// not an issue in our system.
mapping (address => string) private implementationName;
mapping (address => Lib_AddressManager) private addressManager;
/***************
* Constructor *
***************/
/**
* @param _libAddressManager Address of the Lib_AddressManager.
* @param _implementationName implementationName of the contract to proxy to.
*/
constructor(
address _libAddressManager,
string memory _implementationName
) {
addressManager[address(this)] = Lib_AddressManager(_libAddressManager);
implementationName[address(this)] = _implementationName;
}
/*********************
* Fallback Function *
*********************/
fallback()
external
payable
{
address target = addressManager[address(this)].getAddress(
(implementationName[address(this)])
);
require(
target != address(0),
"Target address must be initialized."
);
(bool success, bytes memory returndata) = target.delegatecall(msg.data);
if (success == true) {
assembly {
return(add(returndata, 0x20), mload(returndata))
}
} else {
assembly {
revert(add(returndata, 0x20), mload(returndata))
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_MerkleTrie } from "./Lib_MerkleTrie.sol";
/**
* @title Lib_SecureMerkleTrie
*/
library Lib_SecureMerkleTrie {
/**********************
* Internal Functions *
**********************/
/**
* @notice Verifies a proof that a given key/value pair is present in the
* Merkle trie.
* @param _key Key of the node to search for, as a hex string.
* @param _value Value of the node to search for, as a hex string.
* @param _proof Merkle trie inclusion proof for the desired node. Unlike
* traditional Merkle trees, this proof is executed top-down and consists
* of a list of RLP-encoded nodes that make a path down to the target node.
* @param _root Known root of the Merkle trie. Used to verify that the
* included proof is correctly constructed.
* @return _verified `true` if the k/v pair exists in the trie, `false` otherwise.
*/
function verifyInclusionProof(
bytes memory _key,
bytes memory _value,
bytes memory _proof,
bytes32 _root
)
internal
pure
returns (
bool _verified
)
{
bytes memory key = _getSecureKey(_key);
return Lib_MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
}
/**
* @notice Updates a Merkle trie and returns a new root hash.
* @param _key Key of the node to update, as a hex string.
* @param _value Value of the node to update, as a hex string.
* @param _proof Merkle trie inclusion proof for the node *nearest* the
* target node. If the key exists, we can simply update the value.
* Otherwise, we need to modify the trie to handle the new k/v pair.
* @param _root Known root of the Merkle trie. Used to verify that the
* included proof is correctly constructed.
* @return _updatedRoot Root hash of the newly constructed trie.
*/
function update(
bytes memory _key,
bytes memory _value,
bytes memory _proof,
bytes32 _root
)
internal
pure
returns (
bytes32 _updatedRoot
)
{
bytes memory key = _getSecureKey(_key);
return Lib_MerkleTrie.update(key, _value, _proof, _root);
}
/**
* @notice Retrieves the value associated with a given key.
* @param _key Key to search for, as hex bytes.
* @param _proof Merkle trie inclusion proof for the key.
* @param _root Known root of the Merkle trie.
* @return _exists Whether or not the key exists.
* @return _value Value of the key if it exists.
*/
function get(
bytes memory _key,
bytes memory _proof,
bytes32 _root
)
internal
pure
returns (
bool _exists,
bytes memory _value
)
{
bytes memory key = _getSecureKey(_key);
return Lib_MerkleTrie.get(key, _proof, _root);
}
/**
* Computes the root hash for a trie with a single node.
* @param _key Key for the single node.
* @param _value Value for the single node.
* @return _updatedRoot Hash of the trie.
*/
function getSingleNodeRootHash(
bytes memory _key,
bytes memory _value
)
internal
pure
returns (
bytes32 _updatedRoot
)
{
bytes memory key = _getSecureKey(_key);
return Lib_MerkleTrie.getSingleNodeRootHash(key, _value);
}
/*********************
* Private Functions *
*********************/
/**
* Computes the secure counterpart to a key.
* @param _key Key to get a secure key from.
* @return _secureKey Secure version of the key.
*/
function _getSecureKey(
bytes memory _key
)
private
pure
returns (
bytes memory _secureKey
)
{
return abi.encodePacked(keccak256(_key));
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow, so we distribute
return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
import { OVM_BondManager } from "./../optimistic-ethereum/OVM/verification/OVM_BondManager.sol";
contract Mock_FraudVerifier {
OVM_BondManager bondManager;
mapping (bytes32 => address) transitioners;
function setBondManager(OVM_BondManager _bondManager) public {
bondManager = _bondManager;
}
function setStateTransitioner(bytes32 preStateRoot, bytes32 txHash, address addr) public {
transitioners[keccak256(abi.encodePacked(preStateRoot, txHash))] = addr;
}
function getStateTransitioner(
bytes32 _preStateRoot,
bytes32 _txHash
)
public
view
returns (
address
)
{
return transitioners[keccak256(abi.encodePacked(_preStateRoot, _txHash))];
}
function finalize(bytes32 _preStateRoot, address publisher, uint256 timestamp) public {
bondManager.finalize(_preStateRoot, publisher, timestamp);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Library Imports */
import { Lib_AddressResolver } from "../../libraries/resolver/Lib_AddressResolver.sol";
/* Interface Imports */
import { iOVM_BondManager, Errors, ERC20 } from "../../iOVM/verification/iOVM_BondManager.sol";
import { iOVM_FraudVerifier } from "../../iOVM/verification/iOVM_FraudVerifier.sol";
/**
* @title OVM_BondManager
* @dev The Bond Manager contract handles deposits in the form of an ERC20 token from bonded
* Proposers. It also handles the accounting of gas costs spent by a Verifier during the course of a
* fraud proof. In the event of a successful fraud proof, the fraudulent Proposer's bond is slashed,
* and the Verifier's gas costs are refunded.
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_BondManager is iOVM_BondManager, Lib_AddressResolver {
/****************************
* Constants and Parameters *
****************************/
/// The period to find the earliest fraud proof for a publisher
uint256 public constant multiFraudProofPeriod = 7 days;
/// The dispute period
uint256 public constant disputePeriodSeconds = 7 days;
/// The minimum collateral a sequencer must post
uint256 public constant requiredCollateral = 1 ether;
/*******************************************
* Contract Variables: Contract References *
*******************************************/
/// The bond token
ERC20 immutable public token;
/********************************************
* Contract Variables: Internal Accounting *
*******************************************/
/// The bonds posted by each proposer
mapping(address => Bond) public bonds;
/// For each pre-state root, there's an array of witnessProviders that must be rewarded
/// for posting witnesses
mapping(bytes32 => Rewards) public witnessProviders;
/***************
* Constructor *
***************/
/// Initializes with a ERC20 token to be used for the fidelity bonds
/// and with the Address Manager
constructor(
ERC20 _token,
address _libAddressManager
)
Lib_AddressResolver(_libAddressManager)
{
token = _token;
}
/********************
* Public Functions *
********************/
/// Adds `who` to the list of witnessProviders for the provided `preStateRoot`.
function recordGasSpent(bytes32 _preStateRoot, bytes32 _txHash, address who, uint256 gasSpent)
override public {
// The sender must be the transitioner that corresponds to the claimed pre-state root
address transitioner =
address(iOVM_FraudVerifier(resolve("OVM_FraudVerifier"))
.getStateTransitioner(_preStateRoot, _txHash));
require(transitioner == msg.sender, Errors.ONLY_TRANSITIONER);
witnessProviders[_preStateRoot].total += gasSpent;
witnessProviders[_preStateRoot].gasSpent[who] += gasSpent;
}
/// Slashes + distributes rewards or frees up the sequencer's bond, only called by
/// `FraudVerifier.finalizeFraudVerification`
function finalize(bytes32 _preStateRoot, address publisher, uint256 timestamp) override public {
require(msg.sender == resolve("OVM_FraudVerifier"), Errors.ONLY_FRAUD_VERIFIER);
require(witnessProviders[_preStateRoot].canClaim == false, Errors.ALREADY_FINALIZED);
// allow users to claim from that state root's
// pool of collateral (effectively slashing the sequencer)
witnessProviders[_preStateRoot].canClaim = true;
Bond storage bond = bonds[publisher];
if (bond.firstDisputeAt == 0) {
bond.firstDisputeAt = block.timestamp;
bond.earliestDisputedStateRoot = _preStateRoot;
bond.earliestTimestamp = timestamp;
} else if (
// only update the disputed state root for the publisher if it's within
// the dispute period _and_ if it's before the previous one
block.timestamp < bond.firstDisputeAt + multiFraudProofPeriod &&
timestamp < bond.earliestTimestamp
) {
bond.earliestDisputedStateRoot = _preStateRoot;
bond.earliestTimestamp = timestamp;
}
// if the fraud proof's dispute period does not intersect with the
// withdrawal's timestamp, then the user should not be slashed
// e.g if a user at day 10 submits a withdrawal, and a fraud proof
// from day 1 gets published, the user won't be slashed since day 8 (1d + 7d)
// is before the user started their withdrawal. on the contrary, if the user
// had started their withdrawal at, say, day 6, they would be slashed
if (
bond.withdrawalTimestamp != 0 &&
uint256(bond.withdrawalTimestamp) > timestamp + disputePeriodSeconds &&
bond.state == State.WITHDRAWING
) {
return;
}
// slash!
bond.state = State.NOT_COLLATERALIZED;
}
/// Sequencers call this function to post collateral which will be used for
/// the `appendBatch` call
function deposit() override public {
require(
token.transferFrom(msg.sender, address(this), requiredCollateral),
Errors.ERC20_ERR
);
// This cannot overflow
bonds[msg.sender].state = State.COLLATERALIZED;
}
/// Starts the withdrawal for a publisher
function startWithdrawal() override public {
Bond storage bond = bonds[msg.sender];
require(bond.withdrawalTimestamp == 0, Errors.WITHDRAWAL_PENDING);
require(bond.state == State.COLLATERALIZED, Errors.WRONG_STATE);
bond.state = State.WITHDRAWING;
bond.withdrawalTimestamp = uint32(block.timestamp);
}
/// Finalizes a pending withdrawal from a publisher
function finalizeWithdrawal() override public {
Bond storage bond = bonds[msg.sender];
require(
block.timestamp >= uint256(bond.withdrawalTimestamp) + disputePeriodSeconds,
Errors.TOO_EARLY
);
require(bond.state == State.WITHDRAWING, Errors.SLASHED);
// refunds!
bond.state = State.NOT_COLLATERALIZED;
bond.withdrawalTimestamp = 0;
require(
token.transfer(msg.sender, requiredCollateral),
Errors.ERC20_ERR
);
}
/// Claims the user's reward for the witnesses they provided for the earliest
/// disputed state root of the designated publisher
function claim(address who) override public {
Bond storage bond = bonds[who];
require(
block.timestamp >= bond.firstDisputeAt + multiFraudProofPeriod,
Errors.WAIT_FOR_DISPUTES
);
// reward the earliest state root for this publisher
bytes32 _preStateRoot = bond.earliestDisputedStateRoot;
Rewards storage rewards = witnessProviders[_preStateRoot];
// only allow claiming if fraud was proven in `finalize`
require(rewards.canClaim, Errors.CANNOT_CLAIM);
// proportional allocation - only reward 50% (rest gets locked in the
// contract forever
uint256 amount = (requiredCollateral * rewards.gasSpent[msg.sender]) / (2 * rewards.total);
// reset the user's spent gas so they cannot double claim
rewards.gasSpent[msg.sender] = 0;
// transfer
require(token.transfer(msg.sender, amount), Errors.ERC20_ERR);
}
/// Checks if the user is collateralized
function isCollateralized(address who) override public view returns (bool) {
return bonds[who].state == State.COLLATERALIZED;
}
/// Gets how many witnesses the user has provided for the state root
function getGasSpent(bytes32 preStateRoot, address who) override public view returns (uint256) {
return witnessProviders[preStateRoot].gasSpent[who];
}
}
// SPDX-License-Identifier: MIT
// @unsupported: ovm
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
import { Lib_AddressResolver } from "../../libraries/resolver/Lib_AddressResolver.sol";
import { Lib_MerkleTree } from "../../libraries/utils/Lib_MerkleTree.sol";
/* Interface Imports */
import { iOVM_CanonicalTransactionChain } from
"../../iOVM/chain/iOVM_CanonicalTransactionChain.sol";
import { iOVM_ChainStorageContainer } from "../../iOVM/chain/iOVM_ChainStorageContainer.sol";
/* Contract Imports */
import { OVM_ExecutionManager } from "../execution/OVM_ExecutionManager.sol";
/* External Imports */
import { Math } from "@openzeppelin/contracts/math/Math.sol";
/**
* @title OVM_CanonicalTransactionChain
* @dev The Canonical Transaction Chain (CTC) contract is an append-only log of transactions
* which must be applied to the rollup state. It defines the ordering of rollup transactions by
* writing them to the 'CTC:batches' instance of the Chain Storage Container.
* The CTC also allows any account to 'enqueue' an L2 transaction, which will require that the
* Sequencer will eventually append it to the rollup state.
* If the Sequencer does not include an enqueued transaction within the 'force inclusion period',
* then any account may force it to be included by calling appendQueueBatch().
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_CanonicalTransactionChain is iOVM_CanonicalTransactionChain, Lib_AddressResolver {
/*************
* Constants *
*************/
// L2 tx gas-related
uint256 constant public MIN_ROLLUP_TX_GAS = 100000;
uint256 constant public MAX_ROLLUP_TX_SIZE = 50000;
uint256 constant public L2_GAS_DISCOUNT_DIVISOR = 32;
// Encoding-related (all in bytes)
uint256 constant internal BATCH_CONTEXT_SIZE = 16;
uint256 constant internal BATCH_CONTEXT_LENGTH_POS = 12;
uint256 constant internal BATCH_CONTEXT_START_POS = 15;
uint256 constant internal TX_DATA_HEADER_SIZE = 3;
uint256 constant internal BYTES_TILL_TX_DATA = 65;
/*************
* Variables *
*************/
uint256 public forceInclusionPeriodSeconds;
uint256 public forceInclusionPeriodBlocks;
uint256 public maxTransactionGasLimit;
/***************
* Constructor *
***************/
constructor(
address _libAddressManager,
uint256 _forceInclusionPeriodSeconds,
uint256 _forceInclusionPeriodBlocks,
uint256 _maxTransactionGasLimit
)
Lib_AddressResolver(_libAddressManager)
{
forceInclusionPeriodSeconds = _forceInclusionPeriodSeconds;
forceInclusionPeriodBlocks = _forceInclusionPeriodBlocks;
maxTransactionGasLimit = _maxTransactionGasLimit;
}
/********************
* Public Functions *
********************/
/**
* Accesses the batch storage container.
* @return Reference to the batch storage container.
*/
function batches()
override
public
view
returns (
iOVM_ChainStorageContainer
)
{
return iOVM_ChainStorageContainer(
resolve("OVM_ChainStorageContainer-CTC-batches")
);
}
/**
* Accesses the queue storage container.
* @return Reference to the queue storage container.
*/
function queue()
override
public
view
returns (
iOVM_ChainStorageContainer
)
{
return iOVM_ChainStorageContainer(
resolve("OVM_ChainStorageContainer-CTC-queue")
);
}
/**
* Retrieves the total number of elements submitted.
* @return _totalElements Total submitted elements.
*/
function getTotalElements()
override
public
view
returns (
uint256 _totalElements
)
{
(uint40 totalElements,,,) = _getBatchExtraData();
return uint256(totalElements);
}
/**
* Retrieves the total number of batches submitted.
* @return _totalBatches Total submitted batches.
*/
function getTotalBatches()
override
public
view
returns (
uint256 _totalBatches
)
{
return batches().length();
}
/**
* Returns the index of the next element to be enqueued.
* @return Index for the next queue element.
*/
function getNextQueueIndex()
override
public
view
returns (
uint40
)
{
(,uint40 nextQueueIndex,,) = _getBatchExtraData();
return nextQueueIndex;
}
/**
* Returns the timestamp of the last transaction.
* @return Timestamp for the last transaction.
*/
function getLastTimestamp()
override
public
view
returns (
uint40
)
{
(,,uint40 lastTimestamp,) = _getBatchExtraData();
return lastTimestamp;
}
/**
* Returns the blocknumber of the last transaction.
* @return Blocknumber for the last transaction.
*/
function getLastBlockNumber()
override
public
view
returns (
uint40
)
{
(,,,uint40 lastBlockNumber) = _getBatchExtraData();
return lastBlockNumber;
}
/**
* Gets the queue element at a particular index.
* @param _index Index of the queue element to access.
* @return _element Queue element at the given index.
*/
function getQueueElement(
uint256 _index
)
override
public
view
returns (
Lib_OVMCodec.QueueElement memory _element
)
{
return _getQueueElement(
_index,
queue()
);
}
/**
* Get the number of queue elements which have not yet been included.
* @return Number of pending queue elements.
*/
function getNumPendingQueueElements()
override
public
view
returns (
uint40
)
{
return getQueueLength() - getNextQueueIndex();
}
/**
* Retrieves the length of the queue, including
* both pending and canonical transactions.
* @return Length of the queue.
*/
function getQueueLength()
override
public
view
returns (
uint40
)
{
return _getQueueLength(
queue()
);
}
/**
* Adds a transaction to the queue.
* @param _target Target L2 contract to send the transaction to.
* @param _gasLimit Gas limit for the enqueued L2 transaction.
* @param _data Transaction data.
*/
function enqueue(
address _target,
uint256 _gasLimit,
bytes memory _data
)
override
public
{
require(
_data.length <= MAX_ROLLUP_TX_SIZE,
"Transaction data size exceeds maximum for rollup transaction."
);
require(
_gasLimit <= maxTransactionGasLimit,
"Transaction gas limit exceeds maximum for rollup transaction."
);
require(
_gasLimit >= MIN_ROLLUP_TX_GAS,
"Transaction gas limit too low to enqueue."
);
// We need to consume some amount of L1 gas in order to rate limit transactions going into
// L2. However, L2 is cheaper than L1 so we only need to burn some small proportion of the
// provided L1 gas.
uint256 gasToConsume = _gasLimit/L2_GAS_DISCOUNT_DIVISOR;
uint256 startingGas = gasleft();
// Although this check is not necessary (burn below will run out of gas if not true), it
// gives the user an explicit reason as to why the enqueue attempt failed.
require(
startingGas > gasToConsume,
"Insufficient gas for L2 rate limiting burn."
);
// Here we do some "dumb" work in order to burn gas, although we should probably replace
// this with something like minting gas token later on.
uint256 i;
while(startingGas - gasleft() < gasToConsume) {
i++;
}
bytes32 transactionHash = keccak256(
abi.encode(
msg.sender,
_target,
_gasLimit,
_data
)
);
bytes32 timestampAndBlockNumber;
assembly {
timestampAndBlockNumber := timestamp()
timestampAndBlockNumber := or(timestampAndBlockNumber, shl(40, number()))
}
iOVM_ChainStorageContainer queueRef = queue();
queueRef.push(transactionHash);
queueRef.push(timestampAndBlockNumber);
// The underlying queue data structure stores 2 elements
// per insertion, so to get the real queue length we need
// to divide by 2 and subtract 1.
uint256 queueIndex = queueRef.length() / 2 - 1;
emit TransactionEnqueued(
msg.sender,
_target,
_gasLimit,
_data,
queueIndex,
block.timestamp
);
}
/**
* Appends a given number of queued transactions as a single batch.
* param _numQueuedTransactions Number of transactions to append.
*/
function appendQueueBatch(
uint256 // _numQueuedTransactions
)
override
public
pure
{
// TEMPORARY: Disable `appendQueueBatch` for minnet
revert("appendQueueBatch is currently disabled.");
// solhint-disable max-line-length
// _numQueuedTransactions = Math.min(_numQueuedTransactions, getNumPendingQueueElements());
// require(
// _numQueuedTransactions > 0,
// "Must append more than zero transactions."
// );
// bytes32[] memory leaves = new bytes32[](_numQueuedTransactions);
// uint40 nextQueueIndex = getNextQueueIndex();
// for (uint256 i = 0; i < _numQueuedTransactions; i++) {
// if (msg.sender != resolve("OVM_Sequencer")) {
// Lib_OVMCodec.QueueElement memory el = getQueueElement(nextQueueIndex);
// require(
// el.timestamp + forceInclusionPeriodSeconds < block.timestamp,
// "Queue transactions cannot be submitted during the sequencer inclusion period."
// );
// }
// leaves[i] = _getQueueLeafHash(nextQueueIndex);
// nextQueueIndex++;
// }
// Lib_OVMCodec.QueueElement memory lastElement = getQueueElement(nextQueueIndex - 1);
// _appendBatch(
// Lib_MerkleTree.getMerkleRoot(leaves),
// _numQueuedTransactions,
// _numQueuedTransactions,
// lastElement.timestamp,
// lastElement.blockNumber
// );
// emit QueueBatchAppended(
// nextQueueIndex - _numQueuedTransactions,
// _numQueuedTransactions,
// getTotalElements()
// );
// solhint-enable max-line-length
}
/**
* Allows the sequencer to append a batch of transactions.
* @dev This function uses a custom encoding scheme for efficiency reasons.
* .param _shouldStartAtElement Specific batch we expect to start appending to.
* .param _totalElementsToAppend Total number of batch elements we expect to append.
* .param _contexts Array of batch contexts.
* .param _transactionDataFields Array of raw transaction data.
*/
function appendSequencerBatch()
override
public
{
uint40 shouldStartAtElement;
uint24 totalElementsToAppend;
uint24 numContexts;
assembly {
shouldStartAtElement := shr(216, calldataload(4))
totalElementsToAppend := shr(232, calldataload(9))
numContexts := shr(232, calldataload(12))
}
require(
shouldStartAtElement == getTotalElements(),
"Actual batch start index does not match expected start index."
);
require(
msg.sender == resolve("OVM_Sequencer"),
"Function can only be called by the Sequencer."
);
require(
numContexts > 0,
"Must provide at least one batch context."
);
require(
totalElementsToAppend > 0,
"Must append at least one element."
);
uint40 nextTransactionPtr = uint40(
BATCH_CONTEXT_START_POS + BATCH_CONTEXT_SIZE * numContexts
);
require(
msg.data.length >= nextTransactionPtr,
"Not enough BatchContexts provided."
);
// Take a reference to the queue and its length so we don't have to keep resolving it.
// Length isn't going to change during the course of execution, so it's fine to simply
// resolve this once at the start. Saves gas.
iOVM_ChainStorageContainer queueRef = queue();
uint40 queueLength = _getQueueLength(queueRef);
// Reserve some memory to save gas on hashing later on. This is a relatively safe estimate
// for the average transaction size that will prevent having to resize this chunk of memory
// later on. Saves gas.
bytes memory hashMemory = new bytes((msg.data.length / totalElementsToAppend) * 2);
// Initialize the array of canonical chain leaves that we will append.
bytes32[] memory leaves = new bytes32[](totalElementsToAppend);
// Each leaf index corresponds to a tx, either sequenced or enqueued.
uint32 leafIndex = 0;
// Counter for number of sequencer transactions appended so far.
uint32 numSequencerTransactions = 0;
// We will sequentially append leaves which are pointers to the queue.
// The initial queue index is what is currently in storage.
uint40 nextQueueIndex = getNextQueueIndex();
BatchContext memory curContext;
for (uint32 i = 0; i < numContexts; i++) {
BatchContext memory nextContext = _getBatchContext(i);
if (i == 0) {
// Execute a special check for the first batch.
_validateFirstBatchContext(nextContext);
}
// Execute this check on every single batch, including the first one.
_validateNextBatchContext(
curContext,
nextContext,
nextQueueIndex,
queueRef
);
// Now we can update our current context.
curContext = nextContext;
// Process sequencer transactions first.
for (uint32 j = 0; j < curContext.numSequencedTransactions; j++) {
uint256 txDataLength;
assembly {
txDataLength := shr(232, calldataload(nextTransactionPtr))
}
require(
txDataLength <= MAX_ROLLUP_TX_SIZE,
"Transaction data size exceeds maximum for rollup transaction."
);
leaves[leafIndex] = _getSequencerLeafHash(
curContext,
nextTransactionPtr,
txDataLength,
hashMemory
);
nextTransactionPtr += uint40(TX_DATA_HEADER_SIZE + txDataLength);
numSequencerTransactions++;
leafIndex++;
}
// Now process any subsequent queue transactions.
for (uint32 j = 0; j < curContext.numSubsequentQueueTransactions; j++) {
require(
nextQueueIndex < queueLength,
"Not enough queued transactions to append."
);
leaves[leafIndex] = _getQueueLeafHash(nextQueueIndex);
nextQueueIndex++;
leafIndex++;
}
}
_validateFinalBatchContext(
curContext,
nextQueueIndex,
queueLength,
queueRef
);
require(
msg.data.length == nextTransactionPtr,
"Not all sequencer transactions were processed."
);
require(
leafIndex == totalElementsToAppend,
"Actual transaction index does not match expected total elements to append."
);
// Generate the required metadata that we need to append this batch
uint40 numQueuedTransactions = totalElementsToAppend - numSequencerTransactions;
uint40 blockTimestamp;
uint40 blockNumber;
if (curContext.numSubsequentQueueTransactions == 0) {
// The last element is a sequencer tx, therefore pull timestamp and block number from
// the last context.
blockTimestamp = uint40(curContext.timestamp);
blockNumber = uint40(curContext.blockNumber);
} else {
// The last element is a queue tx, therefore pull timestamp and block number from the
// queue element.
// curContext.numSubsequentQueueTransactions > 0 which means that we've processed at
// least one queue element. We increment nextQueueIndex after processing each queue
// element, so the index of the last element we processed is nextQueueIndex - 1.
Lib_OVMCodec.QueueElement memory lastElement = _getQueueElement(
nextQueueIndex - 1,
queueRef
);
blockTimestamp = lastElement.timestamp;
blockNumber = lastElement.blockNumber;
}
// For efficiency reasons getMerkleRoot modifies the `leaves` argument in place
// while calculating the root hash therefore any arguments passed to it must not
// be used again afterwards
_appendBatch(
Lib_MerkleTree.getMerkleRoot(leaves),
totalElementsToAppend,
numQueuedTransactions,
blockTimestamp,
blockNumber
);
emit SequencerBatchAppended(
nextQueueIndex - numQueuedTransactions,
numQueuedTransactions,
getTotalElements()
);
}
/**
* Verifies whether a transaction is included in the chain.
* @param _transaction Transaction to verify.
* @param _txChainElement Transaction chain element corresponding to the transaction.
* @param _batchHeader Header of the batch the transaction was included in.
* @param _inclusionProof Inclusion proof for the provided transaction chain element.
* @return True if the transaction exists in the CTC, false if not.
*/
function verifyTransaction(
Lib_OVMCodec.Transaction memory _transaction,
Lib_OVMCodec.TransactionChainElement memory _txChainElement,
Lib_OVMCodec.ChainBatchHeader memory _batchHeader,
Lib_OVMCodec.ChainInclusionProof memory _inclusionProof
)
override
public
view
returns (
bool
)
{
if (_txChainElement.isSequenced == true) {
return _verifySequencerTransaction(
_transaction,
_txChainElement,
_batchHeader,
_inclusionProof
);
} else {
return _verifyQueueTransaction(
_transaction,
_txChainElement.queueIndex,
_batchHeader,
_inclusionProof
);
}
}
/**********************
* Internal Functions *
**********************/
/**
* Returns the BatchContext located at a particular index.
* @param _index The index of the BatchContext
* @return The BatchContext at the specified index.
*/
function _getBatchContext(
uint256 _index
)
internal
pure
returns (
BatchContext memory
)
{
uint256 contextPtr = 15 + _index * BATCH_CONTEXT_SIZE;
uint256 numSequencedTransactions;
uint256 numSubsequentQueueTransactions;
uint256 ctxTimestamp;
uint256 ctxBlockNumber;
assembly {
numSequencedTransactions := shr(232, calldataload(contextPtr))
numSubsequentQueueTransactions := shr(232, calldataload(add(contextPtr, 3)))
ctxTimestamp := shr(216, calldataload(add(contextPtr, 6)))
ctxBlockNumber := shr(216, calldataload(add(contextPtr, 11)))
}
return BatchContext({
numSequencedTransactions: numSequencedTransactions,
numSubsequentQueueTransactions: numSubsequentQueueTransactions,
timestamp: ctxTimestamp,
blockNumber: ctxBlockNumber
});
}
/**
* Parses the batch context from the extra data.
* @return Total number of elements submitted.
* @return Index of the next queue element.
*/
function _getBatchExtraData()
internal
view
returns (
uint40,
uint40,
uint40,
uint40
)
{
bytes27 extraData = batches().getGlobalMetadata();
uint40 totalElements;
uint40 nextQueueIndex;
uint40 lastTimestamp;
uint40 lastBlockNumber;
// solhint-disable max-line-length
assembly {
extraData := shr(40, extraData)
totalElements := and(extraData, 0x000000000000000000000000000000000000000000000000000000FFFFFFFFFF)
nextQueueIndex := shr(40, and(extraData, 0x00000000000000000000000000000000000000000000FFFFFFFFFF0000000000))
lastTimestamp := shr(80, and(extraData, 0x0000000000000000000000000000000000FFFFFFFFFF00000000000000000000))
lastBlockNumber := shr(120, and(extraData, 0x000000000000000000000000FFFFFFFFFF000000000000000000000000000000))
}
// solhint-enable max-line-length
return (
totalElements,
nextQueueIndex,
lastTimestamp,
lastBlockNumber
);
}
/**
* Encodes the batch context for the extra data.
* @param _totalElements Total number of elements submitted.
* @param _nextQueueIndex Index of the next queue element.
* @param _timestamp Timestamp for the last batch.
* @param _blockNumber Block number of the last batch.
* @return Encoded batch context.
*/
function _makeBatchExtraData(
uint40 _totalElements,
uint40 _nextQueueIndex,
uint40 _timestamp,
uint40 _blockNumber
)
internal
pure
returns (
bytes27
)
{
bytes27 extraData;
assembly {
extraData := _totalElements
extraData := or(extraData, shl(40, _nextQueueIndex))
extraData := or(extraData, shl(80, _timestamp))
extraData := or(extraData, shl(120, _blockNumber))
extraData := shl(40, extraData)
}
return extraData;
}
/**
* Retrieves the hash of a queue element.
* @param _index Index of the queue element to retrieve a hash for.
* @return Hash of the queue element.
*/
function _getQueueLeafHash(
uint256 _index
)
internal
pure
returns (
bytes32
)
{
return _hashTransactionChainElement(
Lib_OVMCodec.TransactionChainElement({
isSequenced: false,
queueIndex: _index,
timestamp: 0,
blockNumber: 0,
txData: hex""
})
);
}
/**
* Gets the queue element at a particular index.
* @param _index Index of the queue element to access.
* @return _element Queue element at the given index.
*/
function _getQueueElement(
uint256 _index,
iOVM_ChainStorageContainer _queueRef
)
internal
view
returns (
Lib_OVMCodec.QueueElement memory _element
)
{
// The underlying queue data structure stores 2 elements
// per insertion, so to get the actual desired queue index
// we need to multiply by 2.
uint40 trueIndex = uint40(_index * 2);
bytes32 transactionHash = _queueRef.get(trueIndex);
bytes32 timestampAndBlockNumber = _queueRef.get(trueIndex + 1);
uint40 elementTimestamp;
uint40 elementBlockNumber;
// solhint-disable max-line-length
assembly {
elementTimestamp := and(timestampAndBlockNumber, 0x000000000000000000000000000000000000000000000000000000FFFFFFFFFF)
elementBlockNumber := shr(40, and(timestampAndBlockNumber, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000000000))
}
// solhint-enable max-line-length
return Lib_OVMCodec.QueueElement({
transactionHash: transactionHash,
timestamp: elementTimestamp,
blockNumber: elementBlockNumber
});
}
/**
* Retrieves the length of the queue.
* @return Length of the queue.
*/
function _getQueueLength(
iOVM_ChainStorageContainer _queueRef
)
internal
view
returns (
uint40
)
{
// The underlying queue data structure stores 2 elements
// per insertion, so to get the real queue length we need
// to divide by 2.
return uint40(_queueRef.length() / 2);
}
/**
* Retrieves the hash of a sequencer element.
* @param _context Batch context for the given element.
* @param _nextTransactionPtr Pointer to the next transaction in the calldata.
* @param _txDataLength Length of the transaction item.
* @return Hash of the sequencer element.
*/
function _getSequencerLeafHash(
BatchContext memory _context,
uint256 _nextTransactionPtr,
uint256 _txDataLength,
bytes memory _hashMemory
)
internal
pure
returns (
bytes32
)
{
// Only allocate more memory if we didn't reserve enough to begin with.
if (BYTES_TILL_TX_DATA + _txDataLength > _hashMemory.length) {
_hashMemory = new bytes(BYTES_TILL_TX_DATA + _txDataLength);
}
uint256 ctxTimestamp = _context.timestamp;
uint256 ctxBlockNumber = _context.blockNumber;
bytes32 leafHash;
assembly {
let chainElementStart := add(_hashMemory, 0x20)
// Set the first byte equal to `1` to indicate this is a sequencer chain element.
// This distinguishes sequencer ChainElements from queue ChainElements because
// all queue ChainElements are ABI encoded and the first byte of ABI encoded
// elements is always zero
mstore8(chainElementStart, 1)
mstore(add(chainElementStart, 1), ctxTimestamp)
mstore(add(chainElementStart, 33), ctxBlockNumber)
// solhint-disable-next-line max-line-length
calldatacopy(add(chainElementStart, BYTES_TILL_TX_DATA), add(_nextTransactionPtr, 3), _txDataLength)
leafHash := keccak256(chainElementStart, add(BYTES_TILL_TX_DATA, _txDataLength))
}
return leafHash;
}
/**
* Retrieves the hash of a sequencer element.
* @param _txChainElement The chain element which is hashed to calculate the leaf.
* @return Hash of the sequencer element.
*/
function _getSequencerLeafHash(
Lib_OVMCodec.TransactionChainElement memory _txChainElement
)
internal
view
returns(
bytes32
)
{
bytes memory txData = _txChainElement.txData;
uint256 txDataLength = _txChainElement.txData.length;
bytes memory chainElement = new bytes(BYTES_TILL_TX_DATA + txDataLength);
uint256 ctxTimestamp = _txChainElement.timestamp;
uint256 ctxBlockNumber = _txChainElement.blockNumber;
bytes32 leafHash;
assembly {
let chainElementStart := add(chainElement, 0x20)
// Set the first byte equal to `1` to indicate this is a sequencer chain element.
// This distinguishes sequencer ChainElements from queue ChainElements because
// all queue ChainElements are ABI encoded and the first byte of ABI encoded
// elements is always zero
mstore8(chainElementStart, 1)
mstore(add(chainElementStart, 1), ctxTimestamp)
mstore(add(chainElementStart, 33), ctxBlockNumber)
// solhint-disable-next-line max-line-length
pop(staticcall(gas(), 0x04, add(txData, 0x20), txDataLength, add(chainElementStart, BYTES_TILL_TX_DATA), txDataLength))
leafHash := keccak256(chainElementStart, add(BYTES_TILL_TX_DATA, txDataLength))
}
return leafHash;
}
/**
* Inserts a batch into the chain of batches.
* @param _transactionRoot Root of the transaction tree for this batch.
* @param _batchSize Number of elements in the batch.
* @param _numQueuedTransactions Number of queue transactions in the batch.
* @param _timestamp The latest batch timestamp.
* @param _blockNumber The latest batch blockNumber.
*/
function _appendBatch(
bytes32 _transactionRoot,
uint256 _batchSize,
uint256 _numQueuedTransactions,
uint40 _timestamp,
uint40 _blockNumber
)
internal
{
iOVM_ChainStorageContainer batchesRef = batches();
(uint40 totalElements, uint40 nextQueueIndex,,) = _getBatchExtraData();
Lib_OVMCodec.ChainBatchHeader memory header = Lib_OVMCodec.ChainBatchHeader({
batchIndex: batchesRef.length(),
batchRoot: _transactionRoot,
batchSize: _batchSize,
prevTotalElements: totalElements,
extraData: hex""
});
emit TransactionBatchAppended(
header.batchIndex,
header.batchRoot,
header.batchSize,
header.prevTotalElements,
header.extraData
);
bytes32 batchHeaderHash = Lib_OVMCodec.hashBatchHeader(header);
bytes27 latestBatchContext = _makeBatchExtraData(
totalElements + uint40(header.batchSize),
nextQueueIndex + uint40(_numQueuedTransactions),
_timestamp,
_blockNumber
);
batchesRef.push(batchHeaderHash, latestBatchContext);
}
/**
* Checks that the first batch context in a sequencer submission is valid
* @param _firstContext The batch context to validate.
*/
function _validateFirstBatchContext(
BatchContext memory _firstContext
)
internal
view
{
// If there are existing elements, this batch must have the same context
// or a later timestamp and block number.
if (getTotalElements() > 0) {
(,, uint40 lastTimestamp, uint40 lastBlockNumber) = _getBatchExtraData();
require(
_firstContext.blockNumber >= lastBlockNumber,
"Context block number is lower than last submitted."
);
require(
_firstContext.timestamp >= lastTimestamp,
"Context timestamp is lower than last submitted."
);
}
// Sequencer cannot submit contexts which are more than the force inclusion period old.
require(
_firstContext.timestamp + forceInclusionPeriodSeconds >= block.timestamp,
"Context timestamp too far in the past."
);
require(
_firstContext.blockNumber + forceInclusionPeriodBlocks >= block.number,
"Context block number too far in the past."
);
}
/**
* Checks that a given batch context has a time context which is below a given que element
* @param _context The batch context to validate has values lower.
* @param _queueIndex Index of the queue element we are validating came later than the context.
* @param _queueRef The storage container for the queue.
*/
function _validateContextBeforeEnqueue(
BatchContext memory _context,
uint40 _queueIndex,
iOVM_ChainStorageContainer _queueRef
)
internal
view
{
Lib_OVMCodec.QueueElement memory nextQueueElement = _getQueueElement(
_queueIndex,
_queueRef
);
// If the force inclusion period has passed for an enqueued transaction, it MUST be the
// next chain element.
require(
block.timestamp < nextQueueElement.timestamp + forceInclusionPeriodSeconds,
// solhint-disable-next-line max-line-length
"Previously enqueued batches have expired and must be appended before a new sequencer batch."
);
// Just like sequencer transaction times must be increasing relative to each other,
// We also require that they be increasing relative to any interspersed queue elements.
require(
_context.timestamp <= nextQueueElement.timestamp,
"Sequencer transaction timestamp exceeds that of next queue element."
);
require(
_context.blockNumber <= nextQueueElement.blockNumber,
"Sequencer transaction blockNumber exceeds that of next queue element."
);
}
/**
* Checks that a given batch context is valid based on its previous context, and the next queue
* elemtent.
* @param _prevContext The previously validated batch context.
* @param _nextContext The batch context to validate with this call.
* @param _nextQueueIndex Index of the next queue element to process for the _nextContext's
* subsequentQueueElements.
* @param _queueRef The storage container for the queue.
*/
function _validateNextBatchContext(
BatchContext memory _prevContext,
BatchContext memory _nextContext,
uint40 _nextQueueIndex,
iOVM_ChainStorageContainer _queueRef
)
internal
view
{
// All sequencer transactions' times must be greater than or equal to the previous ones.
require(
_nextContext.timestamp >= _prevContext.timestamp,
"Context timestamp values must monotonically increase."
);
require(
_nextContext.blockNumber >= _prevContext.blockNumber,
"Context blockNumber values must monotonically increase."
);
// If there is going to be a queue element pulled in from this context:
if (_nextContext.numSubsequentQueueTransactions > 0) {
_validateContextBeforeEnqueue(
_nextContext,
_nextQueueIndex,
_queueRef
);
}
}
/**
* Checks that the final batch context in a sequencer submission is valid.
* @param _finalContext The batch context to validate.
* @param _queueLength The length of the queue at the start of the batchAppend call.
* @param _nextQueueIndex The next element in the queue that will be pulled into the CTC.
* @param _queueRef The storage container for the queue.
*/
function _validateFinalBatchContext(
BatchContext memory _finalContext,
uint40 _nextQueueIndex,
uint40 _queueLength,
iOVM_ChainStorageContainer _queueRef
)
internal
view
{
// If the queue is not now empty, check the mononoticity of whatever the next batch that
// will come in is.
if (_queueLength - _nextQueueIndex > 0 && _finalContext.numSubsequentQueueTransactions == 0)
{
_validateContextBeforeEnqueue(
_finalContext,
_nextQueueIndex,
_queueRef
);
}
// Batches cannot be added from the future, or subsequent enqueue() contexts would violate
// monotonicity.
require(_finalContext.timestamp <= block.timestamp,
"Context timestamp is from the future.");
require(_finalContext.blockNumber <= block.number,
"Context block number is from the future.");
}
/**
* Hashes a transaction chain element.
* @param _element Chain element to hash.
* @return Hash of the chain element.
*/
function _hashTransactionChainElement(
Lib_OVMCodec.TransactionChainElement memory _element
)
internal
pure
returns (
bytes32
)
{
return keccak256(
abi.encode(
_element.isSequenced,
_element.queueIndex,
_element.timestamp,
_element.blockNumber,
_element.txData
)
);
}
/**
* Verifies a sequencer transaction, returning true if it was indeed included in the CTC
* @param _transaction The transaction we are verifying inclusion of.
* @param _txChainElement The chain element that the transaction is claimed to be a part of.
* @param _batchHeader Header of the batch the transaction was included in.
* @param _inclusionProof An inclusion proof into the CTC at a particular index.
* @return True if the transaction was included in the specified location, else false.
*/
function _verifySequencerTransaction(
Lib_OVMCodec.Transaction memory _transaction,
Lib_OVMCodec.TransactionChainElement memory _txChainElement,
Lib_OVMCodec.ChainBatchHeader memory _batchHeader,
Lib_OVMCodec.ChainInclusionProof memory _inclusionProof
)
internal
view
returns (
bool
)
{
OVM_ExecutionManager ovmExecutionManager =
OVM_ExecutionManager(resolve("OVM_ExecutionManager"));
uint256 gasLimit = ovmExecutionManager.getMaxTransactionGasLimit();
bytes32 leafHash = _getSequencerLeafHash(_txChainElement);
require(
_verifyElement(
leafHash,
_batchHeader,
_inclusionProof
),
"Invalid Sequencer transaction inclusion proof."
);
require(
_transaction.blockNumber == _txChainElement.blockNumber
&& _transaction.timestamp == _txChainElement.timestamp
&& _transaction.entrypoint == resolve("OVM_DecompressionPrecompileAddress")
&& _transaction.gasLimit == gasLimit
&& _transaction.l1TxOrigin == address(0)
&& _transaction.l1QueueOrigin == Lib_OVMCodec.QueueOrigin.SEQUENCER_QUEUE
&& keccak256(_transaction.data) == keccak256(_txChainElement.txData),
"Invalid Sequencer transaction."
);
return true;
}
/**
* Verifies a queue transaction, returning true if it was indeed included in the CTC
* @param _transaction The transaction we are verifying inclusion of.
* @param _queueIndex The queueIndex of the queued transaction.
* @param _batchHeader Header of the batch the transaction was included in.
* @param _inclusionProof An inclusion proof into the CTC at a particular index (should point to
* queue tx).
* @return True if the transaction was included in the specified location, else false.
*/
function _verifyQueueTransaction(
Lib_OVMCodec.Transaction memory _transaction,
uint256 _queueIndex,
Lib_OVMCodec.ChainBatchHeader memory _batchHeader,
Lib_OVMCodec.ChainInclusionProof memory _inclusionProof
)
internal
view
returns (
bool
)
{
bytes32 leafHash = _getQueueLeafHash(_queueIndex);
require(
_verifyElement(
leafHash,
_batchHeader,
_inclusionProof
),
"Invalid Queue transaction inclusion proof."
);
bytes32 transactionHash = keccak256(
abi.encode(
_transaction.l1TxOrigin,
_transaction.entrypoint,
_transaction.gasLimit,
_transaction.data
)
);
Lib_OVMCodec.QueueElement memory el = getQueueElement(_queueIndex);
require(
el.transactionHash == transactionHash
&& el.timestamp == _transaction.timestamp
&& el.blockNumber == _transaction.blockNumber,
"Invalid Queue transaction."
);
return true;
}
/**
* Verifies a batch inclusion proof.
* @param _element Hash of the element to verify a proof for.
* @param _batchHeader Header of the batch in which the element was included.
* @param _proof Merkle inclusion proof for the element.
*/
function _verifyElement(
bytes32 _element,
Lib_OVMCodec.ChainBatchHeader memory _batchHeader,
Lib_OVMCodec.ChainInclusionProof memory _proof
)
internal
view
returns (
bool
)
{
require(
Lib_OVMCodec.hashBatchHeader(_batchHeader) ==
batches().get(uint32(_batchHeader.batchIndex)),
"Invalid batch header."
);
require(
Lib_MerkleTree.verify(
_batchHeader.batchRoot,
_element,
_proof.index,
_proof.siblings,
_batchHeader.batchSize
),
"Invalid inclusion proof."
);
return true;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Library Imports */
import { Lib_Buffer } from "../../libraries/utils/Lib_Buffer.sol";
import { Lib_AddressResolver } from "../../libraries/resolver/Lib_AddressResolver.sol";
/* Interface Imports */
import { iOVM_ChainStorageContainer } from "../../iOVM/chain/iOVM_ChainStorageContainer.sol";
/**
* @title OVM_ChainStorageContainer
* @dev The Chain Storage Container provides its owner contract with read, write and delete
* functionality. This provides gas efficiency gains by enabling it to overwrite storage slots which
* can no longer be used in a fraud proof due to the fraud window having passed, and the associated
* chain state or transactions being finalized.
* Three distinct Chain Storage Containers will be deployed on Layer 1:
* 1. Stores transaction batches for the Canonical Transaction Chain
* 2. Stores queued transactions for the Canonical Transaction Chain
* 3. Stores chain state batches for the State Commitment Chain
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_ChainStorageContainer is iOVM_ChainStorageContainer, Lib_AddressResolver {
/*************
* Libraries *
*************/
using Lib_Buffer for Lib_Buffer.Buffer;
/*************
* Variables *
*************/
string public owner;
Lib_Buffer.Buffer internal buffer;
/***************
* Constructor *
***************/
/**
* @param _libAddressManager Address of the Address Manager.
* @param _owner Name of the contract that owns this container (will be resolved later).
*/
constructor(
address _libAddressManager,
string memory _owner
)
Lib_AddressResolver(_libAddressManager)
{
owner = _owner;
}
/**********************
* Function Modifiers *
**********************/
modifier onlyOwner() {
require(
msg.sender == resolve(owner),
"OVM_ChainStorageContainer: Function can only be called by the owner."
);
_;
}
/********************
* Public Functions *
********************/
/**
* @inheritdoc iOVM_ChainStorageContainer
*/
function setGlobalMetadata(
bytes27 _globalMetadata
)
override
public
onlyOwner
{
return buffer.setExtraData(_globalMetadata);
}
/**
* @inheritdoc iOVM_ChainStorageContainer
*/
function getGlobalMetadata()
override
public
view
returns (
bytes27
)
{
return buffer.getExtraData();
}
/**
* @inheritdoc iOVM_ChainStorageContainer
*/
function length()
override
public
view
returns (
uint256
)
{
return uint256(buffer.getLength());
}
/**
* @inheritdoc iOVM_ChainStorageContainer
*/
function push(
bytes32 _object
)
override
public
onlyOwner
{
buffer.push(_object);
}
/**
* @inheritdoc iOVM_ChainStorageContainer
*/
function push(
bytes32 _object,
bytes27 _globalMetadata
)
override
public
onlyOwner
{
buffer.push(_object, _globalMetadata);
}
/**
* @inheritdoc iOVM_ChainStorageContainer
*/
function get(
uint256 _index
)
override
public
view
returns (
bytes32
)
{
return buffer.get(uint40(_index));
}
/**
* @inheritdoc iOVM_ChainStorageContainer
*/
function deleteElementsAfterInclusive(
uint256 _index
)
override
public
onlyOwner
{
buffer.deleteElementsAfterInclusive(
uint40(_index)
);
}
/**
* @inheritdoc iOVM_ChainStorageContainer
*/
function deleteElementsAfterInclusive(
uint256 _index,
bytes27 _globalMetadata
)
override
public
onlyOwner
{
buffer.deleteElementsAfterInclusive(
uint40(_index),
_globalMetadata
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Interface Imports */
import { iOVM_CrossDomainMessenger } from
"../../iOVM/bridge/messaging/iOVM_CrossDomainMessenger.sol";
/**
* @title OVM_CrossDomainEnabled
* @dev Helper contract for contracts performing cross-domain communications
*
* Compiler used: defined by inheriting contract
* Runtime target: defined by inheriting contract
*/
contract OVM_CrossDomainEnabled {
/*************
* Variables *
*************/
// Messenger contract used to send and recieve messages from the other domain.
address public messenger;
/***************
* Constructor *
***************/
/**
* @param _messenger Address of the CrossDomainMessenger on the current layer.
*/
constructor(
address _messenger
) {
messenger = _messenger;
}
/**********************
* Function Modifiers *
**********************/
/**
* Enforces that the modified function is only callable by a specific cross-domain account.
* @param _sourceDomainAccount The only account on the originating domain which is
* authenticated to call this function.
*/
modifier onlyFromCrossDomainAccount(
address _sourceDomainAccount
) {
require(
msg.sender == address(getCrossDomainMessenger()),
"OVM_XCHAIN: messenger contract unauthenticated"
);
require(
getCrossDomainMessenger().xDomainMessageSender() == _sourceDomainAccount,
"OVM_XCHAIN: wrong sender of cross-domain message"
);
_;
}
/**********************
* Internal Functions *
**********************/
/**
* Gets the messenger, usually from storage. This function is exposed in case a child contract
* needs to override.
* @return The address of the cross-domain messenger contract which should be used.
*/
function getCrossDomainMessenger()
internal
virtual
returns (
iOVM_CrossDomainMessenger
)
{
return iOVM_CrossDomainMessenger(messenger);
}
/**
* Sends a message to an account on another domain
* @param _crossDomainTarget The intended recipient on the destination domain
* @param _message The data to send to the target (usually calldata to a function with
* `onlyFromCrossDomainAccount()`)
* @param _gasLimit The gasLimit for the receipt of the message on the target domain.
*/
function sendCrossDomainMessage(
address _crossDomainTarget,
uint32 _gasLimit,
bytes memory _message
)
internal
{
getCrossDomainMessenger().sendMessage(_crossDomainTarget, _message, _gasLimit);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Interface Imports */
import { iOVM_DeployerWhitelist } from "../../iOVM/predeploys/iOVM_DeployerWhitelist.sol";
/**
* @title OVM_DeployerWhitelist
* @dev The Deployer Whitelist is a temporary predeploy used to provide additional safety during the
* initial phases of our mainnet roll out. It is owned by the Optimism team, and defines accounts
* which are allowed to deploy contracts on Layer2. The Execution Manager will only allow an
* ovmCREATE or ovmCREATE2 operation to proceed if the deployer's address whitelisted.
*
* Compiler used: optimistic-solc
* Runtime target: OVM
*/
contract OVM_DeployerWhitelist is iOVM_DeployerWhitelist {
/**********************
* Contract Constants *
**********************/
bool public initialized;
bool public allowArbitraryDeployment;
address override public owner;
mapping (address => bool) public whitelist;
/**********************
* Function Modifiers *
**********************/
/**
* Blocks functions to anyone except the contract owner.
*/
modifier onlyOwner() {
require(
msg.sender == owner,
"Function can only be called by the owner of this contract."
);
_;
}
/********************
* Public Functions *
********************/
/**
* Initializes the whitelist.
* @param _owner Address of the owner for this contract.
* @param _allowArbitraryDeployment Whether or not to allow arbitrary contract deployment.
*/
function initialize(
address _owner,
bool _allowArbitraryDeployment
)
override
external
{
if (initialized == true) {
return;
}
initialized = true;
allowArbitraryDeployment = _allowArbitraryDeployment;
owner = _owner;
}
/**
* Adds or removes an address from the deployment whitelist.
* @param _deployer Address to update permissions for.
* @param _isWhitelisted Whether or not the address is whitelisted.
*/
function setWhitelistedDeployer(
address _deployer,
bool _isWhitelisted
)
override
external
onlyOwner
{
whitelist[_deployer] = _isWhitelisted;
}
/**
* Updates the owner of this contract.
* @param _owner Address of the new owner.
*/
function setOwner(
address _owner
)
override
public
onlyOwner
{
owner = _owner;
}
/**
* Updates the arbitrary deployment flag.
* @param _allowArbitraryDeployment Whether or not to allow arbitrary contract deployment.
*/
function setAllowArbitraryDeployment(
bool _allowArbitraryDeployment
)
override
public
onlyOwner
{
allowArbitraryDeployment = _allowArbitraryDeployment;
}
/**
* Permanently enables arbitrary contract deployment and deletes the owner.
*/
function enableArbitraryContractDeployment()
override
external
onlyOwner
{
setAllowArbitraryDeployment(true);
setOwner(address(0));
}
/**
* Checks whether an address is allowed to deploy contracts.
* @param _deployer Address to check.
* @return _allowed Whether or not the address can deploy contracts.
*/
function isDeployerAllowed(
address _deployer
)
override
external
returns (
bool
)
{
return (
initialized == false
|| allowArbitraryDeployment == true
|| whitelist[_deployer]
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Interface Imports */
import { iOVM_ECDSAContractAccount } from "../../iOVM/predeploys/iOVM_ECDSAContractAccount.sol";
/* Library Imports */
import { Lib_EIP155Tx } from "../../libraries/codec/Lib_EIP155Tx.sol";
import { Lib_ExecutionManagerWrapper } from
"../../libraries/wrappers/Lib_ExecutionManagerWrapper.sol";
import { Lib_PredeployAddresses } from "../../libraries/constants/Lib_PredeployAddresses.sol";
/* Contract Imports */
import { OVM_ETH } from "../predeploys/OVM_ETH.sol";
/* External Imports */
import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol";
import { ECDSA } from "@openzeppelin/contracts/cryptography/ECDSA.sol";
/**
* @title OVM_ECDSAContractAccount
* @dev The ECDSA Contract Account can be used as the implementation for a ProxyEOA deployed by the
* ovmCREATEEOA operation. It enables backwards compatibility with Ethereum's Layer 1, by
* providing EIP155 formatted transaction encodings.
*
* Compiler used: optimistic-solc
* Runtime target: OVM
*/
contract OVM_ECDSAContractAccount is iOVM_ECDSAContractAccount {
/*************
* Libraries *
*************/
using Lib_EIP155Tx for Lib_EIP155Tx.EIP155Tx;
/*************
* Constants *
*************/
// TODO: should be the amount sufficient to cover the gas costs of all of the transactions up
// to and including the CALL/CREATE which forms the entrypoint of the transaction.
uint256 constant EXECUTION_VALIDATION_GAS_OVERHEAD = 25000;
/********************
* Public Functions *
********************/
/**
* No-op fallback mirrors behavior of calling an EOA on L1.
*/
fallback()
external
payable
{
return;
}
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(
bytes32 hash,
bytes memory signature
)
public
view
returns (
bytes4 magicValue
)
{
return ECDSA.recover(hash, signature) == address(this) ?
this.isValidSignature.selector :
bytes4(0);
}
/**
* Executes a signed transaction.
* @param _transaction Signed EIP155 transaction.
* @return Whether or not the call returned (rather than reverted).
* @return Data returned by the call.
*/
function execute(
Lib_EIP155Tx.EIP155Tx memory _transaction
)
override
public
returns (
bool,
bytes memory
)
{
// Address of this contract within the ovm (ovmADDRESS) should be the same as the
// recovered address of the user who signed this message. This is how we manage to shim
// account abstraction even though the user isn't a contract.
require(
_transaction.sender() == Lib_ExecutionManagerWrapper.ovmADDRESS(),
"Signature provided for EOA transaction execution is invalid."
);
require(
_transaction.chainId == Lib_ExecutionManagerWrapper.ovmCHAINID(),
"Transaction signed with wrong chain ID"
);
// Need to make sure that the transaction nonce is right.
require(
_transaction.nonce == Lib_ExecutionManagerWrapper.ovmGETNONCE(),
"Transaction nonce does not match the expected nonce."
);
// TEMPORARY: Disable gas checks for mainnet.
// // Need to make sure that the gas is sufficient to execute the transaction.
// require(
// gasleft() >= SafeMath.add(transaction.gasLimit, EXECUTION_VALIDATION_GAS_OVERHEAD),
// "Gas is not sufficient to execute the transaction."
// );
// Transfer fee to relayer.
require(
OVM_ETH(Lib_PredeployAddresses.OVM_ETH).transfer(
Lib_PredeployAddresses.SEQUENCER_FEE_WALLET,
SafeMath.mul(_transaction.gasLimit, _transaction.gasPrice)
),
"Fee was not transferred to relayer."
);
if (_transaction.isCreate) {
// TEMPORARY: Disable value transfer for contract creations.
require(
_transaction.value == 0,
"Value transfer in contract creation not supported."
);
(address created, bytes memory revertdata) = Lib_ExecutionManagerWrapper.ovmCREATE(
_transaction.data
);
// Return true if the contract creation succeeded, false w/ revertdata otherwise.
if (created != address(0)) {
return (true, abi.encode(created));
} else {
return (false, revertdata);
}
} else {
// We only want to bump the nonce for `ovmCALL` because `ovmCREATE` automatically bumps
// the nonce of the calling account. Normally an EOA would bump the nonce for both
// cases, but since this is a contract we'd end up bumping the nonce twice.
Lib_ExecutionManagerWrapper.ovmINCREMENTNONCE();
// NOTE: Upgrades are temporarily disabled because users can, in theory, modify their
// EOA so that they don't have to pay any fees to the sequencer. Function will remain
// disabled until a robust solution is in place.
require(
_transaction.to != Lib_ExecutionManagerWrapper.ovmADDRESS(),
"Calls to self are disabled until upgradability is re-enabled."
);
return _transaction.to.call{value: _transaction.value}(_transaction.data);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Library Imports */
import { Lib_PredeployAddresses } from "../../libraries/constants/Lib_PredeployAddresses.sol";
/* Contract Imports */
import { L2StandardERC20 } from "../../libraries/standards/L2StandardERC20.sol";
import { IWETH9 } from "../../libraries/standards/IWETH9.sol";
/**
* @title OVM_ETH
* @dev The ETH predeploy provides an ERC20 interface for ETH deposited to Layer 2. Note that
* unlike on Layer 1, Layer 2 accounts do not have a balance field.
*
* Compiler used: optimistic-solc
* Runtime target: OVM
*/
contract OVM_ETH is L2StandardERC20, IWETH9 {
/***************
* Constructor *
***************/
constructor()
L2StandardERC20(
Lib_PredeployAddresses.L2_STANDARD_BRIDGE,
address(0),
"Ether",
"ETH"
)
{}
/******************************
* Custom WETH9 Functionality *
******************************/
fallback() external payable {
deposit();
}
/**
* Implements the WETH9 deposit() function as a no-op.
* WARNING: this function does NOT have to do with cross-chain asset bridging. The relevant
* deposit and withdraw functions for that use case can be found at L2StandardBridge.sol.
* This function allows developers to treat OVM_ETH as WETH without any modifications to their
* code.
*/
function deposit()
public
payable
override
{
// Calling deposit() with nonzero value will send the ETH to this contract address.
// Once received here, we transfer it back by sending to the msg.sender.
_transfer(address(this), msg.sender, msg.value);
emit Deposit(msg.sender, msg.value);
}
/**
* Implements the WETH9 withdraw() function as a no-op.
* WARNING: this function does NOT have to do with cross-chain asset bridging. The relevant
* deposit and withdraw functions for that use case can be found at L2StandardBridge.sol.
* This function allows developers to treat OVM_ETH as WETH without any modifications to their
* code.
* @param _wad Amount being withdrawn
*/
function withdraw(
uint256 _wad
)
external
override
{
// Calling withdraw() with value exceeding the withdrawer's ovmBALANCE should revert,
// as in WETH9.
require(balanceOf(msg.sender) >= _wad);
// Other than emitting an event, OVM_ETH already is native ETH, so we don't need to do
// anything else.
emit Withdrawal(msg.sender, _wad);
}
}
// SPDX-License-Identifier: MIT
// @unsupported: ovm
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
import { Lib_AddressResolver } from "../../libraries/resolver/Lib_AddressResolver.sol";
import { Lib_Bytes32Utils } from "../../libraries/utils/Lib_Bytes32Utils.sol";
import { Lib_EthUtils } from "../../libraries/utils/Lib_EthUtils.sol";
import { Lib_ErrorUtils } from "../../libraries/utils/Lib_ErrorUtils.sol";
import { Lib_PredeployAddresses } from "../../libraries/constants/Lib_PredeployAddresses.sol";
/* Interface Imports */
import { iOVM_ExecutionManager } from "../../iOVM/execution/iOVM_ExecutionManager.sol";
import { iOVM_StateManager } from "../../iOVM/execution/iOVM_StateManager.sol";
import { iOVM_SafetyChecker } from "../../iOVM/execution/iOVM_SafetyChecker.sol";
/* Contract Imports */
import { OVM_DeployerWhitelist } from "../predeploys/OVM_DeployerWhitelist.sol";
/* External Imports */
import { Math } from "@openzeppelin/contracts/math/Math.sol";
/**
* @title OVM_ExecutionManager
* @dev The Execution Manager (EM) is the core of our OVM implementation, and provides a sandboxed
* environment allowing us to execute OVM transactions deterministically on either Layer 1 or
* Layer 2.
* The EM's run() function is the first function called during the execution of any
* transaction on L2.
* For each context-dependent EVM operation the EM has a function which implements a corresponding
* OVM operation, which will read state from the State Manager contract.
* The EM relies on the Safety Checker to verify that code deployed to Layer 2 does not contain any
* context-dependent operations.
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_ExecutionManager is iOVM_ExecutionManager, Lib_AddressResolver {
/********************************
* External Contract References *
********************************/
iOVM_SafetyChecker internal ovmSafetyChecker;
iOVM_StateManager internal ovmStateManager;
/*******************************
* Execution Context Variables *
*******************************/
GasMeterConfig internal gasMeterConfig;
GlobalContext internal globalContext;
TransactionContext internal transactionContext;
MessageContext internal messageContext;
TransactionRecord internal transactionRecord;
MessageRecord internal messageRecord;
/**************************
* Gas Metering Constants *
**************************/
address constant GAS_METADATA_ADDRESS = 0x06a506A506a506A506a506a506A506A506A506A5;
uint256 constant NUISANCE_GAS_SLOAD = 20000;
uint256 constant NUISANCE_GAS_SSTORE = 20000;
uint256 constant MIN_NUISANCE_GAS_PER_CONTRACT = 30000;
uint256 constant NUISANCE_GAS_PER_CONTRACT_BYTE = 100;
uint256 constant MIN_GAS_FOR_INVALID_STATE_ACCESS = 30000;
/**************************
* Native Value Constants *
**************************/
// Public so we can access and make assertions in integration tests.
uint256 public constant CALL_WITH_VALUE_INTRINSIC_GAS = 90000;
/**************************
* Default Context Values *
**************************/
uint256 constant DEFAULT_UINT256 =
0xdefa017defa017defa017defa017defa017defa017defa017defa017defa017d;
address constant DEFAULT_ADDRESS = 0xdEfa017defA017DeFA017DEfa017DeFA017DeFa0;
/*************************************
* Container Contract Address Prefix *
*************************************/
/**
* @dev The Execution Manager and State Manager each have this 30 byte prefix,
* and are uncallable.
*/
address constant CONTAINER_CONTRACT_PREFIX = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
/***************
* Constructor *
***************/
/**
* @param _libAddressManager Address of the Address Manager.
*/
constructor(
address _libAddressManager,
GasMeterConfig memory _gasMeterConfig,
GlobalContext memory _globalContext
)
Lib_AddressResolver(_libAddressManager)
{
ovmSafetyChecker = iOVM_SafetyChecker(resolve("OVM_SafetyChecker"));
gasMeterConfig = _gasMeterConfig;
globalContext = _globalContext;
_resetContext();
}
/**********************
* Function Modifiers *
**********************/
/**
* Applies dynamically-sized refund to a transaction to account for the difference in execution
* between L1 and L2, so that the overall cost of the ovmOPCODE is fixed.
* @param _cost Desired gas cost for the function after the refund.
*/
modifier netGasCost(
uint256 _cost
) {
uint256 gasProvided = gasleft();
_;
uint256 gasUsed = gasProvided - gasleft();
// We want to refund everything *except* the specified cost.
if (_cost < gasUsed) {
transactionRecord.ovmGasRefund += gasUsed - _cost;
}
}
/**
* Applies a fixed-size gas refund to a transaction to account for the difference in execution
* between L1 and L2, so that the overall cost of an ovmOPCODE can be lowered.
* @param _discount Amount of gas cost to refund for the ovmOPCODE.
*/
modifier fixedGasDiscount(
uint256 _discount
) {
uint256 gasProvided = gasleft();
_;
uint256 gasUsed = gasProvided - gasleft();
// We want to refund the specified _discount, unless this risks underflow.
if (_discount < gasUsed) {
transactionRecord.ovmGasRefund += _discount;
} else {
// refund all we can without risking underflow.
transactionRecord.ovmGasRefund += gasUsed;
}
}
/**
* Makes sure we're not inside a static context.
*/
modifier notStatic() {
if (messageContext.isStatic == true) {
_revertWithFlag(RevertFlag.STATIC_VIOLATION);
}
_;
}
/************************************
* Transaction Execution Entrypoint *
************************************/
/**
* Starts the execution of a transaction via the OVM_ExecutionManager.
* @param _transaction Transaction data to be executed.
* @param _ovmStateManager iOVM_StateManager implementation providing account state.
*/
function run(
Lib_OVMCodec.Transaction memory _transaction,
address _ovmStateManager
)
override
external
returns (
bytes memory
)
{
// Make sure that run() is not re-enterable. This condition should always be satisfied
// Once run has been called once, due to the behavior of _isValidInput().
if (transactionContext.ovmNUMBER != DEFAULT_UINT256) {
return bytes("");
}
// Store our OVM_StateManager instance (significantly easier than attempting to pass the
// address around in calldata).
ovmStateManager = iOVM_StateManager(_ovmStateManager);
// Make sure this function can't be called by anyone except the owner of the
// OVM_StateManager (expected to be an OVM_StateTransitioner). We can revert here because
// this would make the `run` itself invalid.
require(
// This method may return false during fraud proofs, but always returns true in
// L2 nodes' State Manager precompile.
ovmStateManager.isAuthenticated(msg.sender),
"Only authenticated addresses in ovmStateManager can call this function"
);
// Initialize the execution context, must be initialized before we perform any gas metering
// or we'll throw a nuisance gas error.
_initContext(_transaction);
// TEMPORARY: Gas metering is disabled for minnet.
// // Check whether we need to start a new epoch, do so if necessary.
// _checkNeedsNewEpoch(_transaction.timestamp);
// Make sure the transaction's gas limit is valid. We don't revert here because we reserve
// reverts for INVALID_STATE_ACCESS.
if (_isValidInput(_transaction) == false) {
_resetContext();
return bytes("");
}
// TEMPORARY: Gas metering is disabled for minnet.
// // Check gas right before the call to get total gas consumed by OVM transaction.
// uint256 gasProvided = gasleft();
// Run the transaction, make sure to meter the gas usage.
(, bytes memory returndata) = ovmCALL(
_transaction.gasLimit - gasMeterConfig.minTransactionGasLimit,
_transaction.entrypoint,
0,
_transaction.data
);
// TEMPORARY: Gas metering is disabled for minnet.
// // Update the cumulative gas based on the amount of gas used.
// uint256 gasUsed = gasProvided - gasleft();
// _updateCumulativeGas(gasUsed, _transaction.l1QueueOrigin);
// Wipe the execution context.
_resetContext();
return returndata;
}
/******************************
* Opcodes: Execution Context *
******************************/
/**
* @notice Overrides CALLER.
* @return _CALLER Address of the CALLER within the current message context.
*/
function ovmCALLER()
override
external
view
returns (
address _CALLER
)
{
return messageContext.ovmCALLER;
}
/**
* @notice Overrides ADDRESS.
* @return _ADDRESS Active ADDRESS within the current message context.
*/
function ovmADDRESS()
override
public
view
returns (
address _ADDRESS
)
{
return messageContext.ovmADDRESS;
}
/**
* @notice Overrides CALLVALUE.
* @return _CALLVALUE Value sent along with the call according to the current message context.
*/
function ovmCALLVALUE()
override
public
view
returns (
uint256 _CALLVALUE
)
{
return messageContext.ovmCALLVALUE;
}
/**
* @notice Overrides TIMESTAMP.
* @return _TIMESTAMP Value of the TIMESTAMP within the transaction context.
*/
function ovmTIMESTAMP()
override
external
view
returns (
uint256 _TIMESTAMP
)
{
return transactionContext.ovmTIMESTAMP;
}
/**
* @notice Overrides NUMBER.
* @return _NUMBER Value of the NUMBER within the transaction context.
*/
function ovmNUMBER()
override
external
view
returns (
uint256 _NUMBER
)
{
return transactionContext.ovmNUMBER;
}
/**
* @notice Overrides GASLIMIT.
* @return _GASLIMIT Value of the block's GASLIMIT within the transaction context.
*/
function ovmGASLIMIT()
override
external
view
returns (
uint256 _GASLIMIT
)
{
return transactionContext.ovmGASLIMIT;
}
/**
* @notice Overrides CHAINID.
* @return _CHAINID Value of the chain's CHAINID within the global context.
*/
function ovmCHAINID()
override
external
view
returns (
uint256 _CHAINID
)
{
return globalContext.ovmCHAINID;
}
/*********************************
* Opcodes: L2 Execution Context *
*********************************/
/**
* @notice Specifies from which source (Sequencer or Queue) this transaction originated from.
* @return _queueOrigin Enum indicating the ovmL1QUEUEORIGIN within the current message context.
*/
function ovmL1QUEUEORIGIN()
override
external
view
returns (
Lib_OVMCodec.QueueOrigin _queueOrigin
)
{
return transactionContext.ovmL1QUEUEORIGIN;
}
/**
* @notice Specifies which L1 account, if any, sent this transaction by calling enqueue().
* @return _l1TxOrigin Address of the account which sent the tx into L2 from L1.
*/
function ovmL1TXORIGIN()
override
external
view
returns (
address _l1TxOrigin
)
{
return transactionContext.ovmL1TXORIGIN;
}
/********************
* Opcodes: Halting *
********************/
/**
* @notice Overrides REVERT.
* @param _data Bytes data to pass along with the REVERT.
*/
function ovmREVERT(
bytes memory _data
)
override
public
{
_revertWithFlag(RevertFlag.INTENTIONAL_REVERT, _data);
}
/******************************
* Opcodes: Contract Creation *
******************************/
/**
* @notice Overrides CREATE.
* @param _bytecode Code to be used to CREATE a new contract.
* @return Address of the created contract.
* @return Revert data, if and only if the creation threw an exception.
*/
function ovmCREATE(
bytes memory _bytecode
)
override
public
notStatic
fixedGasDiscount(40000)
returns (
address,
bytes memory
)
{
// Creator is always the current ADDRESS.
address creator = ovmADDRESS();
// Check that the deployer is whitelisted, or
// that arbitrary contract deployment has been enabled.
_checkDeployerAllowed(creator);
// Generate the correct CREATE address.
address contractAddress = Lib_EthUtils.getAddressForCREATE(
creator,
_getAccountNonce(creator)
);
return _createContract(
contractAddress,
_bytecode,
MessageType.ovmCREATE
);
}
/**
* @notice Overrides CREATE2.
* @param _bytecode Code to be used to CREATE2 a new contract.
* @param _salt Value used to determine the contract's address.
* @return Address of the created contract.
* @return Revert data, if and only if the creation threw an exception.
*/
function ovmCREATE2(
bytes memory _bytecode,
bytes32 _salt
)
override
external
notStatic
fixedGasDiscount(40000)
returns (
address,
bytes memory
)
{
// Creator is always the current ADDRESS.
address creator = ovmADDRESS();
// Check that the deployer is whitelisted, or
// that arbitrary contract deployment has been enabled.
_checkDeployerAllowed(creator);
// Generate the correct CREATE2 address.
address contractAddress = Lib_EthUtils.getAddressForCREATE2(
creator,
_bytecode,
_salt
);
return _createContract(
contractAddress,
_bytecode,
MessageType.ovmCREATE2
);
}
/*******************************
* Account Abstraction Opcodes *
******************************/
/**
* Retrieves the nonce of the current ovmADDRESS.
* @return _nonce Nonce of the current contract.
*/
function ovmGETNONCE()
override
external
returns (
uint256 _nonce
)
{
return _getAccountNonce(ovmADDRESS());
}
/**
* Bumps the nonce of the current ovmADDRESS by one.
*/
function ovmINCREMENTNONCE()
override
external
notStatic
{
address account = ovmADDRESS();
uint256 nonce = _getAccountNonce(account);
// Prevent overflow.
if (nonce + 1 > nonce) {
_setAccountNonce(account, nonce + 1);
}
}
/**
* Creates a new EOA contract account, for account abstraction.
* @dev Essentially functions like ovmCREATE or ovmCREATE2, but we can bypass a lot of checks
* because the contract we're creating is trusted (no need to do safety checking or to
* handle unexpected reverts). Doesn't need to return an address because the address is
* assumed to be the user's actual address.
* @param _messageHash Hash of a message signed by some user, for verification.
* @param _v Signature `v` parameter.
* @param _r Signature `r` parameter.
* @param _s Signature `s` parameter.
*/
function ovmCREATEEOA(
bytes32 _messageHash,
uint8 _v,
bytes32 _r,
bytes32 _s
)
override
public
notStatic
{
// Recover the EOA address from the message hash and signature parameters. Since we do the
// hashing in advance, we don't have handle different message hashing schemes. Even if this
// function were to return the wrong address (rather than explicitly returning the zero
// address), the rest of the transaction would simply fail (since there's no EOA account to
// actually execute the transaction).
address eoa = ecrecover(
_messageHash,
_v + 27,
_r,
_s
);
// Invalid signature is a case we proactively handle with a revert. We could alternatively
// have this function return a `success` boolean, but this is just easier.
if (eoa == address(0)) {
ovmREVERT(bytes("Signature provided for EOA contract creation is invalid."));
}
// If the user already has an EOA account, then there's no need to perform this operation.
if (_hasEmptyAccount(eoa) == false) {
return;
}
// We always need to initialize the contract with the default account values.
_initPendingAccount(eoa);
// Temporarily set the current address so it's easier to access on L2.
address prevADDRESS = messageContext.ovmADDRESS;
messageContext.ovmADDRESS = eoa;
// Creates a duplicate of the OVM_ProxyEOA located at 0x42....09. Uses the following
// "magic" prefix to deploy an exact copy of the code:
// PUSH1 0x0D # size of this prefix in bytes
// CODESIZE
// SUB # subtract prefix size from codesize
// DUP1
// PUSH1 0x0D
// PUSH1 0x00
// CODECOPY # copy everything after prefix into memory at pos 0
// PUSH1 0x00
// RETURN # return the copied code
address proxyEOA = Lib_EthUtils.createContract(abi.encodePacked(
hex"600D380380600D6000396000f3",
ovmEXTCODECOPY(
Lib_PredeployAddresses.PROXY_EOA,
0,
ovmEXTCODESIZE(Lib_PredeployAddresses.PROXY_EOA)
)
));
// Reset the address now that we're done deploying.
messageContext.ovmADDRESS = prevADDRESS;
// Commit the account with its final values.
_commitPendingAccount(
eoa,
address(proxyEOA),
keccak256(Lib_EthUtils.getCode(address(proxyEOA)))
);
_setAccountNonce(eoa, 0);
}
/*********************************
* Opcodes: Contract Interaction *
*********************************/
/**
* @notice Overrides CALL.
* @param _gasLimit Amount of gas to be passed into this call.
* @param _address Address of the contract to call.
* @param _value ETH value to pass with the call.
* @param _calldata Data to send along with the call.
* @return _success Whether or not the call returned (rather than reverted).
* @return _returndata Data returned by the call.
*/
function ovmCALL(
uint256 _gasLimit,
address _address,
uint256 _value,
bytes memory _calldata
)
override
public
fixedGasDiscount(100000)
returns (
bool _success,
bytes memory _returndata
)
{
// CALL updates the CALLER and ADDRESS.
MessageContext memory nextMessageContext = messageContext;
nextMessageContext.ovmCALLER = nextMessageContext.ovmADDRESS;
nextMessageContext.ovmADDRESS = _address;
nextMessageContext.ovmCALLVALUE = _value;
return _callContract(
nextMessageContext,
_gasLimit,
_address,
_calldata,
MessageType.ovmCALL
);
}
/**
* @notice Overrides STATICCALL.
* @param _gasLimit Amount of gas to be passed into this call.
* @param _address Address of the contract to call.
* @param _calldata Data to send along with the call.
* @return _success Whether or not the call returned (rather than reverted).
* @return _returndata Data returned by the call.
*/
function ovmSTATICCALL(
uint256 _gasLimit,
address _address,
bytes memory _calldata
)
override
public
fixedGasDiscount(80000)
returns (
bool _success,
bytes memory _returndata
)
{
// STATICCALL updates the CALLER, updates the ADDRESS, and runs in a static,
// valueless context.
MessageContext memory nextMessageContext = messageContext;
nextMessageContext.ovmCALLER = nextMessageContext.ovmADDRESS;
nextMessageContext.ovmADDRESS = _address;
nextMessageContext.isStatic = true;
nextMessageContext.ovmCALLVALUE = 0;
return _callContract(
nextMessageContext,
_gasLimit,
_address,
_calldata,
MessageType.ovmSTATICCALL
);
}
/**
* @notice Overrides DELEGATECALL.
* @param _gasLimit Amount of gas to be passed into this call.
* @param _address Address of the contract to call.
* @param _calldata Data to send along with the call.
* @return _success Whether or not the call returned (rather than reverted).
* @return _returndata Data returned by the call.
*/
function ovmDELEGATECALL(
uint256 _gasLimit,
address _address,
bytes memory _calldata
)
override
public
fixedGasDiscount(40000)
returns (
bool _success,
bytes memory _returndata
)
{
// DELEGATECALL does not change anything about the message context.
MessageContext memory nextMessageContext = messageContext;
return _callContract(
nextMessageContext,
_gasLimit,
_address,
_calldata,
MessageType.ovmDELEGATECALL
);
}
/**
* @notice Legacy ovmCALL function which did not support ETH value; this maintains backwards
* compatibility.
* @param _gasLimit Amount of gas to be passed into this call.
* @param _address Address of the contract to call.
* @param _calldata Data to send along with the call.
* @return _success Whether or not the call returned (rather than reverted).
* @return _returndata Data returned by the call.
*/
function ovmCALL(
uint256 _gasLimit,
address _address,
bytes memory _calldata
)
override
public
returns(
bool _success,
bytes memory _returndata
)
{
// Legacy ovmCALL assumed always-0 value.
return ovmCALL(
_gasLimit,
_address,
0,
_calldata
);
}
/************************************
* Opcodes: Contract Storage Access *
************************************/
/**
* @notice Overrides SLOAD.
* @param _key 32 byte key of the storage slot to load.
* @return _value 32 byte value of the requested storage slot.
*/
function ovmSLOAD(
bytes32 _key
)
override
external
netGasCost(40000)
returns (
bytes32 _value
)
{
// We always SLOAD from the storage of ADDRESS.
address contractAddress = ovmADDRESS();
return _getContractStorage(
contractAddress,
_key
);
}
/**
* @notice Overrides SSTORE.
* @param _key 32 byte key of the storage slot to set.
* @param _value 32 byte value for the storage slot.
*/
function ovmSSTORE(
bytes32 _key,
bytes32 _value
)
override
external
notStatic
netGasCost(60000)
{
// We always SSTORE to the storage of ADDRESS.
address contractAddress = ovmADDRESS();
_putContractStorage(
contractAddress,
_key,
_value
);
}
/*********************************
* Opcodes: Contract Code Access *
*********************************/
/**
* @notice Overrides EXTCODECOPY.
* @param _contract Address of the contract to copy code from.
* @param _offset Offset in bytes from the start of contract code to copy beyond.
* @param _length Total number of bytes to copy from the contract's code.
* @return _code Bytes of code copied from the requested contract.
*/
function ovmEXTCODECOPY(
address _contract,
uint256 _offset,
uint256 _length
)
override
public
returns (
bytes memory _code
)
{
return Lib_EthUtils.getCode(
_getAccountEthAddress(_contract),
_offset,
_length
);
}
/**
* @notice Overrides EXTCODESIZE.
* @param _contract Address of the contract to query the size of.
* @return _EXTCODESIZE Size of the requested contract in bytes.
*/
function ovmEXTCODESIZE(
address _contract
)
override
public
returns (
uint256 _EXTCODESIZE
)
{
return Lib_EthUtils.getCodeSize(
_getAccountEthAddress(_contract)
);
}
/**
* @notice Overrides EXTCODEHASH.
* @param _contract Address of the contract to query the hash of.
* @return _EXTCODEHASH Hash of the requested contract.
*/
function ovmEXTCODEHASH(
address _contract
)
override
external
returns (
bytes32 _EXTCODEHASH
)
{
return Lib_EthUtils.getCodeHash(
_getAccountEthAddress(_contract)
);
}
/***************************************
* Public Functions: ETH Value Opcodes *
***************************************/
/**
* @notice Overrides BALANCE.
* NOTE: In the future, this could be optimized to directly invoke EM._getContractStorage(...).
* @param _contract Address of the contract to query the OVM_ETH balance of.
* @return _BALANCE OVM_ETH balance of the requested contract.
*/
function ovmBALANCE(
address _contract
)
override
public
returns (
uint256 _BALANCE
)
{
// Easiest way to get the balance is query OVM_ETH as normal.
bytes memory balanceOfCalldata = abi.encodeWithSignature(
"balanceOf(address)",
_contract
);
// Static call because this should be a read-only query.
(bool success, bytes memory returndata) = ovmSTATICCALL(
gasleft(),
Lib_PredeployAddresses.OVM_ETH,
balanceOfCalldata
);
// All balanceOf queries should successfully return a uint, otherwise this must be an OOG.
if (!success || returndata.length != 32) {
_revertWithFlag(RevertFlag.OUT_OF_GAS);
}
// Return the decoded balance.
return abi.decode(returndata, (uint256));
}
/**
* @notice Overrides SELFBALANCE.
* @return _BALANCE OVM_ETH balance of the requesting contract.
*/
function ovmSELFBALANCE()
override
external
returns (
uint256 _BALANCE
)
{
return ovmBALANCE(ovmADDRESS());
}
/***************************************
* Public Functions: Execution Context *
***************************************/
function getMaxTransactionGasLimit()
external
view
override
returns (
uint256 _maxTransactionGasLimit
)
{
return gasMeterConfig.maxTransactionGasLimit;
}
/********************************************
* Public Functions: Deployment Whitelisting *
********************************************/
/**
* Checks whether the given address is on the whitelist to ovmCREATE/ovmCREATE2,
* and reverts if not.
* @param _deployerAddress Address attempting to deploy a contract.
*/
function _checkDeployerAllowed(
address _deployerAddress
)
internal
{
// From an OVM semantics perspective, this will appear identical to
// the deployer ovmCALLing the whitelist. This is fine--in a sense, we are forcing them to.
(bool success, bytes memory data) = ovmSTATICCALL(
gasleft(),
Lib_PredeployAddresses.DEPLOYER_WHITELIST,
abi.encodeWithSelector(
OVM_DeployerWhitelist.isDeployerAllowed.selector,
_deployerAddress
)
);
bool isAllowed = abi.decode(data, (bool));
if (!isAllowed || !success) {
_revertWithFlag(RevertFlag.CREATOR_NOT_ALLOWED);
}
}
/********************************************
* Internal Functions: Contract Interaction *
********************************************/
/**
* Creates a new contract and associates it with some contract address.
* @param _contractAddress Address to associate the created contract with.
* @param _bytecode Bytecode to be used to create the contract.
* @return Final OVM contract address.
* @return Revertdata, if and only if the creation threw an exception.
*/
function _createContract(
address _contractAddress,
bytes memory _bytecode,
MessageType _messageType
)
internal
returns (
address,
bytes memory
)
{
// We always update the nonce of the creating account, even if the creation fails.
_setAccountNonce(ovmADDRESS(), _getAccountNonce(ovmADDRESS()) + 1);
// We're stepping into a CREATE or CREATE2, so we need to update ADDRESS to point
// to the contract's associated address and CALLER to point to the previous ADDRESS.
MessageContext memory nextMessageContext = messageContext;
nextMessageContext.ovmCALLER = messageContext.ovmADDRESS;
nextMessageContext.ovmADDRESS = _contractAddress;
// Run the common logic which occurs between call-type and create-type messages,
// passing in the creation bytecode and `true` to trigger create-specific logic.
(bool success, bytes memory data) = _handleExternalMessage(
nextMessageContext,
gasleft(),
_contractAddress,
_bytecode,
_messageType
);
// Yellow paper requires that address returned is zero if the contract deployment fails.
return (
success ? _contractAddress : address(0),
data
);
}
/**
* Calls the deployed contract associated with a given address.
* @param _nextMessageContext Message context to be used for the call.
* @param _gasLimit Amount of gas to be passed into this call.
* @param _contract OVM address to be called.
* @param _calldata Data to send along with the call.
* @return _success Whether or not the call returned (rather than reverted).
* @return _returndata Data returned by the call.
*/
function _callContract(
MessageContext memory _nextMessageContext,
uint256 _gasLimit,
address _contract,
bytes memory _calldata,
MessageType _messageType
)
internal
returns (
bool _success,
bytes memory _returndata
)
{
// We reserve addresses of the form 0xdeaddeaddead...NNNN for the container contracts in L2
// geth. So, we block calls to these addresses since they are not safe to run as an OVM
// contract itself.
if (
(uint256(_contract) &
uint256(0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0000))
== uint256(CONTAINER_CONTRACT_PREFIX)
) {
// solhint-disable-next-line max-line-length
// EVM does not return data in the success case, see: https://github.com/ethereum/go-ethereum/blob/aae7660410f0ef90279e14afaaf2f429fdc2a186/core/vm/instructions.go#L600-L604
return (true, hex'');
}
// Both 0x0000... and the EVM precompiles have the same address on L1 and L2 -->
// no trie lookup needed.
address codeContractAddress =
uint(_contract) < 100
? _contract
: _getAccountEthAddress(_contract);
return _handleExternalMessage(
_nextMessageContext,
_gasLimit,
codeContractAddress,
_calldata,
_messageType
);
}
/**
* Handles all interactions which involve the execution manager calling out to untrusted code
* (both calls and creates). Ensures that OVM-related measures are enforced, including L2 gas
* refunds, nuisance gas, and flagged reversions.
*
* @param _nextMessageContext Message context to be used for the external message.
* @param _gasLimit Amount of gas to be passed into this message. NOTE: this argument is
* overwritten in some cases to avoid stack-too-deep.
* @param _contract OVM address being called or deployed to
* @param _data Data for the message (either calldata or creation code)
* @param _messageType What type of ovmOPCODE this message corresponds to.
* @return Whether or not the message (either a call or deployment) succeeded.
* @return Data returned by the message.
*/
function _handleExternalMessage(
MessageContext memory _nextMessageContext,
// NOTE: this argument is overwritten in some cases to avoid stack-too-deep.
uint256 _gasLimit,
address _contract,
bytes memory _data,
MessageType _messageType
)
internal
returns (
bool,
bytes memory
)
{
uint256 messageValue = _nextMessageContext.ovmCALLVALUE;
// If there is value in this message, we need to transfer the ETH over before switching
// contexts.
if (
messageValue > 0
&& _isValueType(_messageType)
) {
// Handle out-of-intrinsic gas consistent with EVM behavior -- the subcall "appears to
// revert" if we don't have enough gas to transfer the ETH.
// Similar to dynamic gas cost of value exceeding gas here:
// solhint-disable-next-line max-line-length
// https://github.com/ethereum/go-ethereum/blob/c503f98f6d5e80e079c1d8a3601d188af2a899da/core/vm/interpreter.go#L268-L273
if (gasleft() < CALL_WITH_VALUE_INTRINSIC_GAS) {
return (false, hex"");
}
// If there *is* enough gas to transfer ETH, then we need to make sure this amount of
// gas is reserved (i.e. not given to the _contract.call below) to guarantee that
// _handleExternalMessage can't run out of gas. In particular, in the event that
// the call fails, we will need to transfer the ETH back to the sender.
// Taking the lesser of _gasLimit and gasleft() - CALL_WITH_VALUE_INTRINSIC_GAS
// guarantees that the second _attemptForcedEthTransfer below, if needed, always has
// enough gas to succeed.
_gasLimit = Math.min(
_gasLimit,
gasleft() - CALL_WITH_VALUE_INTRINSIC_GAS // Cannot overflow due to the above check.
);
// Now transfer the value of the call.
// The target is interpreted to be the next message's ovmADDRESS account.
bool transferredOvmEth = _attemptForcedEthTransfer(
_nextMessageContext.ovmADDRESS,
messageValue
);
// If the ETH transfer fails (should only be possible in the case of insufficient
// balance), then treat this as a revert. This mirrors EVM behavior, see
// solhint-disable-next-line max-line-length
// https://github.com/ethereum/go-ethereum/blob/2dee31930c9977af2a9fcb518fb9838aa609a7cf/core/vm/evm.go#L298
if (!transferredOvmEth) {
return (false, hex"");
}
}
// We need to switch over to our next message context for the duration of this call.
MessageContext memory prevMessageContext = messageContext;
_switchMessageContext(prevMessageContext, _nextMessageContext);
// Nuisance gas is a system used to bound the ability for an attacker to make fraud proofs
// expensive by touching a lot of different accounts or storage slots. Since most contracts
// only use a few storage slots during any given transaction, this shouldn't be a limiting
// factor.
uint256 prevNuisanceGasLeft = messageRecord.nuisanceGasLeft;
uint256 nuisanceGasLimit = _getNuisanceGasLimit(_gasLimit);
messageRecord.nuisanceGasLeft = nuisanceGasLimit;
// Make the call and make sure to pass in the gas limit. Another instance of hidden
// complexity. `_contract` is guaranteed to be a safe contract, meaning its return/revert
// behavior can be controlled. In particular, we enforce that flags are passed through
// revert data as to retrieve execution metadata that would normally be reverted out of
// existence.
bool success;
bytes memory returndata;
if (_isCreateType(_messageType)) {
// safeCREATE() is a function which replicates a CREATE message, but uses return values
// Which match that of CALL (i.e. bool, bytes). This allows many security checks to be
// to be shared between untrusted call and create call frames.
(success, returndata) = address(this).call{gas: _gasLimit}(
abi.encodeWithSelector(
this.safeCREATE.selector,
_data,
_contract
)
);
} else {
(success, returndata) = _contract.call{gas: _gasLimit}(_data);
}
// If the message threw an exception, its value should be returned back to the sender.
// So, we force it back, BEFORE returning the messageContext to the previous addresses.
// This operation is part of the reason we "reserved the intrinsic gas" above.
if (
messageValue > 0
&& _isValueType(_messageType)
&& !success
) {
bool transferredOvmEth = _attemptForcedEthTransfer(
prevMessageContext.ovmADDRESS,
messageValue
);
// Since we transferred it in above and the call reverted, the transfer back should
// always pass. This code path should NEVER be triggered since we sent `messageValue`
// worth of OVM_ETH into the target and reserved sufficient gas to execute the transfer,
// but in case there is some edge case which has been missed, we revert the entire frame
// (and its parent) to make sure the ETH gets sent back.
if (!transferredOvmEth) {
_revertWithFlag(RevertFlag.OUT_OF_GAS);
}
}
// Switch back to the original message context now that we're out of the call and all
// OVM_ETH is in the right place.
_switchMessageContext(_nextMessageContext, prevMessageContext);
// Assuming there were no reverts, the message record should be accurate here. We'll update
// this value in the case of a revert.
uint256 nuisanceGasLeft = messageRecord.nuisanceGasLeft;
// Reverts at this point are completely OK, but we need to make a few updates based on the
// information passed through the revert.
if (success == false) {
(
RevertFlag flag,
uint256 nuisanceGasLeftPostRevert,
uint256 ovmGasRefund,
bytes memory returndataFromFlag
) = _decodeRevertData(returndata);
// INVALID_STATE_ACCESS is the only flag that triggers an immediate abort of the
// parent EVM message. This behavior is necessary because INVALID_STATE_ACCESS must
// halt any further transaction execution that could impact the execution result.
if (flag == RevertFlag.INVALID_STATE_ACCESS) {
_revertWithFlag(flag);
}
// INTENTIONAL_REVERT, UNSAFE_BYTECODE, STATIC_VIOLATION, and CREATOR_NOT_ALLOWED aren't
// dependent on the input state, so we can just handle them like standard reverts.
// Our only change here is to record the gas refund reported by the call (enforced by
// safety checking).
if (
flag == RevertFlag.INTENTIONAL_REVERT
|| flag == RevertFlag.UNSAFE_BYTECODE
|| flag == RevertFlag.STATIC_VIOLATION
|| flag == RevertFlag.CREATOR_NOT_ALLOWED
) {
transactionRecord.ovmGasRefund = ovmGasRefund;
}
// INTENTIONAL_REVERT needs to pass up the user-provided return data encoded into the
// flag, *not* the full encoded flag. Additionally, we surface custom error messages
// to developers in the case of unsafe creations for improved devex.
// All other revert types return no data.
if (
flag == RevertFlag.INTENTIONAL_REVERT
|| flag == RevertFlag.UNSAFE_BYTECODE
) {
returndata = returndataFromFlag;
} else {
returndata = hex'';
}
// Reverts mean we need to use up whatever "nuisance gas" was used by the call.
// EXCEEDS_NUISANCE_GAS explicitly reduces the remaining nuisance gas for this message
// to zero. OUT_OF_GAS is a "pseudo" flag given that messages return no data when they
// run out of gas, so we have to treat this like EXCEEDS_NUISANCE_GAS. All other flags
// will simply pass up the remaining nuisance gas.
nuisanceGasLeft = nuisanceGasLeftPostRevert;
}
// We need to reset the nuisance gas back to its original value minus the amount used here.
messageRecord.nuisanceGasLeft = prevNuisanceGasLeft - (nuisanceGasLimit - nuisanceGasLeft);
return (
success,
returndata
);
}
/**
* Handles the creation-specific safety measures required for OVM contract deployment.
* This function sanitizes the return types for creation messages to match calls (bool, bytes),
* by being an external function which the EM can call, that mimics the success/fail case of the
* CREATE.
* This allows for consistent handling of both types of messages in _handleExternalMessage().
* Having this step occur as a separate call frame also allows us to easily revert the
* contract deployment in the event that the code is unsafe.
*
* @param _creationCode Code to pass into CREATE for deployment.
* @param _address OVM address being deployed to.
*/
function safeCREATE(
bytes memory _creationCode,
address _address
)
external
{
// The only way this should callable is from within _createContract(),
// and it should DEFINITELY not be callable by a non-EM code contract.
if (msg.sender != address(this)) {
return;
}
// Check that there is not already code at this address.
if (_hasEmptyAccount(_address) == false) {
// Note: in the EVM, this case burns all allotted gas. For improved
// developer experience, we do return the remaining gas.
_revertWithFlag(
RevertFlag.CREATE_COLLISION
);
}
// Check the creation bytecode against the OVM_SafetyChecker.
if (ovmSafetyChecker.isBytecodeSafe(_creationCode) == false) {
// Note: in the EVM, this case burns all allotted gas. For improved
// developer experience, we do return the remaining gas.
_revertWithFlag(
RevertFlag.UNSAFE_BYTECODE,
// solhint-disable-next-line max-line-length
Lib_ErrorUtils.encodeRevertString("Contract creation code contains unsafe opcodes. Did you use the right compiler or pass an unsafe constructor argument?")
);
}
// We always need to initialize the contract with the default account values.
_initPendingAccount(_address);
// Actually execute the EVM create message.
// NOTE: The inline assembly below means we can NOT make any evm calls between here and then
address ethAddress = Lib_EthUtils.createContract(_creationCode);
if (ethAddress == address(0)) {
// If the creation fails, the EVM lets us grab its revert data. This may contain a
// revert flag to be used above in _handleExternalMessage, so we pass the revert data
// back up unmodified.
assembly {
returndatacopy(0,0,returndatasize())
revert(0, returndatasize())
}
}
// Again simply checking that the deployed code is safe too. Contracts can generate
// arbitrary deployment code, so there's no easy way to analyze this beforehand.
bytes memory deployedCode = Lib_EthUtils.getCode(ethAddress);
if (ovmSafetyChecker.isBytecodeSafe(deployedCode) == false) {
_revertWithFlag(
RevertFlag.UNSAFE_BYTECODE,
// solhint-disable-next-line max-line-length
Lib_ErrorUtils.encodeRevertString("Constructor attempted to deploy unsafe bytecode.")
);
}
// Contract creation didn't need to be reverted and the bytecode is safe. We finish up by
// associating the desired address with the newly created contract's code hash and address.
_commitPendingAccount(
_address,
ethAddress,
Lib_EthUtils.getCodeHash(ethAddress)
);
}
/******************************************
* Internal Functions: Value Manipulation *
******************************************/
/**
* Invokes an ovmCALL to OVM_ETH.transfer on behalf of the current ovmADDRESS, allowing us to
* force movement of OVM_ETH in correspondence with ETH's native value functionality.
* WARNING: this will send on behalf of whatever the messageContext.ovmADDRESS is in storage
* at the time of the call.
* NOTE: In the future, this could be optimized to directly invoke EM._setContractStorage(...).
* @param _to Amount of OVM_ETH to be sent.
* @param _value Amount of OVM_ETH to send.
* @return _success Whether or not the transfer worked.
*/
function _attemptForcedEthTransfer(
address _to,
uint256 _value
)
internal
returns(
bool _success
)
{
bytes memory transferCalldata = abi.encodeWithSignature(
"transfer(address,uint256)",
_to,
_value
);
// OVM_ETH inherits from the UniswapV2ERC20 standard. In this implementation, its return
// type is a boolean. However, the implementation always returns true if it does not revert
// Thus, success of the call frame is sufficient to infer success of the transfer itself.
(bool success, ) = ovmCALL(
gasleft(),
Lib_PredeployAddresses.OVM_ETH,
0,
transferCalldata
);
return success;
}
/******************************************
* Internal Functions: State Manipulation *
******************************************/
/**
* Checks whether an account exists within the OVM_StateManager.
* @param _address Address of the account to check.
* @return _exists Whether or not the account exists.
*/
function _hasAccount(
address _address
)
internal
returns (
bool _exists
)
{
_checkAccountLoad(_address);
return ovmStateManager.hasAccount(_address);
}
/**
* Checks whether a known empty account exists within the OVM_StateManager.
* @param _address Address of the account to check.
* @return _exists Whether or not the account empty exists.
*/
function _hasEmptyAccount(
address _address
)
internal
returns (
bool _exists
)
{
_checkAccountLoad(_address);
return ovmStateManager.hasEmptyAccount(_address);
}
/**
* Sets the nonce of an account.
* @param _address Address of the account to modify.
* @param _nonce New account nonce.
*/
function _setAccountNonce(
address _address,
uint256 _nonce
)
internal
{
_checkAccountChange(_address);
ovmStateManager.setAccountNonce(_address, _nonce);
}
/**
* Gets the nonce of an account.
* @param _address Address of the account to access.
* @return _nonce Nonce of the account.
*/
function _getAccountNonce(
address _address
)
internal
returns (
uint256 _nonce
)
{
_checkAccountLoad(_address);
return ovmStateManager.getAccountNonce(_address);
}
/**
* Retrieves the Ethereum address of an account.
* @param _address Address of the account to access.
* @return _ethAddress Corresponding Ethereum address.
*/
function _getAccountEthAddress(
address _address
)
internal
returns (
address _ethAddress
)
{
_checkAccountLoad(_address);
return ovmStateManager.getAccountEthAddress(_address);
}
/**
* Creates the default account object for the given address.
* @param _address Address of the account create.
*/
function _initPendingAccount(
address _address
)
internal
{
// Although it seems like `_checkAccountChange` would be more appropriate here, we don't
// actually consider an account "changed" until it's inserted into the state (in this case
// by `_commitPendingAccount`).
_checkAccountLoad(_address);
ovmStateManager.initPendingAccount(_address);
}
/**
* Stores additional relevant data for a new account, thereby "committing" it to the state.
* This function is only called during `ovmCREATE` and `ovmCREATE2` after a successful contract
* creation.
* @param _address Address of the account to commit.
* @param _ethAddress Address of the associated deployed contract.
* @param _codeHash Hash of the code stored at the address.
*/
function _commitPendingAccount(
address _address,
address _ethAddress,
bytes32 _codeHash
)
internal
{
_checkAccountChange(_address);
ovmStateManager.commitPendingAccount(
_address,
_ethAddress,
_codeHash
);
}
/**
* Retrieves the value of a storage slot.
* @param _contract Address of the contract to query.
* @param _key 32 byte key of the storage slot.
* @return _value 32 byte storage slot value.
*/
function _getContractStorage(
address _contract,
bytes32 _key
)
internal
returns (
bytes32 _value
)
{
_checkContractStorageLoad(_contract, _key);
return ovmStateManager.getContractStorage(_contract, _key);
}
/**
* Sets the value of a storage slot.
* @param _contract Address of the contract to modify.
* @param _key 32 byte key of the storage slot.
* @param _value 32 byte storage slot value.
*/
function _putContractStorage(
address _contract,
bytes32 _key,
bytes32 _value
)
internal
{
// We don't set storage if the value didn't change. Although this acts as a convenient
// optimization, it's also necessary to avoid the case in which a contract with no storage
// attempts to store the value "0" at any key. Putting this value (and therefore requiring
// that the value be committed into the storage trie after execution) would incorrectly
// modify the storage root.
if (_getContractStorage(_contract, _key) == _value) {
return;
}
_checkContractStorageChange(_contract, _key);
ovmStateManager.putContractStorage(_contract, _key, _value);
}
/**
* Validation whenever a contract needs to be loaded. Checks that the account exists, charges
* nuisance gas if the account hasn't been loaded before.
* @param _address Address of the account to load.
*/
function _checkAccountLoad(
address _address
)
internal
{
// See `_checkContractStorageLoad` for more information.
if (gasleft() < MIN_GAS_FOR_INVALID_STATE_ACCESS) {
_revertWithFlag(RevertFlag.OUT_OF_GAS);
}
// See `_checkContractStorageLoad` for more information.
if (ovmStateManager.hasAccount(_address) == false) {
_revertWithFlag(RevertFlag.INVALID_STATE_ACCESS);
}
// Check whether the account has been loaded before and mark it as loaded if not. We need
// this because "nuisance gas" only applies to the first time that an account is loaded.
(
bool _wasAccountAlreadyLoaded
) = ovmStateManager.testAndSetAccountLoaded(_address);
// If we hadn't already loaded the account, then we'll need to charge "nuisance gas" based
// on the size of the contract code.
if (_wasAccountAlreadyLoaded == false) {
_useNuisanceGas(
(Lib_EthUtils.getCodeSize(_getAccountEthAddress(_address))
* NUISANCE_GAS_PER_CONTRACT_BYTE) + MIN_NUISANCE_GAS_PER_CONTRACT
);
}
}
/**
* Validation whenever a contract needs to be changed. Checks that the account exists, charges
* nuisance gas if the account hasn't been changed before.
* @param _address Address of the account to change.
*/
function _checkAccountChange(
address _address
)
internal
{
// Start by checking for a load as we only want to charge nuisance gas proportional to
// contract size once.
_checkAccountLoad(_address);
// Check whether the account has been changed before and mark it as changed if not. We need
// this because "nuisance gas" only applies to the first time that an account is changed.
(
bool _wasAccountAlreadyChanged
) = ovmStateManager.testAndSetAccountChanged(_address);
// If we hadn't already loaded the account, then we'll need to charge "nuisance gas" based
// on the size of the contract code.
if (_wasAccountAlreadyChanged == false) {
ovmStateManager.incrementTotalUncommittedAccounts();
_useNuisanceGas(
(Lib_EthUtils.getCodeSize(_getAccountEthAddress(_address))
* NUISANCE_GAS_PER_CONTRACT_BYTE) + MIN_NUISANCE_GAS_PER_CONTRACT
);
}
}
/**
* Validation whenever a slot needs to be loaded. Checks that the account exists, charges
* nuisance gas if the slot hasn't been loaded before.
* @param _contract Address of the account to load from.
* @param _key 32 byte key to load.
*/
function _checkContractStorageLoad(
address _contract,
bytes32 _key
)
internal
{
// Another case of hidden complexity. If we didn't enforce this requirement, then a
// contract could pass in just enough gas to cause the INVALID_STATE_ACCESS check to fail
// on L1 but not on L2. A contract could use this behavior to prevent the
// OVM_ExecutionManager from detecting an invalid state access. Reverting with OUT_OF_GAS
// allows us to also charge for the full message nuisance gas, because you deserve that for
// trying to break the contract in this way.
if (gasleft() < MIN_GAS_FOR_INVALID_STATE_ACCESS) {
_revertWithFlag(RevertFlag.OUT_OF_GAS);
}
// We need to make sure that the transaction isn't trying to access storage that hasn't
// been provided to the OVM_StateManager. We'll immediately abort if this is the case.
// We know that we have enough gas to do this check because of the above test.
if (ovmStateManager.hasContractStorage(_contract, _key) == false) {
_revertWithFlag(RevertFlag.INVALID_STATE_ACCESS);
}
// Check whether the slot has been loaded before and mark it as loaded if not. We need
// this because "nuisance gas" only applies to the first time that a slot is loaded.
(
bool _wasContractStorageAlreadyLoaded
) = ovmStateManager.testAndSetContractStorageLoaded(_contract, _key);
// If we hadn't already loaded the account, then we'll need to charge some fixed amount of
// "nuisance gas".
if (_wasContractStorageAlreadyLoaded == false) {
_useNuisanceGas(NUISANCE_GAS_SLOAD);
}
}
/**
* Validation whenever a slot needs to be changed. Checks that the account exists, charges
* nuisance gas if the slot hasn't been changed before.
* @param _contract Address of the account to change.
* @param _key 32 byte key to change.
*/
function _checkContractStorageChange(
address _contract,
bytes32 _key
)
internal
{
// Start by checking for load to make sure we have the storage slot and that we charge the
// "nuisance gas" necessary to prove the storage slot state.
_checkContractStorageLoad(_contract, _key);
// Check whether the slot has been changed before and mark it as changed if not. We need
// this because "nuisance gas" only applies to the first time that a slot is changed.
(
bool _wasContractStorageAlreadyChanged
) = ovmStateManager.testAndSetContractStorageChanged(_contract, _key);
// If we hadn't already changed the account, then we'll need to charge some fixed amount of
// "nuisance gas".
if (_wasContractStorageAlreadyChanged == false) {
// Changing a storage slot means that we're also going to have to change the
// corresponding account, so do an account change check.
_checkAccountChange(_contract);
ovmStateManager.incrementTotalUncommittedContractStorage();
_useNuisanceGas(NUISANCE_GAS_SSTORE);
}
}
/************************************
* Internal Functions: Revert Logic *
************************************/
/**
* Simple encoding for revert data.
* @param _flag Flag to revert with.
* @param _data Additional user-provided revert data.
* @return _revertdata Encoded revert data.
*/
function _encodeRevertData(
RevertFlag _flag,
bytes memory _data
)
internal
view
returns (
bytes memory _revertdata
)
{
// Out of gas and create exceptions will fundamentally return no data, so simulating it
// shouldn't either.
if (
_flag == RevertFlag.OUT_OF_GAS
) {
return bytes("");
}
// INVALID_STATE_ACCESS doesn't need to return any data other than the flag.
if (_flag == RevertFlag.INVALID_STATE_ACCESS) {
return abi.encode(
_flag,
0,
0,
bytes("")
);
}
// Just ABI encode the rest of the parameters.
return abi.encode(
_flag,
messageRecord.nuisanceGasLeft,
transactionRecord.ovmGasRefund,
_data
);
}
/**
* Simple decoding for revert data.
* @param _revertdata Revert data to decode.
* @return _flag Flag used to revert.
* @return _nuisanceGasLeft Amount of nuisance gas unused by the message.
* @return _ovmGasRefund Amount of gas refunded during the message.
* @return _data Additional user-provided revert data.
*/
function _decodeRevertData(
bytes memory _revertdata
)
internal
pure
returns (
RevertFlag _flag,
uint256 _nuisanceGasLeft,
uint256 _ovmGasRefund,
bytes memory _data
)
{
// A length of zero means the call ran out of gas, just return empty data.
if (_revertdata.length == 0) {
return (
RevertFlag.OUT_OF_GAS,
0,
0,
bytes("")
);
}
// ABI decode the incoming data.
return abi.decode(_revertdata, (RevertFlag, uint256, uint256, bytes));
}
/**
* Causes a message to revert or abort.
* @param _flag Flag to revert with.
* @param _data Additional user-provided data.
*/
function _revertWithFlag(
RevertFlag _flag,
bytes memory _data
)
internal
view
{
bytes memory revertdata = _encodeRevertData(
_flag,
_data
);
assembly {
revert(add(revertdata, 0x20), mload(revertdata))
}
}
/**
* Causes a message to revert or abort.
* @param _flag Flag to revert with.
*/
function _revertWithFlag(
RevertFlag _flag
)
internal
{
_revertWithFlag(_flag, bytes(""));
}
/******************************************
* Internal Functions: Nuisance Gas Logic *
******************************************/
/**
* Computes the nuisance gas limit from the gas limit.
* @dev This function is currently using a naive implementation whereby the nuisance gas limit
* is set to exactly equal the lesser of the gas limit or remaining gas. It's likely that
* this implementation is perfectly fine, but we may change this formula later.
* @param _gasLimit Gas limit to compute from.
* @return _nuisanceGasLimit Computed nuisance gas limit.
*/
function _getNuisanceGasLimit(
uint256 _gasLimit
)
internal
view
returns (
uint256 _nuisanceGasLimit
)
{
return _gasLimit < gasleft() ? _gasLimit : gasleft();
}
/**
* Uses a certain amount of nuisance gas.
* @param _amount Amount of nuisance gas to use.
*/
function _useNuisanceGas(
uint256 _amount
)
internal
{
// Essentially the same as a standard OUT_OF_GAS, except we also retain a record of the gas
// refund to be given at the end of the transaction.
if (messageRecord.nuisanceGasLeft < _amount) {
_revertWithFlag(RevertFlag.EXCEEDS_NUISANCE_GAS);
}
messageRecord.nuisanceGasLeft -= _amount;
}
/************************************
* Internal Functions: Gas Metering *
************************************/
/**
* Checks whether a transaction needs to start a new epoch and does so if necessary.
* @param _timestamp Transaction timestamp.
*/
function _checkNeedsNewEpoch(
uint256 _timestamp
)
internal
{
if (
_timestamp >= (
_getGasMetadata(GasMetadataKey.CURRENT_EPOCH_START_TIMESTAMP)
+ gasMeterConfig.secondsPerEpoch
)
) {
_putGasMetadata(
GasMetadataKey.CURRENT_EPOCH_START_TIMESTAMP,
_timestamp
);
_putGasMetadata(
GasMetadataKey.PREV_EPOCH_SEQUENCER_QUEUE_GAS,
_getGasMetadata(
GasMetadataKey.CUMULATIVE_SEQUENCER_QUEUE_GAS
)
);
_putGasMetadata(
GasMetadataKey.PREV_EPOCH_L1TOL2_QUEUE_GAS,
_getGasMetadata(
GasMetadataKey.CUMULATIVE_L1TOL2_QUEUE_GAS
)
);
}
}
/**
* Validates the input values of a transaction.
* @return _valid Whether or not the transaction data is valid.
*/
function _isValidInput(
Lib_OVMCodec.Transaction memory _transaction
)
view
internal
returns (
bool
)
{
// Prevent reentrancy to run():
// This check prevents calling run with the default ovmNumber.
// Combined with the first check in run():
// if (transactionContext.ovmNUMBER != DEFAULT_UINT256) { return; }
// It should be impossible to re-enter since run() returns before any other call frames are
// created. Since this value is already being written to storage, we save much gas compared
// to using the standard nonReentrant pattern.
if (_transaction.blockNumber == DEFAULT_UINT256) {
return false;
}
if (_isValidGasLimit(_transaction.gasLimit, _transaction.l1QueueOrigin) == false) {
return false;
}
return true;
}
/**
* Validates the gas limit for a given transaction.
* @param _gasLimit Gas limit provided by the transaction.
* param _queueOrigin Queue from which the transaction originated.
* @return _valid Whether or not the gas limit is valid.
*/
function _isValidGasLimit(
uint256 _gasLimit,
Lib_OVMCodec.QueueOrigin // _queueOrigin
)
view
internal
returns (
bool _valid
)
{
// Always have to be below the maximum gas limit.
if (_gasLimit > gasMeterConfig.maxTransactionGasLimit) {
return false;
}
// Always have to be above the minimum gas limit.
if (_gasLimit < gasMeterConfig.minTransactionGasLimit) {
return false;
}
// TEMPORARY: Gas metering is disabled for minnet.
return true;
// GasMetadataKey cumulativeGasKey;
// GasMetadataKey prevEpochGasKey;
// if (_queueOrigin == Lib_OVMCodec.QueueOrigin.SEQUENCER_QUEUE) {
// cumulativeGasKey = GasMetadataKey.CUMULATIVE_SEQUENCER_QUEUE_GAS;
// prevEpochGasKey = GasMetadataKey.PREV_EPOCH_SEQUENCER_QUEUE_GAS;
// } else {
// cumulativeGasKey = GasMetadataKey.CUMULATIVE_L1TOL2_QUEUE_GAS;
// prevEpochGasKey = GasMetadataKey.PREV_EPOCH_L1TOL2_QUEUE_GAS;
// }
// return (
// (
// _getGasMetadata(cumulativeGasKey)
// - _getGasMetadata(prevEpochGasKey)
// + _gasLimit
// ) < gasMeterConfig.maxGasPerQueuePerEpoch
// );
}
/**
* Updates the cumulative gas after a transaction.
* @param _gasUsed Gas used by the transaction.
* @param _queueOrigin Queue from which the transaction originated.
*/
function _updateCumulativeGas(
uint256 _gasUsed,
Lib_OVMCodec.QueueOrigin _queueOrigin
)
internal
{
GasMetadataKey cumulativeGasKey;
if (_queueOrigin == Lib_OVMCodec.QueueOrigin.SEQUENCER_QUEUE) {
cumulativeGasKey = GasMetadataKey.CUMULATIVE_SEQUENCER_QUEUE_GAS;
} else {
cumulativeGasKey = GasMetadataKey.CUMULATIVE_L1TOL2_QUEUE_GAS;
}
_putGasMetadata(
cumulativeGasKey,
(
_getGasMetadata(cumulativeGasKey)
+ gasMeterConfig.minTransactionGasLimit
+ _gasUsed
- transactionRecord.ovmGasRefund
)
);
}
/**
* Retrieves the value of a gas metadata key.
* @param _key Gas metadata key to retrieve.
* @return _value Value stored at the given key.
*/
function _getGasMetadata(
GasMetadataKey _key
)
internal
returns (
uint256 _value
)
{
return uint256(_getContractStorage(
GAS_METADATA_ADDRESS,
bytes32(uint256(_key))
));
}
/**
* Sets the value of a gas metadata key.
* @param _key Gas metadata key to set.
* @param _value Value to store at the given key.
*/
function _putGasMetadata(
GasMetadataKey _key,
uint256 _value
)
internal
{
_putContractStorage(
GAS_METADATA_ADDRESS,
bytes32(uint256(_key)),
bytes32(uint256(_value))
);
}
/*****************************************
* Internal Functions: Execution Context *
*****************************************/
/**
* Swaps over to a new message context.
* @param _prevMessageContext Context we're switching from.
* @param _nextMessageContext Context we're switching to.
*/
function _switchMessageContext(
MessageContext memory _prevMessageContext,
MessageContext memory _nextMessageContext
)
internal
{
// These conditionals allow us to avoid unneccessary SSTOREs. However, they do mean that
// the current storage value for the messageContext MUST equal the _prevMessageContext
// argument, or an SSTORE might be erroneously skipped.
if (_prevMessageContext.ovmCALLER != _nextMessageContext.ovmCALLER) {
messageContext.ovmCALLER = _nextMessageContext.ovmCALLER;
}
if (_prevMessageContext.ovmADDRESS != _nextMessageContext.ovmADDRESS) {
messageContext.ovmADDRESS = _nextMessageContext.ovmADDRESS;
}
if (_prevMessageContext.isStatic != _nextMessageContext.isStatic) {
messageContext.isStatic = _nextMessageContext.isStatic;
}
if (_prevMessageContext.ovmCALLVALUE != _nextMessageContext.ovmCALLVALUE) {
messageContext.ovmCALLVALUE = _nextMessageContext.ovmCALLVALUE;
}
}
/**
* Initializes the execution context.
* @param _transaction OVM transaction being executed.
*/
function _initContext(
Lib_OVMCodec.Transaction memory _transaction
)
internal
{
transactionContext.ovmTIMESTAMP = _transaction.timestamp;
transactionContext.ovmNUMBER = _transaction.blockNumber;
transactionContext.ovmTXGASLIMIT = _transaction.gasLimit;
transactionContext.ovmL1QUEUEORIGIN = _transaction.l1QueueOrigin;
transactionContext.ovmL1TXORIGIN = _transaction.l1TxOrigin;
transactionContext.ovmGASLIMIT = gasMeterConfig.maxGasPerQueuePerEpoch;
messageRecord.nuisanceGasLeft = _getNuisanceGasLimit(_transaction.gasLimit);
}
/**
* Resets the transaction and message context.
*/
function _resetContext()
internal
{
transactionContext.ovmL1TXORIGIN = DEFAULT_ADDRESS;
transactionContext.ovmTIMESTAMP = DEFAULT_UINT256;
transactionContext.ovmNUMBER = DEFAULT_UINT256;
transactionContext.ovmGASLIMIT = DEFAULT_UINT256;
transactionContext.ovmTXGASLIMIT = DEFAULT_UINT256;
transactionContext.ovmL1QUEUEORIGIN = Lib_OVMCodec.QueueOrigin.SEQUENCER_QUEUE;
transactionRecord.ovmGasRefund = DEFAULT_UINT256;
messageContext.ovmCALLER = DEFAULT_ADDRESS;
messageContext.ovmADDRESS = DEFAULT_ADDRESS;
messageContext.isStatic = false;
messageRecord.nuisanceGasLeft = DEFAULT_UINT256;
// Reset the ovmStateManager.
ovmStateManager = iOVM_StateManager(address(0));
}
/******************************************
* Internal Functions: Message Typechecks *
******************************************/
/**
* Returns whether or not the given message type is a CREATE-type.
* @param _messageType the message type in question.
*/
function _isCreateType(
MessageType _messageType
)
internal
pure
returns(
bool
)
{
return (
_messageType == MessageType.ovmCREATE
|| _messageType == MessageType.ovmCREATE2
);
}
/**
* Returns whether or not the given message type (potentially) requires the transfer of ETH
* value along with the message.
* @param _messageType the message type in question.
*/
function _isValueType(
MessageType _messageType
)
internal
pure
returns(
bool
)
{
// ovmSTATICCALL and ovmDELEGATECALL types do not accept or transfer value.
return (
_messageType == MessageType.ovmCALL
|| _messageType == MessageType.ovmCREATE
|| _messageType == MessageType.ovmCREATE2
);
}
/*****************************
* L2-only Helper Functions *
*****************************/
/**
* Unreachable helper function for simulating eth_calls with an OVM message context.
* This function will throw an exception in all cases other than when used as a custom
* entrypoint in L2 Geth to simulate eth_call.
* @param _transaction the message transaction to simulate.
* @param _from the OVM account the simulated call should be from.
* @param _value the amount of ETH value to send.
* @param _ovmStateManager the address of the OVM_StateManager precompile in the L2 state.
*/
function simulateMessage(
Lib_OVMCodec.Transaction memory _transaction,
address _from,
uint256 _value,
iOVM_StateManager _ovmStateManager
)
external
returns (
bytes memory
)
{
// Prevent this call from having any effect unless in a custom-set VM frame
require(msg.sender == address(0));
// Initialize the EM's internal state, ignoring nuisance gas.
ovmStateManager = _ovmStateManager;
_initContext(_transaction);
messageRecord.nuisanceGasLeft = uint(-1);
// Set the ovmADDRESS to the _from so that the subsequent call frame "comes from" them.
messageContext.ovmADDRESS = _from;
// Execute the desired message.
bool isCreate = _transaction.entrypoint == address(0);
if (isCreate) {
(address created, bytes memory revertData) = ovmCREATE(_transaction.data);
if (created == address(0)) {
return abi.encode(false, revertData);
} else {
// The eth_call RPC endpoint for to = undefined will return the deployed bytecode
// in the success case, differing from standard create messages.
return abi.encode(true, Lib_EthUtils.getCode(created));
}
} else {
(bool success, bytes memory returndata) = ovmCALL(
_transaction.gasLimit,
_transaction.entrypoint,
_value,
_transaction.data
);
return abi.encode(success, returndata);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
import { Lib_AddressResolver } from "../../libraries/resolver/Lib_AddressResolver.sol";
/* Interface Imports */
import { iOVM_FraudVerifier } from "../../iOVM/verification/iOVM_FraudVerifier.sol";
import { iOVM_StateTransitioner } from "../../iOVM/verification/iOVM_StateTransitioner.sol";
import { iOVM_StateTransitionerFactory } from
"../../iOVM/verification/iOVM_StateTransitionerFactory.sol";
import { iOVM_BondManager } from "../../iOVM/verification/iOVM_BondManager.sol";
import { iOVM_StateCommitmentChain } from "../../iOVM/chain/iOVM_StateCommitmentChain.sol";
import { iOVM_CanonicalTransactionChain } from
"../../iOVM/chain/iOVM_CanonicalTransactionChain.sol";
/* Contract Imports */
import { Abs_FraudContributor } from "./Abs_FraudContributor.sol";
/**
* @title OVM_FraudVerifier
* @dev The Fraud Verifier contract coordinates the entire fraud proof verification process.
* If the fraud proof was successful it prunes any state batches from State Commitment Chain
* which were published after the fraudulent state root.
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_FraudVerifier is Lib_AddressResolver, Abs_FraudContributor, iOVM_FraudVerifier {
/*******************************************
* Contract Variables: Internal Accounting *
*******************************************/
mapping (bytes32 => iOVM_StateTransitioner) internal transitioners;
/***************
* Constructor *
***************/
/**
* @param _libAddressManager Address of the Address Manager.
*/
constructor(
address _libAddressManager
)
Lib_AddressResolver(_libAddressManager)
{}
/***************************************
* Public Functions: Transition Status *
***************************************/
/**
* Retrieves the state transitioner for a given root.
* @param _preStateRoot State root to query a transitioner for.
* @return _transitioner Corresponding state transitioner contract.
*/
function getStateTransitioner(
bytes32 _preStateRoot,
bytes32 _txHash
)
override
public
view
returns (
iOVM_StateTransitioner _transitioner
)
{
return transitioners[keccak256(abi.encodePacked(_preStateRoot, _txHash))];
}
/****************************************
* Public Functions: Fraud Verification *
****************************************/
/**
* Begins the fraud verification process.
* @param _preStateRoot State root before the fraudulent transaction.
* @param _preStateRootBatchHeader Batch header for the provided pre-state root.
* @param _preStateRootProof Inclusion proof for the provided pre-state root.
* @param _transaction OVM transaction claimed to be fraudulent.
* @param _txChainElement OVM transaction chain element.
* @param _transactionBatchHeader Batch header for the provided transaction.
* @param _transactionProof Inclusion proof for the provided transaction.
*/
function initializeFraudVerification(
bytes32 _preStateRoot,
Lib_OVMCodec.ChainBatchHeader memory _preStateRootBatchHeader,
Lib_OVMCodec.ChainInclusionProof memory _preStateRootProof,
Lib_OVMCodec.Transaction memory _transaction,
Lib_OVMCodec.TransactionChainElement memory _txChainElement,
Lib_OVMCodec.ChainBatchHeader memory _transactionBatchHeader,
Lib_OVMCodec.ChainInclusionProof memory _transactionProof
)
override
public
contributesToFraudProof(_preStateRoot, Lib_OVMCodec.hashTransaction(_transaction))
{
bytes32 _txHash = Lib_OVMCodec.hashTransaction(_transaction);
if (_hasStateTransitioner(_preStateRoot, _txHash)) {
return;
}
iOVM_StateCommitmentChain ovmStateCommitmentChain =
iOVM_StateCommitmentChain(resolve("OVM_StateCommitmentChain"));
iOVM_CanonicalTransactionChain ovmCanonicalTransactionChain =
iOVM_CanonicalTransactionChain(resolve("OVM_CanonicalTransactionChain"));
require(
ovmStateCommitmentChain.verifyStateCommitment(
_preStateRoot,
_preStateRootBatchHeader,
_preStateRootProof
),
"Invalid pre-state root inclusion proof."
);
require(
ovmCanonicalTransactionChain.verifyTransaction(
_transaction,
_txChainElement,
_transactionBatchHeader,
_transactionProof
),
"Invalid transaction inclusion proof."
);
require (
// solhint-disable-next-line max-line-length
_preStateRootBatchHeader.prevTotalElements + _preStateRootProof.index + 1 == _transactionBatchHeader.prevTotalElements + _transactionProof.index,
"Pre-state root global index must equal to the transaction root global index."
);
_deployTransitioner(_preStateRoot, _txHash, _preStateRootProof.index);
emit FraudProofInitialized(
_preStateRoot,
_preStateRootProof.index,
_txHash,
msg.sender
);
}
/**
* Finalizes the fraud verification process.
* @param _preStateRoot State root before the fraudulent transaction.
* @param _preStateRootBatchHeader Batch header for the provided pre-state root.
* @param _preStateRootProof Inclusion proof for the provided pre-state root.
* @param _txHash The transaction for the state root
* @param _postStateRoot State root after the fraudulent transaction.
* @param _postStateRootBatchHeader Batch header for the provided post-state root.
* @param _postStateRootProof Inclusion proof for the provided post-state root.
*/
function finalizeFraudVerification(
bytes32 _preStateRoot,
Lib_OVMCodec.ChainBatchHeader memory _preStateRootBatchHeader,
Lib_OVMCodec.ChainInclusionProof memory _preStateRootProof,
bytes32 _txHash,
bytes32 _postStateRoot,
Lib_OVMCodec.ChainBatchHeader memory _postStateRootBatchHeader,
Lib_OVMCodec.ChainInclusionProof memory _postStateRootProof
)
override
public
contributesToFraudProof(_preStateRoot, _txHash)
{
iOVM_StateTransitioner transitioner = getStateTransitioner(_preStateRoot, _txHash);
iOVM_StateCommitmentChain ovmStateCommitmentChain =
iOVM_StateCommitmentChain(resolve("OVM_StateCommitmentChain"));
require(
transitioner.isComplete() == true,
"State transition process must be completed prior to finalization."
);
require (
// solhint-disable-next-line max-line-length
_postStateRootBatchHeader.prevTotalElements + _postStateRootProof.index == _preStateRootBatchHeader.prevTotalElements + _preStateRootProof.index + 1,
"Post-state root global index must equal to the pre state root global index plus one."
);
require(
ovmStateCommitmentChain.verifyStateCommitment(
_preStateRoot,
_preStateRootBatchHeader,
_preStateRootProof
),
"Invalid pre-state root inclusion proof."
);
require(
ovmStateCommitmentChain.verifyStateCommitment(
_postStateRoot,
_postStateRootBatchHeader,
_postStateRootProof
),
"Invalid post-state root inclusion proof."
);
// If the post state root did not match, then there was fraud and we should delete the batch
require(
_postStateRoot != transitioner.getPostStateRoot(),
"State transition has not been proven fraudulent."
);
_cancelStateTransition(_postStateRootBatchHeader, _preStateRoot);
// TEMPORARY: Remove the transitioner; for minnet.
transitioners[keccak256(abi.encodePacked(_preStateRoot, _txHash))] =
iOVM_StateTransitioner(0x0000000000000000000000000000000000000000);
emit FraudProofFinalized(
_preStateRoot,
_preStateRootProof.index,
_txHash,
msg.sender
);
}
/************************************
* Internal Functions: Verification *
************************************/
/**
* Checks whether a transitioner already exists for a given pre-state root.
* @param _preStateRoot Pre-state root to check.
* @return _exists Whether or not we already have a transitioner for the root.
*/
function _hasStateTransitioner(
bytes32 _preStateRoot,
bytes32 _txHash
)
internal
view
returns (
bool _exists
)
{
return address(getStateTransitioner(_preStateRoot, _txHash)) != address(0);
}
/**
* Deploys a new state transitioner.
* @param _preStateRoot Pre-state root to initialize the transitioner with.
* @param _txHash Hash of the transaction this transitioner will execute.
* @param _stateTransitionIndex Index of the transaction in the chain.
*/
function _deployTransitioner(
bytes32 _preStateRoot,
bytes32 _txHash,
uint256 _stateTransitionIndex
)
internal
{
transitioners[keccak256(abi.encodePacked(_preStateRoot, _txHash))] =
iOVM_StateTransitionerFactory(
resolve("OVM_StateTransitionerFactory")
).create(
address(libAddressManager),
_stateTransitionIndex,
_preStateRoot,
_txHash
);
}
/**
* Removes a state transition from the state commitment chain.
* @param _postStateRootBatchHeader Header for the post-state root.
* @param _preStateRoot Pre-state root hash.
*/
function _cancelStateTransition(
Lib_OVMCodec.ChainBatchHeader memory _postStateRootBatchHeader,
bytes32 _preStateRoot
)
internal
{
iOVM_StateCommitmentChain ovmStateCommitmentChain =
iOVM_StateCommitmentChain(resolve("OVM_StateCommitmentChain"));
iOVM_BondManager ovmBondManager = iOVM_BondManager(resolve("OVM_BondManager"));
// Delete the state batch.
ovmStateCommitmentChain.deleteStateBatch(
_postStateRootBatchHeader
);
// Get the timestamp and publisher for that block.
(uint256 timestamp, address publisher) =
abi.decode(_postStateRootBatchHeader.extraData, (uint256, address));
// Slash the bonds at the bond manager.
ovmBondManager.finalize(
_preStateRoot,
publisher,
timestamp
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* External Imports */
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
/**
* @title OVM_GasPriceOracle
* @dev This contract exposes the current l2 gas price, a measure of how congested the network
* currently is. This measure is used by the Sequencer to determine what fee to charge for
* transactions. When the system is more congested, the l2 gas price will increase and fees
* will also increase as a result.
*
* Compiler used: optimistic-solc
* Runtime target: OVM
*/
contract OVM_GasPriceOracle is Ownable {
/*************
* Variables *
*************/
// Current l2 gas price
uint256 public gasPrice;
/***************
* Constructor *
***************/
/**
* @param _owner Address that will initially own this contract.
*/
constructor(
address _owner,
uint256 _initialGasPrice
)
Ownable()
{
setGasPrice(_initialGasPrice);
transferOwnership(_owner);
}
/********************
* Public Functions *
********************/
/**
* Allows the owner to modify the l2 gas price.
* @param _gasPrice New l2 gas price.
*/
function setGasPrice(
uint256 _gasPrice
)
public
onlyOwner
{
gasPrice = _gasPrice;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_AddressResolver } from "../../../libraries/resolver/Lib_AddressResolver.sol";
import { Lib_OVMCodec } from "../../../libraries/codec/Lib_OVMCodec.sol";
import { Lib_AddressManager } from "../../../libraries/resolver/Lib_AddressManager.sol";
import { Lib_SecureMerkleTrie } from "../../../libraries/trie/Lib_SecureMerkleTrie.sol";
import { Lib_PredeployAddresses } from "../../../libraries/constants/Lib_PredeployAddresses.sol";
import { Lib_CrossDomainUtils } from "../../../libraries/bridge/Lib_CrossDomainUtils.sol";
/* Interface Imports */
import { iOVM_L1CrossDomainMessenger } from
"../../../iOVM/bridge/messaging/iOVM_L1CrossDomainMessenger.sol";
import { iOVM_CanonicalTransactionChain } from
"../../../iOVM/chain/iOVM_CanonicalTransactionChain.sol";
import { iOVM_StateCommitmentChain } from "../../../iOVM/chain/iOVM_StateCommitmentChain.sol";
/* External Imports */
import { OwnableUpgradeable } from
"@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import { PausableUpgradeable } from
"@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol";
import { ReentrancyGuardUpgradeable } from
"@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
/**
* @title OVM_L1CrossDomainMessenger
* @dev The L1 Cross Domain Messenger contract sends messages from L1 to L2, and relays messages
* from L2 onto L1. In the event that a message sent from L1 to L2 is rejected for exceeding the L2
* epoch gas limit, it can be resubmitted via this contract's replay function.
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_L1CrossDomainMessenger is
iOVM_L1CrossDomainMessenger,
Lib_AddressResolver,
OwnableUpgradeable,
PausableUpgradeable,
ReentrancyGuardUpgradeable
{
/**********
* Events *
**********/
event MessageBlocked(
bytes32 indexed _xDomainCalldataHash
);
event MessageAllowed(
bytes32 indexed _xDomainCalldataHash
);
/*************
* Constants *
*************/
// The default x-domain message sender being set to a non-zero value makes
// deployment a bit more expensive, but in exchange the refund on every call to
// `relayMessage` by the L1 and L2 messengers will be higher.
address internal constant DEFAULT_XDOMAIN_SENDER = 0x000000000000000000000000000000000000dEaD;
/**********************
* Contract Variables *
**********************/
mapping (bytes32 => bool) public blockedMessages;
mapping (bytes32 => bool) public relayedMessages;
mapping (bytes32 => bool) public successfulMessages;
address internal xDomainMsgSender = DEFAULT_XDOMAIN_SENDER;
/***************
* Constructor *
***************/
/**
* This contract is intended to be behind a delegate proxy.
* We pass the zero address to the address resolver just to satisfy the constructor.
* We still need to set this value in initialize().
*/
constructor()
Lib_AddressResolver(address(0))
{}
/**********************
* Function Modifiers *
**********************/
/**
* Modifier to enforce that, if configured, only the OVM_L2MessageRelayer contract may
* successfully call a method.
*/
modifier onlyRelayer() {
address relayer = resolve("OVM_L2MessageRelayer");
if (relayer != address(0)) {
require(
msg.sender == relayer,
"Only OVM_L2MessageRelayer can relay L2-to-L1 messages."
);
}
_;
}
/********************
* Public Functions *
********************/
/**
* @param _libAddressManager Address of the Address Manager.
*/
function initialize(
address _libAddressManager
)
public
initializer
{
require(
address(libAddressManager) == address(0),
"L1CrossDomainMessenger already intialized."
);
libAddressManager = Lib_AddressManager(_libAddressManager);
xDomainMsgSender = DEFAULT_XDOMAIN_SENDER;
// Initialize upgradable OZ contracts
__Context_init_unchained(); // Context is a dependency for both Ownable and Pausable
__Ownable_init_unchained();
__Pausable_init_unchained();
__ReentrancyGuard_init_unchained();
}
/**
* Pause relaying.
*/
function pause()
external
onlyOwner
{
_pause();
}
/**
* Block a message.
* @param _xDomainCalldataHash Hash of the message to block.
*/
function blockMessage(
bytes32 _xDomainCalldataHash
)
external
onlyOwner
{
blockedMessages[_xDomainCalldataHash] = true;
emit MessageBlocked(_xDomainCalldataHash);
}
/**
* Allow a message.
* @param _xDomainCalldataHash Hash of the message to block.
*/
function allowMessage(
bytes32 _xDomainCalldataHash
)
external
onlyOwner
{
blockedMessages[_xDomainCalldataHash] = false;
emit MessageAllowed(_xDomainCalldataHash);
}
function xDomainMessageSender()
public
override
view
returns (
address
)
{
require(xDomainMsgSender != DEFAULT_XDOMAIN_SENDER, "xDomainMessageSender is not set");
return xDomainMsgSender;
}
/**
* Sends a cross domain message to the target messenger.
* @param _target Target contract address.
* @param _message Message to send to the target.
* @param _gasLimit Gas limit for the provided message.
*/
function sendMessage(
address _target,
bytes memory _message,
uint32 _gasLimit
)
override
public
{
address ovmCanonicalTransactionChain = resolve("OVM_CanonicalTransactionChain");
// Use the CTC queue length as nonce
uint40 nonce =
iOVM_CanonicalTransactionChain(ovmCanonicalTransactionChain).getQueueLength();
bytes memory xDomainCalldata = Lib_CrossDomainUtils.encodeXDomainCalldata(
_target,
msg.sender,
_message,
nonce
);
address l2CrossDomainMessenger = resolve("OVM_L2CrossDomainMessenger");
_sendXDomainMessage(
ovmCanonicalTransactionChain,
l2CrossDomainMessenger,
xDomainCalldata,
_gasLimit
);
emit SentMessage(xDomainCalldata);
}
/**
* Relays a cross domain message to a contract.
* @inheritdoc iOVM_L1CrossDomainMessenger
*/
function relayMessage(
address _target,
address _sender,
bytes memory _message,
uint256 _messageNonce,
L2MessageInclusionProof memory _proof
)
override
public
nonReentrant
onlyRelayer
whenNotPaused
{
bytes memory xDomainCalldata = Lib_CrossDomainUtils.encodeXDomainCalldata(
_target,
_sender,
_message,
_messageNonce
);
require(
_verifyXDomainMessage(
xDomainCalldata,
_proof
) == true,
"Provided message could not be verified."
);
bytes32 xDomainCalldataHash = keccak256(xDomainCalldata);
require(
successfulMessages[xDomainCalldataHash] == false,
"Provided message has already been received."
);
require(
blockedMessages[xDomainCalldataHash] == false,
"Provided message has been blocked."
);
require(
_target != resolve("OVM_CanonicalTransactionChain"),
"Cannot send L2->L1 messages to L1 system contracts."
);
xDomainMsgSender = _sender;
(bool success, ) = _target.call(_message);
xDomainMsgSender = DEFAULT_XDOMAIN_SENDER;
// Mark the message as received if the call was successful. Ensures that a message can be
// relayed multiple times in the case that the call reverted.
if (success == true) {
successfulMessages[xDomainCalldataHash] = true;
emit RelayedMessage(xDomainCalldataHash);
} else {
emit FailedRelayedMessage(xDomainCalldataHash);
}
// Store an identifier that can be used to prove that the given message was relayed by some
// user. Gives us an easy way to pay relayers for their work.
bytes32 relayId = keccak256(
abi.encodePacked(
xDomainCalldata,
msg.sender,
block.number
)
);
relayedMessages[relayId] = true;
}
/**
* Replays a cross domain message to the target messenger.
* @inheritdoc iOVM_L1CrossDomainMessenger
*/
function replayMessage(
address _target,
address _sender,
bytes memory _message,
uint256 _queueIndex,
uint32 _gasLimit
)
override
public
{
// Verify that the message is in the queue:
address canonicalTransactionChain = resolve("OVM_CanonicalTransactionChain");
Lib_OVMCodec.QueueElement memory element =
iOVM_CanonicalTransactionChain(canonicalTransactionChain).getQueueElement(_queueIndex);
address l2CrossDomainMessenger = resolve("OVM_L2CrossDomainMessenger");
// Compute the transactionHash
bytes32 transactionHash = keccak256(
abi.encode(
address(this),
l2CrossDomainMessenger,
_gasLimit,
_message
)
);
require(
transactionHash == element.transactionHash,
"Provided message has not been enqueued."
);
bytes memory xDomainCalldata = Lib_CrossDomainUtils.encodeXDomainCalldata(
_target,
_sender,
_message,
_queueIndex
);
_sendXDomainMessage(
canonicalTransactionChain,
l2CrossDomainMessenger,
xDomainCalldata,
_gasLimit
);
}
/**********************
* Internal Functions *
**********************/
/**
* Verifies that the given message is valid.
* @param _xDomainCalldata Calldata to verify.
* @param _proof Inclusion proof for the message.
* @return Whether or not the provided message is valid.
*/
function _verifyXDomainMessage(
bytes memory _xDomainCalldata,
L2MessageInclusionProof memory _proof
)
internal
view
returns (
bool
)
{
return (
_verifyStateRootProof(_proof)
&& _verifyStorageProof(_xDomainCalldata, _proof)
);
}
/**
* Verifies that the state root within an inclusion proof is valid.
* @param _proof Message inclusion proof.
* @return Whether or not the provided proof is valid.
*/
function _verifyStateRootProof(
L2MessageInclusionProof memory _proof
)
internal
view
returns (
bool
)
{
iOVM_StateCommitmentChain ovmStateCommitmentChain = iOVM_StateCommitmentChain(
resolve("OVM_StateCommitmentChain")
);
return (
ovmStateCommitmentChain.insideFraudProofWindow(_proof.stateRootBatchHeader) == false
&& ovmStateCommitmentChain.verifyStateCommitment(
_proof.stateRoot,
_proof.stateRootBatchHeader,
_proof.stateRootProof
)
);
}
/**
* Verifies that the storage proof within an inclusion proof is valid.
* @param _xDomainCalldata Encoded message calldata.
* @param _proof Message inclusion proof.
* @return Whether or not the provided proof is valid.
*/
function _verifyStorageProof(
bytes memory _xDomainCalldata,
L2MessageInclusionProof memory _proof
)
internal
view
returns (
bool
)
{
bytes32 storageKey = keccak256(
abi.encodePacked(
keccak256(
abi.encodePacked(
_xDomainCalldata,
resolve("OVM_L2CrossDomainMessenger")
)
),
uint256(0)
)
);
(
bool exists,
bytes memory encodedMessagePassingAccount
) = Lib_SecureMerkleTrie.get(
abi.encodePacked(Lib_PredeployAddresses.L2_TO_L1_MESSAGE_PASSER),
_proof.stateTrieWitness,
_proof.stateRoot
);
require(
exists == true,
"Message passing predeploy has not been initialized or invalid proof provided."
);
Lib_OVMCodec.EVMAccount memory account = Lib_OVMCodec.decodeEVMAccount(
encodedMessagePassingAccount
);
return Lib_SecureMerkleTrie.verifyInclusionProof(
abi.encodePacked(storageKey),
abi.encodePacked(uint8(1)),
_proof.storageTrieWitness,
account.storageRoot
);
}
/**
* Sends a cross domain message.
* @param _canonicalTransactionChain Address of the OVM_CanonicalTransactionChain instance.
* @param _l2CrossDomainMessenger Address of the OVM_L2CrossDomainMessenger instance.
* @param _message Message to send.
* @param _gasLimit OVM gas limit for the message.
*/
function _sendXDomainMessage(
address _canonicalTransactionChain,
address _l2CrossDomainMessenger,
bytes memory _message,
uint256 _gasLimit
)
internal
{
iOVM_CanonicalTransactionChain(_canonicalTransactionChain).enqueue(
_l2CrossDomainMessenger,
_gasLimit,
_message
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Interface Imports */
import { iOVM_L1MessageSender } from "../../iOVM/predeploys/iOVM_L1MessageSender.sol";
import { iOVM_ExecutionManager } from "../../iOVM/execution/iOVM_ExecutionManager.sol";
/**
* @title OVM_L1MessageSender
* @dev The L1MessageSender is a predeploy contract running on L2. During the execution of cross
* domain transaction from L1 to L2, it returns the address of the L1 account (either an EOA or
* contract) which sent the message to L2 via the Canonical Transaction Chain's `enqueue()`
* function.
*
* This contract exclusively serves as a getter for the ovmL1TXORIGIN operation. This is necessary
* because there is no corresponding operation in the EVM which the the optimistic solidity compiler
* can be replaced with a call to the ExecutionManager's ovmL1TXORIGIN() function.
*
*
* Compiler used: solc
* Runtime target: OVM
*/
contract OVM_L1MessageSender is iOVM_L1MessageSender {
/********************
* Public Functions *
********************/
/**
* @return _l1MessageSender L1 message sender address (msg.sender).
*/
function getL1MessageSender()
override
public
view
returns (
address _l1MessageSender
)
{
// Note that on L2 msg.sender (ie. evmCALLER) will always be the Execution Manager
return iOVM_ExecutionManager(msg.sender).ovmL1TXORIGIN();
}
}
// SPDX-License-Identifier: MIT
// @unsupported: ovm
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Interface Imports */
import { iOVM_L1CrossDomainMessenger } from
"../../../iOVM/bridge/messaging/iOVM_L1CrossDomainMessenger.sol";
import { iOVM_L1MultiMessageRelayer } from
"../../../iOVM/bridge/messaging/iOVM_L1MultiMessageRelayer.sol";
/* Library Imports */
import { Lib_AddressResolver } from "../../../libraries/resolver/Lib_AddressResolver.sol";
/**
* @title OVM_L1MultiMessageRelayer
* @dev The L1 Multi-Message Relayer contract is a gas efficiency optimization which enables the
* relayer to submit multiple messages in a single transaction to be relayed by the L1 Cross Domain
* Message Sender.
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_L1MultiMessageRelayer is iOVM_L1MultiMessageRelayer, Lib_AddressResolver {
/***************
* Constructor *
***************/
/**
* @param _libAddressManager Address of the Address Manager.
*/
constructor(
address _libAddressManager
)
Lib_AddressResolver(_libAddressManager)
{}
/**********************
* Function Modifiers *
**********************/
modifier onlyBatchRelayer() {
require(
msg.sender == resolve("OVM_L2BatchMessageRelayer"),
// solhint-disable-next-line max-line-length
"OVM_L1MultiMessageRelayer: Function can only be called by the OVM_L2BatchMessageRelayer"
);
_;
}
/********************
* Public Functions *
********************/
/**
* @notice Forwards multiple cross domain messages to the L1 Cross Domain Messenger for relaying
* @param _messages An array of L2 to L1 messages
*/
function batchRelayMessages(
L2ToL1Message[] calldata _messages
)
override
external
onlyBatchRelayer
{
iOVM_L1CrossDomainMessenger messenger = iOVM_L1CrossDomainMessenger(
resolve("Proxy__OVM_L1CrossDomainMessenger")
);
for (uint256 i = 0; i < _messages.length; i++) {
L2ToL1Message memory message = _messages[i];
messenger.relayMessage(
message.target,
message.sender,
message.message,
message.messageNonce,
message.proof
);
}
}
}
// SPDX-License-Identifier: MIT
// @unsupported: ovm
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Interface Imports */
import { iOVM_L1StandardBridge } from "../../../iOVM/bridge/tokens/iOVM_L1StandardBridge.sol";
import { iOVM_L1ERC20Bridge } from "../../../iOVM/bridge/tokens/iOVM_L1ERC20Bridge.sol";
import { iOVM_L2ERC20Bridge } from "../../../iOVM/bridge/tokens/iOVM_L2ERC20Bridge.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/* Library Imports */
import { OVM_CrossDomainEnabled } from "../../../libraries/bridge/OVM_CrossDomainEnabled.sol";
import { Lib_PredeployAddresses } from "../../../libraries/constants/Lib_PredeployAddresses.sol";
import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
/**
* @title OVM_L1StandardBridge
* @dev The L1 ETH and ERC20 Bridge is a contract which stores deposited L1 funds and standard
* tokens that are in use on L2. It synchronizes a corresponding L2 Bridge, informing it of deposits
* and listening to it for newly finalized withdrawals.
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_L1StandardBridge is iOVM_L1StandardBridge, OVM_CrossDomainEnabled {
using SafeMath for uint;
using SafeERC20 for IERC20;
/********************************
* External Contract References *
********************************/
address public l2TokenBridge;
// Maps L1 token to L2 token to balance of the L1 token deposited
mapping(address => mapping (address => uint256)) public deposits;
/***************
* Constructor *
***************/
// This contract lives behind a proxy, so the constructor parameters will go unused.
constructor()
OVM_CrossDomainEnabled(address(0))
{}
/******************
* Initialization *
******************/
/**
* @param _l1messenger L1 Messenger address being used for cross-chain communications.
* @param _l2TokenBridge L2 standard bridge address.
*/
function initialize(
address _l1messenger,
address _l2TokenBridge
)
public
{
require(messenger == address(0), "Contract has already been initialized.");
messenger = _l1messenger;
l2TokenBridge = _l2TokenBridge;
}
/**************
* Depositing *
**************/
/** @dev Modifier requiring sender to be EOA. This check could be bypassed by a malicious
* contract via initcode, but it takes care of the user error we want to avoid.
*/
modifier onlyEOA() {
// Used to stop deposits from contracts (avoid accidentally lost tokens)
require(!Address.isContract(msg.sender), "Account not EOA");
_;
}
/**
* @dev This function can be called with no data
* to deposit an amount of ETH to the caller's balance on L2.
* Since the receive function doesn't take data, a conservative
* default amount is forwarded to L2.
*/
receive()
external
payable
onlyEOA()
{
_initiateETHDeposit(
msg.sender,
msg.sender,
1_300_000,
bytes("")
);
}
/**
* @inheritdoc iOVM_L1StandardBridge
*/
function depositETH(
uint32 _l2Gas,
bytes calldata _data
)
external
override
payable
onlyEOA()
{
_initiateETHDeposit(
msg.sender,
msg.sender,
_l2Gas,
_data
);
}
/**
* @inheritdoc iOVM_L1StandardBridge
*/
function depositETHTo(
address _to,
uint32 _l2Gas,
bytes calldata _data
)
external
override
payable
{
_initiateETHDeposit(
msg.sender,
_to,
_l2Gas,
_data
);
}
/**
* @dev Performs the logic for deposits by storing the ETH and informing the L2 ETH Gateway of
* the deposit.
* @param _from Account to pull the deposit from on L1.
* @param _to Account to give the deposit to on L2.
* @param _l2Gas Gas limit required to complete the deposit on L2.
* @param _data Optional data to forward to L2. This data is provided
* solely as a convenience for external contracts. Aside from enforcing a maximum
* length, these contracts provide no guarantees about its content.
*/
function _initiateETHDeposit(
address _from,
address _to,
uint32 _l2Gas,
bytes memory _data
)
internal
{
// Construct calldata for finalizeDeposit call
bytes memory message =
abi.encodeWithSelector(
iOVM_L2ERC20Bridge.finalizeDeposit.selector,
address(0),
Lib_PredeployAddresses.OVM_ETH,
_from,
_to,
msg.value,
_data
);
// Send calldata into L2
sendCrossDomainMessage(
l2TokenBridge,
_l2Gas,
message
);
emit ETHDepositInitiated(_from, _to, msg.value, _data);
}
/**
* @inheritdoc iOVM_L1ERC20Bridge
*/
function depositERC20(
address _l1Token,
address _l2Token,
uint256 _amount,
uint32 _l2Gas,
bytes calldata _data
)
external
override
virtual
onlyEOA()
{
_initiateERC20Deposit(_l1Token, _l2Token, msg.sender, msg.sender, _amount, _l2Gas, _data);
}
/**
* @inheritdoc iOVM_L1ERC20Bridge
*/
function depositERC20To(
address _l1Token,
address _l2Token,
address _to,
uint256 _amount,
uint32 _l2Gas,
bytes calldata _data
)
external
override
virtual
{
_initiateERC20Deposit(_l1Token, _l2Token, msg.sender, _to, _amount, _l2Gas, _data);
}
/**
* @dev Performs the logic for deposits by informing the L2 Deposited Token
* contract of the deposit and calling a handler to lock the L1 funds. (e.g. transferFrom)
*
* @param _l1Token Address of the L1 ERC20 we are depositing
* @param _l2Token Address of the L1 respective L2 ERC20
* @param _from Account to pull the deposit from on L1
* @param _to Account to give the deposit to on L2
* @param _amount Amount of the ERC20 to deposit.
* @param _l2Gas Gas limit required to complete the deposit on L2.
* @param _data Optional data to forward to L2. This data is provided
* solely as a convenience for external contracts. Aside from enforcing a maximum
* length, these contracts provide no guarantees about its content.
*/
function _initiateERC20Deposit(
address _l1Token,
address _l2Token,
address _from,
address _to,
uint256 _amount,
uint32 _l2Gas,
bytes calldata _data
)
internal
{
// When a deposit is initiated on L1, the L1 Bridge transfers the funds to itself for future
// withdrawals. safeTransferFrom also checks if the contract has code, so this will fail if
// _from is an EOA or address(0).
IERC20(_l1Token).safeTransferFrom(
_from,
address(this),
_amount
);
// Construct calldata for _l2Token.finalizeDeposit(_to, _amount)
bytes memory message = abi.encodeWithSelector(
iOVM_L2ERC20Bridge.finalizeDeposit.selector,
_l1Token,
_l2Token,
_from,
_to,
_amount,
_data
);
// Send calldata into L2
sendCrossDomainMessage(
l2TokenBridge,
_l2Gas,
message
);
deposits[_l1Token][_l2Token] = deposits[_l1Token][_l2Token].add(_amount);
emit ERC20DepositInitiated(_l1Token, _l2Token, _from, _to, _amount, _data);
}
/*************************
* Cross-chain Functions *
*************************/
/**
* @inheritdoc iOVM_L1StandardBridge
*/
function finalizeETHWithdrawal(
address _from,
address _to,
uint256 _amount,
bytes calldata _data
)
external
override
onlyFromCrossDomainAccount(l2TokenBridge)
{
(bool success, ) = _to.call{value: _amount}(new bytes(0));
require(success, "TransferHelper::safeTransferETH: ETH transfer failed");
emit ETHWithdrawalFinalized(_from, _to, _amount, _data);
}
/**
* @inheritdoc iOVM_L1ERC20Bridge
*/
function finalizeERC20Withdrawal(
address _l1Token,
address _l2Token,
address _from,
address _to,
uint256 _amount,
bytes calldata _data
)
external
override
onlyFromCrossDomainAccount(l2TokenBridge)
{
deposits[_l1Token][_l2Token] = deposits[_l1Token][_l2Token].sub(_amount);
// When a withdrawal is finalized on L1, the L1 Bridge transfers the funds to the withdrawer
IERC20(_l1Token).safeTransfer(_to, _amount);
emit ERC20WithdrawalFinalized(_l1Token, _l2Token, _from, _to, _amount, _data);
}
/*****************************
* Temporary - Migrating ETH *
*****************************/
/**
* @dev Adds ETH balance to the account. This is meant to allow for ETH
* to be migrated from an old gateway to a new gateway.
* NOTE: This is left for one upgrade only so we are able to receive the migrated ETH from the
* old contract
*/
function donateETH() external payable {}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_AddressResolver } from "../../../libraries/resolver/Lib_AddressResolver.sol";
import { Lib_CrossDomainUtils } from "../../../libraries/bridge/Lib_CrossDomainUtils.sol";
/* Interface Imports */
import { iOVM_L2CrossDomainMessenger } from
"../../../iOVM/bridge/messaging/iOVM_L2CrossDomainMessenger.sol";
import { iOVM_L1MessageSender } from "../../../iOVM/predeploys/iOVM_L1MessageSender.sol";
import { iOVM_L2ToL1MessagePasser } from "../../../iOVM/predeploys/iOVM_L2ToL1MessagePasser.sol";
/* External Imports */
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
/* External Imports */
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
/**
* @title OVM_L2CrossDomainMessenger
* @dev The L2 Cross Domain Messenger contract sends messages from L2 to L1, and is the entry point
* for L2 messages sent via the L1 Cross Domain Messenger.
*
* Compiler used: optimistic-solc
* Runtime target: OVM
*/
contract OVM_L2CrossDomainMessenger is
iOVM_L2CrossDomainMessenger,
Lib_AddressResolver,
ReentrancyGuard
{
/*************
* Constants *
*************/
// The default x-domain message sender being set to a non-zero value makes
// deployment a bit more expensive, but in exchange the refund on every call to
// `relayMessage` by the L1 and L2 messengers will be higher.
address internal constant DEFAULT_XDOMAIN_SENDER = 0x000000000000000000000000000000000000dEaD;
/*************
* Variables *
*************/
mapping (bytes32 => bool) public relayedMessages;
mapping (bytes32 => bool) public successfulMessages;
mapping (bytes32 => bool) public sentMessages;
uint256 public messageNonce;
address internal xDomainMsgSender = DEFAULT_XDOMAIN_SENDER;
/***************
* Constructor *
***************/
/**
* @param _libAddressManager Address of the Address Manager.
*/
constructor(address _libAddressManager)
Lib_AddressResolver(_libAddressManager)
ReentrancyGuard()
{}
/********************
* Public Functions *
********************/
function xDomainMessageSender()
public
override
view
returns (
address
)
{
require(xDomainMsgSender != DEFAULT_XDOMAIN_SENDER, "xDomainMessageSender is not set");
return xDomainMsgSender;
}
/**
* Sends a cross domain message to the target messenger.
* @param _target Target contract address.
* @param _message Message to send to the target.
* @param _gasLimit Gas limit for the provided message.
*/
function sendMessage(
address _target,
bytes memory _message,
uint32 _gasLimit
)
override
public
{
bytes memory xDomainCalldata = Lib_CrossDomainUtils.encodeXDomainCalldata(
_target,
msg.sender,
_message,
messageNonce
);
messageNonce += 1;
sentMessages[keccak256(xDomainCalldata)] = true;
_sendXDomainMessage(xDomainCalldata, _gasLimit);
emit SentMessage(xDomainCalldata);
}
/**
* Relays a cross domain message to a contract.
* @inheritdoc iOVM_L2CrossDomainMessenger
*/
function relayMessage(
address _target,
address _sender,
bytes memory _message,
uint256 _messageNonce
)
override
nonReentrant
public
{
require(
_verifyXDomainMessage() == true,
"Provided message could not be verified."
);
bytes memory xDomainCalldata = Lib_CrossDomainUtils.encodeXDomainCalldata(
_target,
_sender,
_message,
_messageNonce
);
bytes32 xDomainCalldataHash = keccak256(xDomainCalldata);
require(
successfulMessages[xDomainCalldataHash] == false,
"Provided message has already been received."
);
// Prevent calls to OVM_L2ToL1MessagePasser, which would enable
// an attacker to maliciously craft the _message to spoof
// a call from any L2 account.
if(_target == resolve("OVM_L2ToL1MessagePasser")){
// Write to the successfulMessages mapping and return immediately.
successfulMessages[xDomainCalldataHash] = true;
return;
}
xDomainMsgSender = _sender;
(bool success, ) = _target.call(_message);
xDomainMsgSender = DEFAULT_XDOMAIN_SENDER;
// Mark the message as received if the call was successful. Ensures that a message can be
// relayed multiple times in the case that the call reverted.
if (success == true) {
successfulMessages[xDomainCalldataHash] = true;
emit RelayedMessage(xDomainCalldataHash);
} else {
emit FailedRelayedMessage(xDomainCalldataHash);
}
// Store an identifier that can be used to prove that the given message was relayed by some
// user. Gives us an easy way to pay relayers for their work.
bytes32 relayId = keccak256(
abi.encodePacked(
xDomainCalldata,
msg.sender,
block.number
)
);
relayedMessages[relayId] = true;
}
/**********************
* Internal Functions *
**********************/
/**
* Verifies that a received cross domain message is valid.
* @return _valid Whether or not the message is valid.
*/
function _verifyXDomainMessage()
view
internal
returns (
bool _valid
)
{
return (
iOVM_L1MessageSender(
resolve("OVM_L1MessageSender")
).getL1MessageSender() == resolve("OVM_L1CrossDomainMessenger")
);
}
/**
* Sends a cross domain message.
* @param _message Message to send.
* param _gasLimit Gas limit for the provided message.
*/
function _sendXDomainMessage(
bytes memory _message,
uint256 // _gasLimit
)
internal
{
iOVM_L2ToL1MessagePasser(resolve("OVM_L2ToL1MessagePasser")).passMessageToL1(_message);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Interface Imports */
import { iOVM_L1StandardBridge } from "../../../iOVM/bridge/tokens/iOVM_L1StandardBridge.sol";
import { iOVM_L1ERC20Bridge } from "../../../iOVM/bridge/tokens/iOVM_L1ERC20Bridge.sol";
import { iOVM_L2ERC20Bridge } from "../../../iOVM/bridge/tokens/iOVM_L2ERC20Bridge.sol";
/* Library Imports */
import { ERC165Checker } from "@openzeppelin/contracts/introspection/ERC165Checker.sol";
import { OVM_CrossDomainEnabled } from "../../../libraries/bridge/OVM_CrossDomainEnabled.sol";
import { Lib_PredeployAddresses } from "../../../libraries/constants/Lib_PredeployAddresses.sol";
/* Contract Imports */
import { IL2StandardERC20 } from "../../../libraries/standards/IL2StandardERC20.sol";
/**
* @title OVM_L2StandardBridge
* @dev The L2 Standard bridge is a contract which works together with the L1 Standard bridge to
* enable ETH and ERC20 transitions between L1 and L2.
* This contract acts as a minter for new tokens when it hears about deposits into the L1 Standard
* bridge.
* This contract also acts as a burner of the tokens intended for withdrawal, informing the L1
* bridge to release L1 funds.
*
* Compiler used: optimistic-solc
* Runtime target: OVM
*/
contract OVM_L2StandardBridge is iOVM_L2ERC20Bridge, OVM_CrossDomainEnabled {
/********************************
* External Contract References *
********************************/
address public l1TokenBridge;
/***************
* Constructor *
***************/
/**
* @param _l2CrossDomainMessenger Cross-domain messenger used by this contract.
* @param _l1TokenBridge Address of the L1 bridge deployed to the main chain.
*/
constructor(
address _l2CrossDomainMessenger,
address _l1TokenBridge
)
OVM_CrossDomainEnabled(_l2CrossDomainMessenger)
{
l1TokenBridge = _l1TokenBridge;
}
/***************
* Withdrawing *
***************/
/**
* @inheritdoc iOVM_L2ERC20Bridge
*/
function withdraw(
address _l2Token,
uint256 _amount,
uint32 _l1Gas,
bytes calldata _data
)
external
override
virtual
{
_initiateWithdrawal(
_l2Token,
msg.sender,
msg.sender,
_amount,
_l1Gas,
_data
);
}
/**
* @inheritdoc iOVM_L2ERC20Bridge
*/
function withdrawTo(
address _l2Token,
address _to,
uint256 _amount,
uint32 _l1Gas,
bytes calldata _data
)
external
override
virtual
{
_initiateWithdrawal(
_l2Token,
msg.sender,
_to,
_amount,
_l1Gas,
_data
);
}
/**
* @dev Performs the logic for deposits by storing the token and informing the L2 token Gateway
* of the deposit.
* @param _l2Token Address of L2 token where withdrawal was initiated.
* @param _from Account to pull the deposit from on L2.
* @param _to Account to give the withdrawal to on L1.
* @param _amount Amount of the token to withdraw.
* param _l1Gas Unused, but included for potential forward compatibility considerations.
* @param _data Optional data to forward to L1. This data is provided
* solely as a convenience for external contracts. Aside from enforcing a maximum
* length, these contracts provide no guarantees about its content.
*/
function _initiateWithdrawal(
address _l2Token,
address _from,
address _to,
uint256 _amount,
uint32 _l1Gas,
bytes calldata _data
)
internal
{
// When a withdrawal is initiated, we burn the withdrawer's funds to prevent subsequent L2
// usage
IL2StandardERC20(_l2Token).burn(msg.sender, _amount);
// Construct calldata for l1TokenBridge.finalizeERC20Withdrawal(_to, _amount)
address l1Token = IL2StandardERC20(_l2Token).l1Token();
bytes memory message;
if (_l2Token == Lib_PredeployAddresses.OVM_ETH) {
message = abi.encodeWithSelector(
iOVM_L1StandardBridge.finalizeETHWithdrawal.selector,
_from,
_to,
_amount,
_data
);
} else {
message = abi.encodeWithSelector(
iOVM_L1ERC20Bridge.finalizeERC20Withdrawal.selector,
l1Token,
_l2Token,
_from,
_to,
_amount,
_data
);
}
// Send message up to L1 bridge
sendCrossDomainMessage(
l1TokenBridge,
_l1Gas,
message
);
emit WithdrawalInitiated(l1Token, _l2Token, msg.sender, _to, _amount, _data);
}
/************************************
* Cross-chain Function: Depositing *
************************************/
/**
* @inheritdoc iOVM_L2ERC20Bridge
*/
function finalizeDeposit(
address _l1Token,
address _l2Token,
address _from,
address _to,
uint256 _amount,
bytes calldata _data
)
external
override
virtual
onlyFromCrossDomainAccount(l1TokenBridge)
{
// Check the target token is compliant and
// verify the deposited token on L1 matches the L2 deposited token representation here
if (
ERC165Checker.supportsInterface(_l2Token, 0x1d1d8b63) &&
_l1Token == IL2StandardERC20(_l2Token).l1Token()
) {
// When a deposit is finalized, we credit the account on L2 with the same amount of
// tokens.
IL2StandardERC20(_l2Token).mint(_to, _amount);
emit DepositFinalized(_l1Token, _l2Token, _from, _to, _amount, _data);
} else {
// Either the L2 token which is being deposited-into disagrees about the correct address
// of its L1 token, or does not support the correct interface.
// This should only happen if there is a malicious L2 token, or if a user somehow
// specified the wrong L2 token address to deposit into.
// In either case, we stop the process here and construct a withdrawal
// message so that users can get their funds out in some cases.
// There is no way to prevent malicious token contracts altogether, but this does limit
// user error and mitigate some forms of malicious contract behavior.
bytes memory message = abi.encodeWithSelector(
iOVM_L1ERC20Bridge.finalizeERC20Withdrawal.selector,
_l1Token,
_l2Token,
_to, // switched the _to and _from here to bounce back the deposit to the sender
_from,
_amount,
_data
);
// Send message up to L1 bridge
sendCrossDomainMessage(
l1TokenBridge,
0,
message
);
emit DepositFailed(_l1Token, _l2Token, _from, _to, _amount, _data);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Contract Imports */
import { L2StandardERC20 } from "../../../libraries/standards/L2StandardERC20.sol";
import { Lib_PredeployAddresses } from "../../../libraries/constants/Lib_PredeployAddresses.sol";
/**
* @title OVM_L2StandardTokenFactory
* @dev Factory contract for creating standard L2 token representations of L1 ERC20s
* compatible with and working on the standard bridge.
* Compiler used: optimistic-solc
* Runtime target: OVM
*/
contract OVM_L2StandardTokenFactory {
event StandardL2TokenCreated(address indexed _l1Token, address indexed _l2Token);
/**
* @dev Creates an instance of the standard ERC20 token on L2.
* @param _l1Token Address of the corresponding L1 token.
* @param _name ERC20 name.
* @param _symbol ERC20 symbol.
*/
function createStandardL2Token(
address _l1Token,
string memory _name,
string memory _symbol
)
external
{
require (_l1Token != address(0), "Must provide L1 token address");
L2StandardERC20 l2Token = new L2StandardERC20(
Lib_PredeployAddresses.L2_STANDARD_BRIDGE,
_l1Token,
_name,
_symbol
);
emit StandardL2TokenCreated(_l1Token, address(l2Token));
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Interface Imports */
import { iOVM_L2ToL1MessagePasser } from "../../iOVM/predeploys/iOVM_L2ToL1MessagePasser.sol";
/**
* @title OVM_L2ToL1MessagePasser
* @dev The L2 to L1 Message Passer is a utility contract which facilitate an L1 proof of the
* of a message on L2. The L1 Cross Domain Messenger performs this proof in its
* _verifyStorageProof function, which verifies the existence of the transaction hash in this
* contract's `sentMessages` mapping.
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_L2ToL1MessagePasser is iOVM_L2ToL1MessagePasser {
/**********************
* Contract Variables *
**********************/
mapping (bytes32 => bool) public sentMessages;
/********************
* Public Functions *
********************/
/**
* Passes a message to L1.
* @param _message Message to pass to L1.
*/
function passMessageToL1(
bytes memory _message
)
override
public
{
// Note: although this function is public, only messages sent from the
// OVM_L2CrossDomainMessenger will be relayed by the OVM_L1CrossDomainMessenger.
// This is enforced by a check in OVM_L1CrossDomainMessenger._verifyStorageProof().
sentMessages[keccak256(
abi.encodePacked(
_message,
msg.sender
)
)] = true;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Library Imports */
import { Lib_Bytes32Utils } from "../../libraries/utils/Lib_Bytes32Utils.sol";
import { Lib_PredeployAddresses } from "../../libraries/constants/Lib_PredeployAddresses.sol";
import { Lib_ExecutionManagerWrapper } from
"../../libraries/wrappers/Lib_ExecutionManagerWrapper.sol";
/**
* @title OVM_ProxyEOA
* @dev The Proxy EOA contract uses a delegate call to execute the logic in an implementation
* contract. In combination with the logic implemented in the ECDSA Contract Account, this enables
* a form of upgradable 'account abstraction' on layer 2.
*
* Compiler used: optimistic-solc
* Runtime target: OVM
*/
contract OVM_ProxyEOA {
/**********
* Events *
**********/
event Upgraded(
address indexed implementation
);
/*************
* Constants *
*************/
// solhint-disable-next-line max-line-length
bytes32 constant IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; //bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1);
/*********************
* Fallback Function *
*********************/
fallback()
external
payable
{
(bool success, bytes memory returndata) = getImplementation().delegatecall(msg.data);
if (success) {
assembly {
return(add(returndata, 0x20), mload(returndata))
}
} else {
assembly {
revert(add(returndata, 0x20), mload(returndata))
}
}
}
// WARNING: We use the deployed bytecode of this contract as a template to create ProxyEOA
// contracts. As a result, we must *not* perform any constructor logic. Use initialization
// functions if necessary.
/********************
* Public Functions *
********************/
/**
* Changes the implementation address.
* @param _implementation New implementation address.
*/
function upgrade(
address _implementation
)
external
{
require(
msg.sender == Lib_ExecutionManagerWrapper.ovmADDRESS(),
"EOAs can only upgrade their own EOA implementation."
);
_setImplementation(_implementation);
emit Upgraded(_implementation);
}
/**
* Gets the address of the current implementation.
* @return Current implementation address.
*/
function getImplementation()
public
view
returns (
address
)
{
bytes32 addr32;
assembly {
addr32 := sload(IMPLEMENTATION_KEY)
}
address implementation = Lib_Bytes32Utils.toAddress(addr32);
if (implementation == address(0)) {
return Lib_PredeployAddresses.ECDSA_CONTRACT_ACCOUNT;
} else {
return implementation;
}
}
/**********************
* Internal Functions *
**********************/
function _setImplementation(
address _implementation
)
internal
{
bytes32 addr32 = Lib_Bytes32Utils.fromAddress(_implementation);
assembly {
sstore(IMPLEMENTATION_KEY, addr32)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Interface Imports */
import { iOVM_SafetyChecker } from "../../iOVM/execution/iOVM_SafetyChecker.sol";
/**
* @title OVM_SafetyChecker
* @dev The Safety Checker verifies that contracts deployed on L2 do not contain any
* "unsafe" operations. An operation is considered unsafe if it would access state variables which
* are specific to the environment (ie. L1 or L2) in which it is executed, as this could be used
* to "escape the sandbox" of the OVM, resulting in non-deterministic fraud proofs.
* That is, an attacker would be able to "prove fraud" on an honestly applied transaction.
* Note that a "safe" contract requires opcodes to appear in a particular pattern;
* omission of "unsafe" opcodes is necessary, but not sufficient.
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_SafetyChecker is iOVM_SafetyChecker {
/********************
* Public Functions *
********************/
/**
* Returns whether or not all of the provided bytecode is safe.
* @param _bytecode The bytecode to safety check.
* @return `true` if the bytecode is safe, `false` otherwise.
*/
function isBytecodeSafe(
bytes memory _bytecode
)
override
external
pure
returns (
bool
)
{
// autogenerated by gen_safety_checker_constants.py
// number of bytes to skip for each opcode
uint256[8] memory opcodeSkippableBytes = [
uint256(0x0001010101010101010101010000000001010101010101010101010101010000),
uint256(0x0100000000000000000000000000000000000000010101010101000000010100),
uint256(0x0000000000000000000000000000000001010101000000010101010100000000),
uint256(0x0203040500000000000000000000000000000000000000000000000000000000),
uint256(0x0101010101010101010101010101010101010101010101010101010101010101),
uint256(0x0101010101000000000000000000000000000000000000000000000000000000),
uint256(0x0000000000000000000000000000000000000000000000000000000000000000),
uint256(0x0000000000000000000000000000000000000000000000000000000000000000)
];
// Mask to gate opcode specific cases
// solhint-disable-next-line max-line-length
uint256 opcodeGateMask = ~uint256(0xffffffffffffffffffffffe000000000fffffffff070ffff9c0ffffec000f001);
// Halting opcodes
// solhint-disable-next-line max-line-length
uint256 opcodeHaltingMask = ~uint256(0x4008000000000000000000000000000000000000004000000000000000000001);
// PUSH opcodes
uint256 opcodePushMask = ~uint256(0xffffffff000000000000000000000000);
uint256 codeLength;
uint256 _pc;
assembly {
_pc := add(_bytecode, 0x20)
}
codeLength = _pc + _bytecode.length;
do {
// current opcode: 0x00...0xff
uint256 opNum;
/* solhint-disable max-line-length */
// inline assembly removes the extra add + bounds check
assembly {
let word := mload(_pc) //load the next 32 bytes at pc into word
// Look up number of bytes to skip from opcodeSkippableBytes and then update indexInWord
// E.g. the 02030405 in opcodeSkippableBytes is the number of bytes to skip for PUSH1->4
// We repeat this 6 times, thus we can only skip bytes for up to PUSH4 ((1+4) * 6 = 30 < 32).
// If we see an opcode that is listed as 0 skippable bytes e.g. PUSH5,
// then we will get stuck on that indexInWord and then opNum will be set to the PUSH5 opcode.
let indexInWord := byte(0, mload(add(opcodeSkippableBytes, byte(0, word))))
indexInWord := add(indexInWord, byte(0, mload(add(opcodeSkippableBytes, byte(indexInWord, word)))))
indexInWord := add(indexInWord, byte(0, mload(add(opcodeSkippableBytes, byte(indexInWord, word)))))
indexInWord := add(indexInWord, byte(0, mload(add(opcodeSkippableBytes, byte(indexInWord, word)))))
indexInWord := add(indexInWord, byte(0, mload(add(opcodeSkippableBytes, byte(indexInWord, word)))))
indexInWord := add(indexInWord, byte(0, mload(add(opcodeSkippableBytes, byte(indexInWord, word)))))
_pc := add(_pc, indexInWord)
opNum := byte(indexInWord, word)
}
/* solhint-enable max-line-length */
// + push opcodes
// + stop opcodes [STOP(0x00),JUMP(0x56),RETURN(0xf3),INVALID(0xfe)]
// + caller opcode CALLER(0x33)
// + blacklisted opcodes
uint256 opBit = 1 << opNum;
if (opBit & opcodeGateMask == 0) {
if (opBit & opcodePushMask == 0) {
// all pushes are valid opcodes
// subsequent bytes are not opcodes. Skip them.
_pc += (opNum - 0x5e); // PUSH1 is 0x60, so opNum-0x5f = PUSHed bytes and we
// +1 to skip the _pc++; line below in order to save gas ((-0x5f + 1) = -0x5e)
continue;
} else if (opBit & opcodeHaltingMask == 0) {
// STOP or JUMP or RETURN or INVALID (Note: REVERT is blacklisted, so not
// included here)
// We are now inside unreachable code until we hit a JUMPDEST!
do {
_pc++;
assembly {
opNum := byte(0, mload(_pc))
}
// encountered a JUMPDEST
if (opNum == 0x5b) break;
// skip PUSHed bytes
// opNum-0x5f = PUSHed bytes (PUSH1 is 0x60)
if ((1 << opNum) & opcodePushMask == 0) _pc += (opNum - 0x5f);
} while (_pc < codeLength);
// opNum is 0x5b, so we don't continue here since the pc++ is fine
} else if (opNum == 0x33) { // Caller opcode
uint256 firstOps; // next 32 bytes of bytecode
uint256 secondOps; // following 32 bytes of bytecode
assembly {
firstOps := mload(_pc)
// 37 bytes total, 5 left over --> 32 - 5 bytes = 27 bytes = 216 bits
secondOps := shr(216, mload(add(_pc, 0x20)))
}
// Call identity precompile
// CALLER POP PUSH1 0x00 PUSH1 0x04 GAS CALL
// 32 - 8 bytes = 24 bytes = 192
if ((firstOps >> 192) == 0x3350600060045af1) {
_pc += 8;
// Call EM and abort execution if instructed
// CALLER PUSH1 0x00 SWAP1 GAS CALL PC PUSH1 0x0E ADD JUMPI RETURNDATASIZE
// PUSH1 0x00 DUP1 RETURNDATACOPY RETURNDATASIZE PUSH1 0x00 REVERT JUMPDEST
// RETURNDATASIZE PUSH1 0x01 EQ ISZERO PC PUSH1 0x0a ADD JUMPI PUSH1 0x01 PUSH1
// 0x00 RETURN JUMPDEST
// solhint-disable-next-line max-line-length
} else if (firstOps == 0x336000905af158600e01573d6000803e3d6000fd5b3d6001141558600a015760 && secondOps == 0x016000f35b) {
_pc += 37;
} else {
return false;
}
continue;
} else {
// encountered a non-whitelisted opcode!
return false;
}
}
_pc++;
} while (_pc < codeLength);
return true;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_EIP155Tx } from "../../libraries/codec/Lib_EIP155Tx.sol";
import { Lib_ExecutionManagerWrapper } from
"../../libraries/wrappers/Lib_ExecutionManagerWrapper.sol";
import { iOVM_ECDSAContractAccount } from "../../iOVM/predeploys/iOVM_ECDSAContractAccount.sol";
/**
* @title OVM_SequencerEntrypoint
* @dev The Sequencer Entrypoint is a predeploy which, despite its name, can in fact be called by
* any account. It accepts a more efficient compressed calldata format, which it decompresses and
* encodes to the standard EIP155 transaction format.
* Compiler used: optimistic-solc
* Runtime target: OVM
*/
contract OVM_SequencerEntrypoint {
/*************
* Libraries *
*************/
using Lib_EIP155Tx for Lib_EIP155Tx.EIP155Tx;
/*********************
* Fallback Function *
*********************/
/**
* Expects an RLP-encoded EIP155 transaction as input. See the EIP for a more detailed
* description of this transaction format:
* https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
*/
fallback()
external
{
// We use this twice, so it's more gas efficient to store a copy of it (barely).
bytes memory encodedTx = msg.data;
// Decode the tx with the correct chain ID.
Lib_EIP155Tx.EIP155Tx memory transaction = Lib_EIP155Tx.decode(
encodedTx,
Lib_ExecutionManagerWrapper.ovmCHAINID()
);
// Value is computed on the fly. Keep it in the stack to save some gas.
address target = transaction.sender();
bool isEmptyContract;
assembly {
isEmptyContract := iszero(extcodesize(target))
}
// If the account is empty, deploy the default EOA to that address.
if (isEmptyContract) {
Lib_ExecutionManagerWrapper.ovmCREATEEOA(
transaction.hash(),
transaction.recoveryParam,
transaction.r,
transaction.s
);
}
// Forward the transaction over to the EOA.
(bool success, bytes memory returndata) = target.call(
abi.encodeWithSelector(iOVM_ECDSAContractAccount.execute.selector, transaction)
);
if (success) {
assembly {
return(add(returndata, 0x20), mload(returndata))
}
} else {
assembly {
revert(add(returndata, 0x20), mload(returndata))
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Library Imports */
import { Lib_PredeployAddresses } from "../../libraries/constants/Lib_PredeployAddresses.sol";
/* Contract Imports */
import { OVM_ETH } from "../predeploys/OVM_ETH.sol";
import { OVM_L2StandardBridge } from "../bridge/tokens/OVM_L2StandardBridge.sol";
/**
* @title OVM_SequencerFeeVault
* @dev Simple holding contract for fees paid to the Sequencer. Likely to be replaced in the future
* but "good enough for now".
*
* Compiler used: optimistic-solc
* Runtime target: OVM
*/
contract OVM_SequencerFeeVault {
/*************
* Constants *
*************/
// Minimum ETH balance that can be withdrawn in a single withdrawal.
uint256 public constant MIN_WITHDRAWAL_AMOUNT = 15 ether;
/*************
* Variables *
*************/
// Address on L1 that will hold the fees once withdrawn. Dynamically initialized within l2geth.
address public l1FeeWallet;
/***************
* Constructor *
***************/
/**
* @param _l1FeeWallet Initial address for the L1 wallet that will hold fees once withdrawn.
* Currently HAS NO EFFECT in production because l2geth will mutate this storage slot during
* the genesis block. This is ONLY for testing purposes.
*/
constructor(
address _l1FeeWallet
) {
l1FeeWallet = _l1FeeWallet;
}
/********************
* Public Functions *
********************/
function withdraw()
public
{
uint256 balance = OVM_ETH(Lib_PredeployAddresses.OVM_ETH).balanceOf(address(this));
require(
balance >= MIN_WITHDRAWAL_AMOUNT,
// solhint-disable-next-line max-line-length
"OVM_SequencerFeeVault: withdrawal amount must be greater than minimum withdrawal amount"
);
OVM_L2StandardBridge(Lib_PredeployAddresses.L2_STANDARD_BRIDGE).withdrawTo(
Lib_PredeployAddresses.OVM_ETH,
l1FeeWallet,
balance,
0,
bytes("")
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
import { Lib_AddressResolver } from "../../libraries/resolver/Lib_AddressResolver.sol";
import { Lib_MerkleTree } from "../../libraries/utils/Lib_MerkleTree.sol";
/* Interface Imports */
import { iOVM_FraudVerifier } from "../../iOVM/verification/iOVM_FraudVerifier.sol";
import { iOVM_StateCommitmentChain } from "../../iOVM/chain/iOVM_StateCommitmentChain.sol";
import { iOVM_CanonicalTransactionChain } from
"../../iOVM/chain/iOVM_CanonicalTransactionChain.sol";
import { iOVM_BondManager } from "../../iOVM/verification/iOVM_BondManager.sol";
import { iOVM_ChainStorageContainer } from "../../iOVM/chain/iOVM_ChainStorageContainer.sol";
/* External Imports */
import "@openzeppelin/contracts/math/SafeMath.sol";
/**
* @title OVM_StateCommitmentChain
* @dev The State Commitment Chain (SCC) contract contains a list of proposed state roots which
* Proposers assert to be a result of each transaction in the Canonical Transaction Chain (CTC).
* Elements here have a 1:1 correspondence with transactions in the CTC, and should be the unique
* state root calculated off-chain by applying the canonical transactions one by one.
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_StateCommitmentChain is iOVM_StateCommitmentChain, Lib_AddressResolver {
/*************
* Constants *
*************/
uint256 public FRAUD_PROOF_WINDOW;
uint256 public SEQUENCER_PUBLISH_WINDOW;
/***************
* Constructor *
***************/
/**
* @param _libAddressManager Address of the Address Manager.
*/
constructor(
address _libAddressManager,
uint256 _fraudProofWindow,
uint256 _sequencerPublishWindow
)
Lib_AddressResolver(_libAddressManager)
{
FRAUD_PROOF_WINDOW = _fraudProofWindow;
SEQUENCER_PUBLISH_WINDOW = _sequencerPublishWindow;
}
/********************
* Public Functions *
********************/
/**
* Accesses the batch storage container.
* @return Reference to the batch storage container.
*/
function batches()
public
view
returns (
iOVM_ChainStorageContainer
)
{
return iOVM_ChainStorageContainer(
resolve("OVM_ChainStorageContainer-SCC-batches")
);
}
/**
* @inheritdoc iOVM_StateCommitmentChain
*/
function getTotalElements()
override
public
view
returns (
uint256 _totalElements
)
{
(uint40 totalElements, ) = _getBatchExtraData();
return uint256(totalElements);
}
/**
* @inheritdoc iOVM_StateCommitmentChain
*/
function getTotalBatches()
override
public
view
returns (
uint256 _totalBatches
)
{
return batches().length();
}
/**
* @inheritdoc iOVM_StateCommitmentChain
*/
function getLastSequencerTimestamp()
override
public
view
returns (
uint256 _lastSequencerTimestamp
)
{
(, uint40 lastSequencerTimestamp) = _getBatchExtraData();
return uint256(lastSequencerTimestamp);
}
/**
* @inheritdoc iOVM_StateCommitmentChain
*/
function appendStateBatch(
bytes32[] memory _batch,
uint256 _shouldStartAtElement
)
override
public
{
// Fail fast in to make sure our batch roots aren't accidentally made fraudulent by the
// publication of batches by some other user.
require(
_shouldStartAtElement == getTotalElements(),
"Actual batch start index does not match expected start index."
);
// Proposers must have previously staked at the BondManager
require(
iOVM_BondManager(resolve("OVM_BondManager")).isCollateralized(msg.sender),
"Proposer does not have enough collateral posted"
);
require(
_batch.length > 0,
"Cannot submit an empty state batch."
);
require(
getTotalElements() + _batch.length <=
iOVM_CanonicalTransactionChain(resolve("OVM_CanonicalTransactionChain"))
.getTotalElements(),
"Number of state roots cannot exceed the number of canonical transactions."
);
// Pass the block's timestamp and the publisher of the data
// to be used in the fraud proofs
_appendBatch(
_batch,
abi.encode(block.timestamp, msg.sender)
);
}
/**
* @inheritdoc iOVM_StateCommitmentChain
*/
function deleteStateBatch(
Lib_OVMCodec.ChainBatchHeader memory _batchHeader
)
override
public
{
require(
msg.sender == resolve("OVM_FraudVerifier"),
"State batches can only be deleted by the OVM_FraudVerifier."
);
require(
_isValidBatchHeader(_batchHeader),
"Invalid batch header."
);
require(
insideFraudProofWindow(_batchHeader),
"State batches can only be deleted within the fraud proof window."
);
_deleteBatch(_batchHeader);
}
/**
* @inheritdoc iOVM_StateCommitmentChain
*/
function verifyStateCommitment(
bytes32 _element,
Lib_OVMCodec.ChainBatchHeader memory _batchHeader,
Lib_OVMCodec.ChainInclusionProof memory _proof
)
override
public
view
returns (
bool
)
{
require(
_isValidBatchHeader(_batchHeader),
"Invalid batch header."
);
require(
Lib_MerkleTree.verify(
_batchHeader.batchRoot,
_element,
_proof.index,
_proof.siblings,
_batchHeader.batchSize
),
"Invalid inclusion proof."
);
return true;
}
/**
* @inheritdoc iOVM_StateCommitmentChain
*/
function insideFraudProofWindow(
Lib_OVMCodec.ChainBatchHeader memory _batchHeader
)
override
public
view
returns (
bool _inside
)
{
(uint256 timestamp,) = abi.decode(
_batchHeader.extraData,
(uint256, address)
);
require(
timestamp != 0,
"Batch header timestamp cannot be zero"
);
return SafeMath.add(timestamp, FRAUD_PROOF_WINDOW) > block.timestamp;
}
/**********************
* Internal Functions *
**********************/
/**
* Parses the batch context from the extra data.
* @return Total number of elements submitted.
* @return Timestamp of the last batch submitted by the sequencer.
*/
function _getBatchExtraData()
internal
view
returns (
uint40,
uint40
)
{
bytes27 extraData = batches().getGlobalMetadata();
// solhint-disable max-line-length
uint40 totalElements;
uint40 lastSequencerTimestamp;
assembly {
extraData := shr(40, extraData)
totalElements := and(extraData, 0x000000000000000000000000000000000000000000000000000000FFFFFFFFFF)
lastSequencerTimestamp := shr(40, and(extraData, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000000000))
}
// solhint-enable max-line-length
return (
totalElements,
lastSequencerTimestamp
);
}
/**
* Encodes the batch context for the extra data.
* @param _totalElements Total number of elements submitted.
* @param _lastSequencerTimestamp Timestamp of the last batch submitted by the sequencer.
* @return Encoded batch context.
*/
function _makeBatchExtraData(
uint40 _totalElements,
uint40 _lastSequencerTimestamp
)
internal
pure
returns (
bytes27
)
{
bytes27 extraData;
assembly {
extraData := _totalElements
extraData := or(extraData, shl(40, _lastSequencerTimestamp))
extraData := shl(40, extraData)
}
return extraData;
}
/**
* Appends a batch to the chain.
* @param _batch Elements within the batch.
* @param _extraData Any extra data to append to the batch.
*/
function _appendBatch(
bytes32[] memory _batch,
bytes memory _extraData
)
internal
{
address sequencer = resolve("OVM_Proposer");
(uint40 totalElements, uint40 lastSequencerTimestamp) = _getBatchExtraData();
if (msg.sender == sequencer) {
lastSequencerTimestamp = uint40(block.timestamp);
} else {
// We keep track of the last batch submitted by the sequencer so there's a window in
// which only the sequencer can publish state roots. A window like this just reduces
// the chance of "system breaking" state roots being published while we're still in
// testing mode. This window should be removed or significantly reduced in the future.
require(
lastSequencerTimestamp + SEQUENCER_PUBLISH_WINDOW < block.timestamp,
"Cannot publish state roots within the sequencer publication window."
);
}
// For efficiency reasons getMerkleRoot modifies the `_batch` argument in place
// while calculating the root hash therefore any arguments passed to it must not
// be used again afterwards
Lib_OVMCodec.ChainBatchHeader memory batchHeader = Lib_OVMCodec.ChainBatchHeader({
batchIndex: getTotalBatches(),
batchRoot: Lib_MerkleTree.getMerkleRoot(_batch),
batchSize: _batch.length,
prevTotalElements: totalElements,
extraData: _extraData
});
emit StateBatchAppended(
batchHeader.batchIndex,
batchHeader.batchRoot,
batchHeader.batchSize,
batchHeader.prevTotalElements,
batchHeader.extraData
);
batches().push(
Lib_OVMCodec.hashBatchHeader(batchHeader),
_makeBatchExtraData(
uint40(batchHeader.prevTotalElements + batchHeader.batchSize),
lastSequencerTimestamp
)
);
}
/**
* Removes a batch and all subsequent batches from the chain.
* @param _batchHeader Header of the batch to remove.
*/
function _deleteBatch(
Lib_OVMCodec.ChainBatchHeader memory _batchHeader
)
internal
{
require(
_batchHeader.batchIndex < batches().length(),
"Invalid batch index."
);
require(
_isValidBatchHeader(_batchHeader),
"Invalid batch header."
);
batches().deleteElementsAfterInclusive(
_batchHeader.batchIndex,
_makeBatchExtraData(
uint40(_batchHeader.prevTotalElements),
0
)
);
emit StateBatchDeleted(
_batchHeader.batchIndex,
_batchHeader.batchRoot
);
}
/**
* Checks that a batch header matches the stored hash for the given index.
* @param _batchHeader Batch header to validate.
* @return Whether or not the header matches the stored one.
*/
function _isValidBatchHeader(
Lib_OVMCodec.ChainBatchHeader memory _batchHeader
)
internal
view
returns (
bool
)
{
return Lib_OVMCodec.hashBatchHeader(_batchHeader) == batches().get(_batchHeader.batchIndex);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
/* Interface Imports */
import { iOVM_StateManager } from "../../iOVM/execution/iOVM_StateManager.sol";
/**
* @title OVM_StateManager
* @dev The State Manager contract holds all storage values for contracts in the OVM. It can only be
* written to by the Execution Manager and State Transitioner. It runs on L1 during the setup and
* execution of a fraud proof.
* The same logic runs on L2, but has been implemented as a precompile in the L2 go-ethereum client
* (see https://github.com/ethereum-optimism/go-ethereum/blob/master/core/vm/ovm_state_manager.go).
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_StateManager is iOVM_StateManager {
/*************
* Constants *
*************/
bytes32 constant internal EMPTY_ACCOUNT_STORAGE_ROOT =
0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421;
bytes32 constant internal EMPTY_ACCOUNT_CODE_HASH =
0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
bytes32 constant internal STORAGE_XOR_VALUE =
0xFEEDFACECAFEBEEFFEEDFACECAFEBEEFFEEDFACECAFEBEEFFEEDFACECAFEBEEF;
/*************
* Variables *
*************/
address override public owner;
address override public ovmExecutionManager;
mapping (address => Lib_OVMCodec.Account) internal accounts;
mapping (address => mapping (bytes32 => bytes32)) internal contractStorage;
mapping (address => mapping (bytes32 => bool)) internal verifiedContractStorage;
mapping (bytes32 => ItemState) internal itemStates;
uint256 internal totalUncommittedAccounts;
uint256 internal totalUncommittedContractStorage;
/***************
* Constructor *
***************/
/**
* @param _owner Address of the owner of this contract.
*/
constructor(
address _owner
)
{
owner = _owner;
}
/**********************
* Function Modifiers *
**********************/
/**
* Simple authentication, this contract should only be accessible to the owner
* (which is expected to be the State Transitioner during `PRE_EXECUTION`
* or the OVM_ExecutionManager during transaction execution.
*/
modifier authenticated() {
// owner is the State Transitioner
require(
msg.sender == owner || msg.sender == ovmExecutionManager,
"Function can only be called by authenticated addresses"
);
_;
}
/********************
* Public Functions *
********************/
/**
* Checks whether a given address is allowed to modify this contract.
* @param _address Address to check.
* @return Whether or not the address can modify this contract.
*/
function isAuthenticated(
address _address
)
override
public
view
returns (
bool
)
{
return (_address == owner || _address == ovmExecutionManager);
}
/**
* Sets the address of the OVM_ExecutionManager.
* @param _ovmExecutionManager Address of the OVM_ExecutionManager.
*/
function setExecutionManager(
address _ovmExecutionManager
)
override
public
authenticated
{
ovmExecutionManager = _ovmExecutionManager;
}
/**
* Inserts an account into the state.
* @param _address Address of the account to insert.
* @param _account Account to insert for the given address.
*/
function putAccount(
address _address,
Lib_OVMCodec.Account memory _account
)
override
public
authenticated
{
accounts[_address] = _account;
}
/**
* Marks an account as empty.
* @param _address Address of the account to mark.
*/
function putEmptyAccount(
address _address
)
override
public
authenticated
{
Lib_OVMCodec.Account storage account = accounts[_address];
account.storageRoot = EMPTY_ACCOUNT_STORAGE_ROOT;
account.codeHash = EMPTY_ACCOUNT_CODE_HASH;
}
/**
* Retrieves an account from the state.
* @param _address Address of the account to retrieve.
* @return Account for the given address.
*/
function getAccount(
address _address
)
override
public
view
returns (
Lib_OVMCodec.Account memory
)
{
return accounts[_address];
}
/**
* Checks whether the state has a given account.
* @param _address Address of the account to check.
* @return Whether or not the state has the account.
*/
function hasAccount(
address _address
)
override
public
view
returns (
bool
)
{
return accounts[_address].codeHash != bytes32(0);
}
/**
* Checks whether the state has a given known empty account.
* @param _address Address of the account to check.
* @return Whether or not the state has the empty account.
*/
function hasEmptyAccount(
address _address
)
override
public
view
returns (
bool
)
{
return (
accounts[_address].codeHash == EMPTY_ACCOUNT_CODE_HASH
&& accounts[_address].nonce == 0
);
}
/**
* Sets the nonce of an account.
* @param _address Address of the account to modify.
* @param _nonce New account nonce.
*/
function setAccountNonce(
address _address,
uint256 _nonce
)
override
public
authenticated
{
accounts[_address].nonce = _nonce;
}
/**
* Gets the nonce of an account.
* @param _address Address of the account to access.
* @return Nonce of the account.
*/
function getAccountNonce(
address _address
)
override
public
view
returns (
uint256
)
{
return accounts[_address].nonce;
}
/**
* Retrieves the Ethereum address of an account.
* @param _address Address of the account to access.
* @return Corresponding Ethereum address.
*/
function getAccountEthAddress(
address _address
)
override
public
view
returns (
address
)
{
return accounts[_address].ethAddress;
}
/**
* Retrieves the storage root of an account.
* @param _address Address of the account to access.
* @return Corresponding storage root.
*/
function getAccountStorageRoot(
address _address
)
override
public
view
returns (
bytes32
)
{
return accounts[_address].storageRoot;
}
/**
* Initializes a pending account (during CREATE or CREATE2) with the default values.
* @param _address Address of the account to initialize.
*/
function initPendingAccount(
address _address
)
override
public
authenticated
{
Lib_OVMCodec.Account storage account = accounts[_address];
account.nonce = 1;
account.storageRoot = EMPTY_ACCOUNT_STORAGE_ROOT;
account.codeHash = EMPTY_ACCOUNT_CODE_HASH;
account.isFresh = true;
}
/**
* Finalizes the creation of a pending account (during CREATE or CREATE2).
* @param _address Address of the account to finalize.
* @param _ethAddress Address of the account's associated contract on Ethereum.
* @param _codeHash Hash of the account's code.
*/
function commitPendingAccount(
address _address,
address _ethAddress,
bytes32 _codeHash
)
override
public
authenticated
{
Lib_OVMCodec.Account storage account = accounts[_address];
account.ethAddress = _ethAddress;
account.codeHash = _codeHash;
}
/**
* Checks whether an account has already been retrieved, and marks it as retrieved if not.
* @param _address Address of the account to check.
* @return Whether or not the account was already loaded.
*/
function testAndSetAccountLoaded(
address _address
)
override
public
authenticated
returns (
bool
)
{
return _testAndSetItemState(
_getItemHash(_address),
ItemState.ITEM_LOADED
);
}
/**
* Checks whether an account has already been modified, and marks it as modified if not.
* @param _address Address of the account to check.
* @return Whether or not the account was already modified.
*/
function testAndSetAccountChanged(
address _address
)
override
public
authenticated
returns (
bool
)
{
return _testAndSetItemState(
_getItemHash(_address),
ItemState.ITEM_CHANGED
);
}
/**
* Attempts to mark an account as committed.
* @param _address Address of the account to commit.
* @return Whether or not the account was committed.
*/
function commitAccount(
address _address
)
override
public
authenticated
returns (
bool
)
{
bytes32 item = _getItemHash(_address);
if (itemStates[item] != ItemState.ITEM_CHANGED) {
return false;
}
itemStates[item] = ItemState.ITEM_COMMITTED;
totalUncommittedAccounts -= 1;
return true;
}
/**
* Increments the total number of uncommitted accounts.
*/
function incrementTotalUncommittedAccounts()
override
public
authenticated
{
totalUncommittedAccounts += 1;
}
/**
* Gets the total number of uncommitted accounts.
* @return Total uncommitted accounts.
*/
function getTotalUncommittedAccounts()
override
public
view
returns (
uint256
)
{
return totalUncommittedAccounts;
}
/**
* Checks whether a given account was changed during execution.
* @param _address Address to check.
* @return Whether or not the account was changed.
*/
function wasAccountChanged(
address _address
)
override
public
view
returns (
bool
)
{
bytes32 item = _getItemHash(_address);
return itemStates[item] >= ItemState.ITEM_CHANGED;
}
/**
* Checks whether a given account was committed after execution.
* @param _address Address to check.
* @return Whether or not the account was committed.
*/
function wasAccountCommitted(
address _address
)
override
public
view
returns (
bool
)
{
bytes32 item = _getItemHash(_address);
return itemStates[item] >= ItemState.ITEM_COMMITTED;
}
/************************************
* Public Functions: Storage Access *
************************************/
/**
* Changes a contract storage slot value.
* @param _contract Address of the contract to modify.
* @param _key 32 byte storage slot key.
* @param _value 32 byte storage slot value.
*/
function putContractStorage(
address _contract,
bytes32 _key,
bytes32 _value
)
override
public
authenticated
{
// A hilarious optimization. `SSTORE`ing a value of `bytes32(0)` is common enough that it's
// worth populating this with a non-zero value in advance (during the fraud proof
// initialization phase) to cut the execution-time cost down to 5000 gas.
contractStorage[_contract][_key] = _value ^ STORAGE_XOR_VALUE;
// Only used when initially populating the contract storage. OVM_ExecutionManager will
// perform a `hasContractStorage` INVALID_STATE_ACCESS check before putting any contract
// storage because writing to zero when the actual value is nonzero causes a gas
// discrepancy. Could be moved into a new `putVerifiedContractStorage` function, or
// something along those lines.
if (verifiedContractStorage[_contract][_key] == false) {
verifiedContractStorage[_contract][_key] = true;
}
}
/**
* Retrieves a contract storage slot value.
* @param _contract Address of the contract to access.
* @param _key 32 byte storage slot key.
* @return 32 byte storage slot value.
*/
function getContractStorage(
address _contract,
bytes32 _key
)
override
public
view
returns (
bytes32
)
{
// Storage XOR system doesn't work for newly created contracts that haven't set this
// storage slot value yet.
if (
verifiedContractStorage[_contract][_key] == false
&& accounts[_contract].isFresh
) {
return bytes32(0);
}
// See `putContractStorage` for more information about the XOR here.
return contractStorage[_contract][_key] ^ STORAGE_XOR_VALUE;
}
/**
* Checks whether a contract storage slot exists in the state.
* @param _contract Address of the contract to access.
* @param _key 32 byte storage slot key.
* @return Whether or not the key was set in the state.
*/
function hasContractStorage(
address _contract,
bytes32 _key
)
override
public
view
returns (
bool
)
{
return verifiedContractStorage[_contract][_key] || accounts[_contract].isFresh;
}
/**
* Checks whether a storage slot has already been retrieved, and marks it as retrieved if not.
* @param _contract Address of the contract to check.
* @param _key 32 byte storage slot key.
* @return Whether or not the slot was already loaded.
*/
function testAndSetContractStorageLoaded(
address _contract,
bytes32 _key
)
override
public
authenticated
returns (
bool
)
{
return _testAndSetItemState(
_getItemHash(_contract, _key),
ItemState.ITEM_LOADED
);
}
/**
* Checks whether a storage slot has already been modified, and marks it as modified if not.
* @param _contract Address of the contract to check.
* @param _key 32 byte storage slot key.
* @return Whether or not the slot was already modified.
*/
function testAndSetContractStorageChanged(
address _contract,
bytes32 _key
)
override
public
authenticated
returns (
bool
)
{
return _testAndSetItemState(
_getItemHash(_contract, _key),
ItemState.ITEM_CHANGED
);
}
/**
* Attempts to mark a storage slot as committed.
* @param _contract Address of the account to commit.
* @param _key 32 byte slot key to commit.
* @return Whether or not the slot was committed.
*/
function commitContractStorage(
address _contract,
bytes32 _key
)
override
public
authenticated
returns (
bool
)
{
bytes32 item = _getItemHash(_contract, _key);
if (itemStates[item] != ItemState.ITEM_CHANGED) {
return false;
}
itemStates[item] = ItemState.ITEM_COMMITTED;
totalUncommittedContractStorage -= 1;
return true;
}
/**
* Increments the total number of uncommitted storage slots.
*/
function incrementTotalUncommittedContractStorage()
override
public
authenticated
{
totalUncommittedContractStorage += 1;
}
/**
* Gets the total number of uncommitted storage slots.
* @return Total uncommitted storage slots.
*/
function getTotalUncommittedContractStorage()
override
public
view
returns (
uint256
)
{
return totalUncommittedContractStorage;
}
/**
* Checks whether a given storage slot was changed during execution.
* @param _contract Address to check.
* @param _key Key of the storage slot to check.
* @return Whether or not the storage slot was changed.
*/
function wasContractStorageChanged(
address _contract,
bytes32 _key
)
override
public
view
returns (
bool
)
{
bytes32 item = _getItemHash(_contract, _key);
return itemStates[item] >= ItemState.ITEM_CHANGED;
}
/**
* Checks whether a given storage slot was committed after execution.
* @param _contract Address to check.
* @param _key Key of the storage slot to check.
* @return Whether or not the storage slot was committed.
*/
function wasContractStorageCommitted(
address _contract,
bytes32 _key
)
override
public
view
returns (
bool
)
{
bytes32 item = _getItemHash(_contract, _key);
return itemStates[item] >= ItemState.ITEM_COMMITTED;
}
/**********************
* Internal Functions *
**********************/
/**
* Generates a unique hash for an address.
* @param _address Address to generate a hash for.
* @return Unique hash for the given address.
*/
function _getItemHash(
address _address
)
internal
pure
returns (
bytes32
)
{
return keccak256(abi.encodePacked(_address));
}
/**
* Generates a unique hash for an address/key pair.
* @param _contract Address to generate a hash for.
* @param _key Key to generate a hash for.
* @return Unique hash for the given pair.
*/
function _getItemHash(
address _contract,
bytes32 _key
)
internal
pure
returns (
bytes32
)
{
return keccak256(abi.encodePacked(
_contract,
_key
));
}
/**
* Checks whether an item is in a particular state (ITEM_LOADED or ITEM_CHANGED) and sets the
* item to the provided state if not.
* @param _item 32 byte item ID to check.
* @param _minItemState Minimum state that must be satisfied by the item.
* @return Whether or not the item was already in the state.
*/
function _testAndSetItemState(
bytes32 _item,
ItemState _minItemState
)
internal
returns (
bool
)
{
bool wasItemState = itemStates[_item] >= _minItemState;
if (wasItemState == false) {
itemStates[_item] = _minItemState;
}
return wasItemState;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Interface Imports */
import { iOVM_StateManager } from "../../iOVM/execution/iOVM_StateManager.sol";
import { iOVM_StateManagerFactory } from "../../iOVM/execution/iOVM_StateManagerFactory.sol";
/* Contract Imports */
import { OVM_StateManager } from "./OVM_StateManager.sol";
/**
* @title OVM_StateManagerFactory
* @dev The State Manager Factory is called by a State Transitioner's init code, to create a new
* State Manager for use in the Fraud Verification process.
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_StateManagerFactory is iOVM_StateManagerFactory {
/********************
* Public Functions *
********************/
/**
* Creates a new OVM_StateManager
* @param _owner Owner of the created contract.
* @return New OVM_StateManager instance.
*/
function create(
address _owner
)
override
public
returns (
iOVM_StateManager
)
{
return new OVM_StateManager(_owner);
}
}
// SPDX-License-Identifier: MIT
// @unsupported: ovm
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
import { Lib_AddressResolver } from "../../libraries/resolver/Lib_AddressResolver.sol";
import { Lib_EthUtils } from "../../libraries/utils/Lib_EthUtils.sol";
import { Lib_Bytes32Utils } from "../../libraries/utils/Lib_Bytes32Utils.sol";
import { Lib_BytesUtils } from "../../libraries/utils/Lib_BytesUtils.sol";
import { Lib_SecureMerkleTrie } from "../../libraries/trie/Lib_SecureMerkleTrie.sol";
import { Lib_RLPWriter } from "../../libraries/rlp/Lib_RLPWriter.sol";
import { Lib_RLPReader } from "../../libraries/rlp/Lib_RLPReader.sol";
/* Interface Imports */
import { iOVM_StateTransitioner } from "../../iOVM/verification/iOVM_StateTransitioner.sol";
import { iOVM_BondManager } from "../../iOVM/verification/iOVM_BondManager.sol";
import { iOVM_ExecutionManager } from "../../iOVM/execution/iOVM_ExecutionManager.sol";
import { iOVM_StateManager } from "../../iOVM/execution/iOVM_StateManager.sol";
import { iOVM_StateManagerFactory } from "../../iOVM/execution/iOVM_StateManagerFactory.sol";
/* Contract Imports */
import { Abs_FraudContributor } from "./Abs_FraudContributor.sol";
/**
* @title OVM_StateTransitioner
* @dev The State Transitioner coordinates the execution of a state transition during the evaluation
* of a fraud proof. It feeds verified input to the Execution Manager's run(), and controls a
* State Manager (which is uniquely created for each fraud proof).
* Once a fraud proof has been initialized, this contract is provided with the pre-state root and
* verifies that the OVM storage slots committed to the State Mangager are contained in that state
* This contract controls the State Manager and Execution Manager, and uses them to calculate the
* post-state root by applying the transaction. The Fraud Verifier can then check for fraud by
* comparing the calculated post-state root with the proposed post-state root.
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_StateTransitioner is Lib_AddressResolver, Abs_FraudContributor, iOVM_StateTransitioner
{
/*******************
* Data Structures *
*******************/
enum TransitionPhase {
PRE_EXECUTION,
POST_EXECUTION,
COMPLETE
}
/*******************************************
* Contract Variables: Contract References *
*******************************************/
iOVM_StateManager public ovmStateManager;
/*******************************************
* Contract Variables: Internal Accounting *
*******************************************/
bytes32 internal preStateRoot;
bytes32 internal postStateRoot;
TransitionPhase public phase;
uint256 internal stateTransitionIndex;
bytes32 internal transactionHash;
/*************
* Constants *
*************/
// solhint-disable-next-line max-line-length
bytes32 internal constant EMPTY_ACCOUNT_CODE_HASH = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line max-line-length
bytes32 internal constant EMPTY_ACCOUNT_STORAGE_ROOT = 0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421;
/***************
* Constructor *
***************/
/**
* @param _libAddressManager Address of the Address Manager.
* @param _stateTransitionIndex Index of the state transition being verified.
* @param _preStateRoot State root before the transition was executed.
* @param _transactionHash Hash of the executed transaction.
*/
constructor(
address _libAddressManager,
uint256 _stateTransitionIndex,
bytes32 _preStateRoot,
bytes32 _transactionHash
)
Lib_AddressResolver(_libAddressManager)
{
stateTransitionIndex = _stateTransitionIndex;
preStateRoot = _preStateRoot;
postStateRoot = _preStateRoot;
transactionHash = _transactionHash;
ovmStateManager = iOVM_StateManagerFactory(resolve("OVM_StateManagerFactory"))
.create(address(this));
}
/**********************
* Function Modifiers *
**********************/
/**
* Checks that a function is only run during a specific phase.
* @param _phase Phase the function must run within.
*/
modifier onlyDuringPhase(
TransitionPhase _phase
) {
require(
phase == _phase,
"Function must be called during the correct phase."
);
_;
}
/**********************************
* Public Functions: State Access *
**********************************/
/**
* Retrieves the state root before execution.
* @return _preStateRoot State root before execution.
*/
function getPreStateRoot()
override
external
view
returns (
bytes32 _preStateRoot
)
{
return preStateRoot;
}
/**
* Retrieves the state root after execution.
* @return _postStateRoot State root after execution.
*/
function getPostStateRoot()
override
external
view
returns (
bytes32 _postStateRoot
)
{
return postStateRoot;
}
/**
* Checks whether the transitioner is complete.
* @return _complete Whether or not the transition process is finished.
*/
function isComplete()
override
external
view
returns (
bool _complete
)
{
return phase == TransitionPhase.COMPLETE;
}
/***********************************
* Public Functions: Pre-Execution *
***********************************/
/**
* Allows a user to prove the initial state of a contract.
* @param _ovmContractAddress Address of the contract on the OVM.
* @param _ethContractAddress Address of the corresponding contract on L1.
* @param _stateTrieWitness Proof of the account state.
*/
function proveContractState(
address _ovmContractAddress,
address _ethContractAddress,
bytes memory _stateTrieWitness
)
override
external
onlyDuringPhase(TransitionPhase.PRE_EXECUTION)
contributesToFraudProof(preStateRoot, transactionHash)
{
// Exit quickly to avoid unnecessary work.
require(
(
ovmStateManager.hasAccount(_ovmContractAddress) == false
&& ovmStateManager.hasEmptyAccount(_ovmContractAddress) == false
),
"Account state has already been proven."
);
// Function will fail if the proof is not a valid inclusion or exclusion proof.
(
bool exists,
bytes memory encodedAccount
) = Lib_SecureMerkleTrie.get(
abi.encodePacked(_ovmContractAddress),
_stateTrieWitness,
preStateRoot
);
if (exists == true) {
// Account exists, this was an inclusion proof.
Lib_OVMCodec.EVMAccount memory account = Lib_OVMCodec.decodeEVMAccount(
encodedAccount
);
address ethContractAddress = _ethContractAddress;
if (account.codeHash == EMPTY_ACCOUNT_CODE_HASH) {
// Use a known empty contract to prevent an attack in which a user provides a
// contract address here and then later deploys code to it.
ethContractAddress = 0x0000000000000000000000000000000000000000;
} else {
// Otherwise, make sure that the code at the provided eth address matches the hash
// of the code stored on L2.
require(
Lib_EthUtils.getCodeHash(ethContractAddress) == account.codeHash,
// solhint-disable-next-line max-line-length
"OVM_StateTransitioner: Provided L1 contract code hash does not match L2 contract code hash."
);
}
ovmStateManager.putAccount(
_ovmContractAddress,
Lib_OVMCodec.Account({
nonce: account.nonce,
balance: account.balance,
storageRoot: account.storageRoot,
codeHash: account.codeHash,
ethAddress: ethContractAddress,
isFresh: false
})
);
} else {
// Account does not exist, this was an exclusion proof.
ovmStateManager.putEmptyAccount(_ovmContractAddress);
}
}
/**
* Allows a user to prove the initial state of a contract storage slot.
* @param _ovmContractAddress Address of the contract on the OVM.
* @param _key Claimed account slot key.
* @param _storageTrieWitness Proof of the storage slot.
*/
function proveStorageSlot(
address _ovmContractAddress,
bytes32 _key,
bytes memory _storageTrieWitness
)
override
external
onlyDuringPhase(TransitionPhase.PRE_EXECUTION)
contributesToFraudProof(preStateRoot, transactionHash)
{
// Exit quickly to avoid unnecessary work.
require(
ovmStateManager.hasContractStorage(_ovmContractAddress, _key) == false,
"Storage slot has already been proven."
);
require(
ovmStateManager.hasAccount(_ovmContractAddress) == true,
"Contract must be verified before proving a storage slot."
);
bytes32 storageRoot = ovmStateManager.getAccountStorageRoot(_ovmContractAddress);
bytes32 value;
if (storageRoot == EMPTY_ACCOUNT_STORAGE_ROOT) {
// Storage trie was empty, so the user is always allowed to insert zero-byte values.
value = bytes32(0);
} else {
// Function will fail if the proof is not a valid inclusion or exclusion proof.
(
bool exists,
bytes memory encodedValue
) = Lib_SecureMerkleTrie.get(
abi.encodePacked(_key),
_storageTrieWitness,
storageRoot
);
if (exists == true) {
// Inclusion proof.
// Stored values are RLP encoded, with leading zeros removed.
value = Lib_BytesUtils.toBytes32PadLeft(
Lib_RLPReader.readBytes(encodedValue)
);
} else {
// Exclusion proof, can only be zero bytes.
value = bytes32(0);
}
}
ovmStateManager.putContractStorage(
_ovmContractAddress,
_key,
value
);
}
/*******************************
* Public Functions: Execution *
*******************************/
/**
* Executes the state transition.
* @param _transaction OVM transaction to execute.
*/
function applyTransaction(
Lib_OVMCodec.Transaction memory _transaction
)
override
external
onlyDuringPhase(TransitionPhase.PRE_EXECUTION)
contributesToFraudProof(preStateRoot, transactionHash)
{
require(
Lib_OVMCodec.hashTransaction(_transaction) == transactionHash,
"Invalid transaction provided."
);
// We require gas to complete the logic here in run() before/after execution,
// But must ensure the full _tx.gasLimit can be given to the ovmCALL (determinism)
// This includes 1/64 of the gas getting lost because of EIP-150 (lost twice--first
// going into EM, then going into the code contract).
require(
// 1032/1000 = 1.032 = (64/63)^2 rounded up
gasleft() >= 100000 + _transaction.gasLimit * 1032 / 1000,
"Not enough gas to execute transaction deterministically."
);
iOVM_ExecutionManager ovmExecutionManager =
iOVM_ExecutionManager(resolve("OVM_ExecutionManager"));
// We call `setExecutionManager` right before `run` (and not earlier) just in case the
// OVM_ExecutionManager address was updated between the time when this contract was created
// and when `applyTransaction` was called.
ovmStateManager.setExecutionManager(address(ovmExecutionManager));
// `run` always succeeds *unless* the user hasn't provided enough gas to `applyTransaction`
// or an INVALID_STATE_ACCESS flag was triggered. Either way, we won't get beyond this line
// if that's the case.
ovmExecutionManager.run(_transaction, address(ovmStateManager));
// Prevent the Execution Manager from calling this SM again.
ovmStateManager.setExecutionManager(address(0));
phase = TransitionPhase.POST_EXECUTION;
}
/************************************
* Public Functions: Post-Execution *
************************************/
/**
* Allows a user to commit the final state of a contract.
* @param _ovmContractAddress Address of the contract on the OVM.
* @param _stateTrieWitness Proof of the account state.
*/
function commitContractState(
address _ovmContractAddress,
bytes memory _stateTrieWitness
)
override
external
onlyDuringPhase(TransitionPhase.POST_EXECUTION)
contributesToFraudProof(preStateRoot, transactionHash)
{
require(
ovmStateManager.getTotalUncommittedContractStorage() == 0,
"All storage must be committed before committing account states."
);
require (
ovmStateManager.commitAccount(_ovmContractAddress) == true,
"Account state wasn't changed or has already been committed."
);
Lib_OVMCodec.Account memory account = ovmStateManager.getAccount(_ovmContractAddress);
postStateRoot = Lib_SecureMerkleTrie.update(
abi.encodePacked(_ovmContractAddress),
Lib_OVMCodec.encodeEVMAccount(
Lib_OVMCodec.toEVMAccount(account)
),
_stateTrieWitness,
postStateRoot
);
// Emit an event to help clients figure out the proof ordering.
emit AccountCommitted(
_ovmContractAddress
);
}
/**
* Allows a user to commit the final state of a contract storage slot.
* @param _ovmContractAddress Address of the contract on the OVM.
* @param _key Claimed account slot key.
* @param _storageTrieWitness Proof of the storage slot.
*/
function commitStorageSlot(
address _ovmContractAddress,
bytes32 _key,
bytes memory _storageTrieWitness
)
override
external
onlyDuringPhase(TransitionPhase.POST_EXECUTION)
contributesToFraudProof(preStateRoot, transactionHash)
{
require(
ovmStateManager.commitContractStorage(_ovmContractAddress, _key) == true,
"Storage slot value wasn't changed or has already been committed."
);
Lib_OVMCodec.Account memory account = ovmStateManager.getAccount(_ovmContractAddress);
bytes32 value = ovmStateManager.getContractStorage(_ovmContractAddress, _key);
account.storageRoot = Lib_SecureMerkleTrie.update(
abi.encodePacked(_key),
Lib_RLPWriter.writeBytes(
Lib_Bytes32Utils.removeLeadingZeros(value)
),
_storageTrieWitness,
account.storageRoot
);
ovmStateManager.putAccount(_ovmContractAddress, account);
// Emit an event to help clients figure out the proof ordering.
emit ContractStorageCommitted(
_ovmContractAddress,
_key
);
}
/**********************************
* Public Functions: Finalization *
**********************************/
/**
* Finalizes the transition process.
*/
function completeTransition()
override
external
onlyDuringPhase(TransitionPhase.POST_EXECUTION)
{
require(
ovmStateManager.getTotalUncommittedAccounts() == 0,
"All accounts must be committed before completing a transition."
);
require(
ovmStateManager.getTotalUncommittedContractStorage() == 0,
"All storage must be committed before completing a transition."
);
phase = TransitionPhase.COMPLETE;
}
}
// SPDX-License-Identifier: MIT
// @unsupported: ovm
pragma solidity >0.5.0 <0.8.0;
/* Library Imports */
import { Lib_AddressResolver } from "../../libraries/resolver/Lib_AddressResolver.sol";
/* Interface Imports */
import { iOVM_StateTransitioner } from "../../iOVM/verification/iOVM_StateTransitioner.sol";
import { iOVM_StateTransitionerFactory } from
"../../iOVM/verification/iOVM_StateTransitionerFactory.sol";
import { iOVM_FraudVerifier } from "../../iOVM/verification/iOVM_FraudVerifier.sol";
/* Contract Imports */
import { OVM_StateTransitioner } from "./OVM_StateTransitioner.sol";
/**
* @title OVM_StateTransitionerFactory
* @dev The State Transitioner Factory is used by the Fraud Verifier to create a new State
* Transitioner during the initialization of a fraud proof.
*
* Compiler used: solc
* Runtime target: EVM
*/
contract OVM_StateTransitionerFactory is iOVM_StateTransitionerFactory, Lib_AddressResolver {
/***************
* Constructor *
***************/
constructor(
address _libAddressManager
)
Lib_AddressResolver(_libAddressManager)
{}
/********************
* Public Functions *
********************/
/**
* Creates a new OVM_StateTransitioner
* @param _libAddressManager Address of the Address Manager.
* @param _stateTransitionIndex Index of the state transition being verified.
* @param _preStateRoot State root before the transition was executed.
* @param _transactionHash Hash of the executed transaction.
* @return New OVM_StateTransitioner instance.
*/
function create(
address _libAddressManager,
uint256 _stateTransitionIndex,
bytes32 _preStateRoot,
bytes32 _transactionHash
)
override
public
returns (
iOVM_StateTransitioner
)
{
require(
msg.sender == resolve("OVM_FraudVerifier"),
"Create can only be done by the OVM_FraudVerifier."
);
return new OVM_StateTransitioner(
_libAddressManager,
_stateTransitionIndex,
_preStateRoot,
_transactionHash
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../utils/ContextUpgradeable.sol";
import "../proxy/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
function __Ownable_init() internal initializer {
__Context_init_unchained();
__Ownable_init_unchained();
}
function __Ownable_init_unchained() internal initializer {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./ContextUpgradeable.sol";
import "../proxy/Initializable.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
function __Pausable_init() internal initializer {
__Context_init_unchained();
__Pausable_init_unchained();
}
function __Pausable_init_unchained() internal initializer {
_paused = false;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
require(!paused(), "Pausable: paused");
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
require(paused(), "Pausable: not paused");
_;
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor () internal {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../proxy/Initializable.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuardUpgradeable is Initializable {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
function __ReentrancyGuard_init() internal initializer {
__ReentrancyGuard_init_unchained();
}
function __ReentrancyGuard_init_unchained() internal initializer {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
// a test ERC20 token with an open mint function
contract TestERC20 {
using SafeMath for uint;
string public constant name = 'Test';
string public constant symbol = 'TST';
uint8 public constant decimals = 18;
uint256 public totalSupply;
mapping(address => uint) public balanceOf;
mapping(address => mapping(address => uint)) public allowance;
event Approval(address indexed owner, address indexed spender, uint256 value);
event Transfer(address indexed from, address indexed to, uint256 value);
constructor() {}
function mint(address to, uint256 value) public {
totalSupply = totalSupply.add(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(address(0), to, value);
}
function _approve(address owner, address spender, uint256 value) private {
allowance[owner][spender] = value;
emit Approval(owner, spender, value);
}
function _transfer(address from, address to, uint256 value) private {
balanceOf[from] = balanceOf[from].sub(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(from, to, value);
}
function approve(address spender, uint256 value) external returns (bool) {
_approve(msg.sender, spender, value);
return true;
}
function transfer(address to, uint256 value) external returns (bool) {
_transfer(msg.sender, to, value);
return true;
}
function transferFrom(address from, address to, uint256 value) external returns (bool) {
if (allowance[from][msg.sender] != uint(-1)) {
allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
}
_transfer(from, to, value);
return true;
}
}
library SafeMath {
function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
require((z = x + y) >= x, 'ds-math-add-overflow');
}
function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
require((z = x - y) <= x, 'ds-math-sub-underflow');
}
function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_Buffer } from "../../optimistic-ethereum/libraries/utils/Lib_Buffer.sol";
/**
* @title TestLib_Buffer
*/
contract TestLib_Buffer {
using Lib_Buffer for Lib_Buffer.Buffer;
Lib_Buffer.Buffer internal buf;
function push(
bytes32 _value,
bytes27 _extraData
)
public
{
buf.push(
_value,
_extraData
);
}
function get(
uint256 _index
)
public
view
returns (
bytes32
)
{
return buf.get(_index);
}
function deleteElementsAfterInclusive(
uint40 _index
)
public
{
return buf.deleteElementsAfterInclusive(
_index
);
}
function deleteElementsAfterInclusive(
uint40 _index,
bytes27 _extraData
)
public
{
return buf.deleteElementsAfterInclusive(
_index,
_extraData
);
}
function getLength()
public
view
returns (
uint40
)
{
return buf.getLength();
}
function setExtraData(
bytes27 _extraData
)
public
{
return buf.setExtraData(
_extraData
);
}
function getExtraData()
public
view
returns (
bytes27
)
{
return buf.getExtraData();
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Library Imports */
import { Lib_Bytes32Utils } from "../../optimistic-ethereum/libraries/utils/Lib_Bytes32Utils.sol";
/**
* @title TestLib_Byte32Utils
*/
contract TestLib_Bytes32Utils {
function toBool(
bytes32 _in
)
public
pure
returns (
bool _out
)
{
return Lib_Bytes32Utils.toBool(_in);
}
function fromBool(
bool _in
)
public
pure
returns (
bytes32 _out
)
{
return Lib_Bytes32Utils.fromBool(_in);
}
function toAddress(
bytes32 _in
)
public
pure
returns (
address _out
)
{
return Lib_Bytes32Utils.toAddress(_in);
}
function fromAddress(
address _in
)
public
pure
returns (
bytes32 _out
)
{
return Lib_Bytes32Utils.fromAddress(_in);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_BytesUtils } from "../../optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol";
import { TestERC20 } from "../../test-helpers/TestERC20.sol";
/**
* @title TestLib_BytesUtils
*/
contract TestLib_BytesUtils {
function concat(
bytes memory _preBytes,
bytes memory _postBytes
)
public
pure
returns (bytes memory)
{
return abi.encodePacked(
_preBytes,
_postBytes
);
}
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
)
public
pure
returns (bytes memory)
{
return Lib_BytesUtils.slice(
_bytes,
_start,
_length
);
}
function toBytes32(
bytes memory _bytes
)
public
pure
returns (bytes32)
{
return Lib_BytesUtils.toBytes32(
_bytes
);
}
function toUint256(
bytes memory _bytes
)
public
pure
returns (uint256)
{
return Lib_BytesUtils.toUint256(
_bytes
);
}
function toNibbles(
bytes memory _bytes
)
public
pure
returns (bytes memory)
{
return Lib_BytesUtils.toNibbles(
_bytes
);
}
function fromNibbles(
bytes memory _bytes
)
public
pure
returns (bytes memory)
{
return Lib_BytesUtils.fromNibbles(
_bytes
);
}
function equal(
bytes memory _bytes,
bytes memory _other
)
public
pure
returns (bool)
{
return Lib_BytesUtils.equal(
_bytes,
_other
);
}
function sliceWithTaintedMemory(
bytes memory _bytes,
uint256 _start,
uint256 _length
)
public
returns (bytes memory)
{
new TestERC20();
return Lib_BytesUtils.slice(
_bytes,
_start,
_length
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_EIP155Tx } from "../../optimistic-ethereum/libraries/codec/Lib_EIP155Tx.sol";
/**
* @title TestLib_EIP155Tx
*/
contract TestLib_EIP155Tx {
function decode(
bytes memory _encoded,
uint256 _chainId
)
public
pure
returns (
Lib_EIP155Tx.EIP155Tx memory
)
{
return Lib_EIP155Tx.decode(
_encoded,
_chainId
);
}
function encode(
Lib_EIP155Tx.EIP155Tx memory _transaction,
bool _includeSignature
)
public
pure
returns (
bytes memory
)
{
return Lib_EIP155Tx.encode(
_transaction,
_includeSignature
);
}
function hash(
Lib_EIP155Tx.EIP155Tx memory _transaction
)
public
pure
returns (
bytes32
)
{
return Lib_EIP155Tx.hash(
_transaction
);
}
function sender(
Lib_EIP155Tx.EIP155Tx memory _transaction
)
public
pure
returns (
address
)
{
return Lib_EIP155Tx.sender(
_transaction
);
}
}
// SPDX-License-Identifier: MIT
// @unsupported: ovm
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_EthUtils } from "../../optimistic-ethereum/libraries/utils/Lib_EthUtils.sol";
/**
* @title TestLib_EthUtils
*/
contract TestLib_EthUtils {
function getCode(
address _address,
uint256 _offset,
uint256 _length
)
public
view
returns (
bytes memory _code
)
{
return Lib_EthUtils.getCode(
_address,
_offset,
_length
);
}
function getCode(
address _address
)
public
view
returns (
bytes memory _code
)
{
return Lib_EthUtils.getCode(
_address
);
}
function getCodeSize(
address _address
)
public
view
returns (
uint256 _codeSize
)
{
return Lib_EthUtils.getCodeSize(
_address
);
}
function getCodeHash(
address _address
)
public
view
returns (
bytes32 _codeHash
)
{
return Lib_EthUtils.getCodeHash(
_address
);
}
function createContract(
bytes memory _code
)
public
returns (
address _created
)
{
return Lib_EthUtils.createContract(
_code
);
}
function getAddressForCREATE(
address _creator,
uint256 _nonce
)
public
pure
returns (
address _address
)
{
return Lib_EthUtils.getAddressForCREATE(
_creator,
_nonce
);
}
function getAddressForCREATE2(
address _creator,
bytes memory _bytecode,
bytes32 _salt
)
public
pure
returns (address _address)
{
return Lib_EthUtils.getAddressForCREATE2(
_creator,
_bytecode,
_salt
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_MerkleTree } from "../../optimistic-ethereum/libraries/utils/Lib_MerkleTree.sol";
/**
* @title TestLib_MerkleTree
*/
contract TestLib_MerkleTree {
function getMerkleRoot(
bytes32[] memory _elements
)
public
pure
returns (
bytes32
)
{
return Lib_MerkleTree.getMerkleRoot(
_elements
);
}
function verify(
bytes32 _root,
bytes32 _leaf,
uint256 _index,
bytes32[] memory _siblings,
uint256 _totalLeaves
)
public
pure
returns (
bool
)
{
return Lib_MerkleTree.verify(
_root,
_leaf,
_index,
_siblings,
_totalLeaves
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Library Imports */
import { Lib_MerkleTrie } from "../../optimistic-ethereum/libraries/trie/Lib_MerkleTrie.sol";
/**
* @title TestLib_MerkleTrie
*/
contract TestLib_MerkleTrie {
function verifyInclusionProof(
bytes memory _key,
bytes memory _value,
bytes memory _proof,
bytes32 _root
)
public
pure
returns (
bool
)
{
return Lib_MerkleTrie.verifyInclusionProof(
_key,
_value,
_proof,
_root
);
}
function update(
bytes memory _key,
bytes memory _value,
bytes memory _proof,
bytes32 _root
)
public
pure
returns (
bytes32
)
{
return Lib_MerkleTrie.update(
_key,
_value,
_proof,
_root
);
}
function get(
bytes memory _key,
bytes memory _proof,
bytes32 _root
)
public
pure
returns (
bool,
bytes memory
)
{
return Lib_MerkleTrie.get(
_key,
_proof,
_root
);
}
function getSingleNodeRootHash(
bytes memory _key,
bytes memory _value
)
public
pure
returns (
bytes32
)
{
return Lib_MerkleTrie.getSingleNodeRootHash(
_key,
_value
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_OVMCodec } from "../../optimistic-ethereum/libraries/codec/Lib_OVMCodec.sol";
/**
* @title TestLib_OVMCodec
*/
contract TestLib_OVMCodec {
function encodeTransaction(
Lib_OVMCodec.Transaction memory _transaction
)
public
pure
returns (
bytes memory _encoded
)
{
return Lib_OVMCodec.encodeTransaction(_transaction);
}
function hashTransaction(
Lib_OVMCodec.Transaction memory _transaction
)
public
pure
returns (
bytes32 _hash
)
{
return Lib_OVMCodec.hashTransaction(_transaction);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_RLPReader } from "../../optimistic-ethereum/libraries/rlp/Lib_RLPReader.sol";
/**
* @title TestLib_RLPReader
*/
contract TestLib_RLPReader {
function readList(
bytes memory _in
)
public
pure
returns (
bytes[] memory
)
{
Lib_RLPReader.RLPItem[] memory decoded = Lib_RLPReader.readList(_in);
bytes[] memory out = new bytes[](decoded.length);
for (uint256 i = 0; i < out.length; i++) {
out[i] = Lib_RLPReader.readRawBytes(decoded[i]);
}
return out;
}
function readString(
bytes memory _in
)
public
pure
returns (
string memory
)
{
return Lib_RLPReader.readString(_in);
}
function readBytes(
bytes memory _in
)
public
pure
returns (
bytes memory
)
{
return Lib_RLPReader.readBytes(_in);
}
function readBytes32(
bytes memory _in
)
public
pure
returns (
bytes32
)
{
return Lib_RLPReader.readBytes32(_in);
}
function readUint256(
bytes memory _in
)
public
pure
returns (
uint256
)
{
return Lib_RLPReader.readUint256(_in);
}
function readBool(
bytes memory _in
)
public
pure
returns (
bool
)
{
return Lib_RLPReader.readBool(_in);
}
function readAddress(
bytes memory _in
)
public
pure
returns (
address
)
{
return Lib_RLPReader.readAddress(_in);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_RLPWriter } from "../../optimistic-ethereum/libraries/rlp/Lib_RLPWriter.sol";
import { TestERC20 } from "../../test-helpers/TestERC20.sol";
/**
* @title TestLib_RLPWriter
*/
contract TestLib_RLPWriter {
function writeBytes(
bytes memory _in
)
public
pure
returns (
bytes memory _out
)
{
return Lib_RLPWriter.writeBytes(_in);
}
function writeList(
bytes[] memory _in
)
public
pure
returns (
bytes memory _out
)
{
return Lib_RLPWriter.writeList(_in);
}
function writeString(
string memory _in
)
public
pure
returns (
bytes memory _out
)
{
return Lib_RLPWriter.writeString(_in);
}
function writeAddress(
address _in
)
public
pure
returns (
bytes memory _out
)
{
return Lib_RLPWriter.writeAddress(_in);
}
function writeUint(
uint256 _in
)
public
pure
returns (
bytes memory _out
)
{
return Lib_RLPWriter.writeUint(_in);
}
function writeBool(
bool _in
)
public
pure
returns (
bytes memory _out
)
{
return Lib_RLPWriter.writeBool(_in);
}
function writeAddressWithTaintedMemory(
address _in
)
public
returns (
bytes memory _out
)
{
new TestERC20();
return Lib_RLPWriter.writeAddress(_in);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_SecureMerkleTrie } from "../../optimistic-ethereum/libraries/trie/Lib_SecureMerkleTrie.sol";
/**
* @title TestLib_SecureMerkleTrie
*/
contract TestLib_SecureMerkleTrie {
function verifyInclusionProof(
bytes memory _key,
bytes memory _value,
bytes memory _proof,
bytes32 _root
)
public
pure
returns (
bool
)
{
return Lib_SecureMerkleTrie.verifyInclusionProof(
_key,
_value,
_proof,
_root
);
}
function update(
bytes memory _key,
bytes memory _value,
bytes memory _proof,
bytes32 _root
)
public
pure
returns (
bytes32
)
{
return Lib_SecureMerkleTrie.update(
_key,
_value,
_proof,
_root
);
}
function get(
bytes memory _key,
bytes memory _proof,
bytes32 _root
)
public
pure
returns (
bool,
bytes memory
)
{
return Lib_SecureMerkleTrie.get(
_key,
_proof,
_root
);
}
function getSingleNodeRootHash(
bytes memory _key,
bytes memory _value
)
public
pure
returns (
bytes32
)
{
return Lib_SecureMerkleTrie.getSingleNodeRootHash(
_key,
_value
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
interface ERC20 {
function transfer(address, uint256) external returns (bool);
function transferFrom(address, address, uint256) external returns (bool);
}
/// All the errors which may be encountered on the bond manager
library Errors {
string constant ERC20_ERR = "BondManager: Could not post bond";
// solhint-disable-next-line max-line-length
string constant ALREADY_FINALIZED = "BondManager: Fraud proof for this pre-state root has already been finalized";
string constant SLASHED = "BondManager: Cannot finalize withdrawal, you probably got slashed";
string constant WRONG_STATE = "BondManager: Wrong bond state for proposer";
string constant CANNOT_CLAIM = "BondManager: Cannot claim yet. Dispute must be finalized first";
string constant WITHDRAWAL_PENDING = "BondManager: Withdrawal already pending";
string constant TOO_EARLY = "BondManager: Too early to finalize your withdrawal";
// solhint-disable-next-line max-line-length
string constant ONLY_TRANSITIONER = "BondManager: Only the transitioner for this pre-state root may call this function";
// solhint-disable-next-line max-line-length
string constant ONLY_FRAUD_VERIFIER = "BondManager: Only the fraud verifier may call this function";
// solhint-disable-next-line max-line-length
string constant ONLY_STATE_COMMITMENT_CHAIN = "BondManager: Only the state commitment chain may call this function";
string constant WAIT_FOR_DISPUTES = "BondManager: Wait for other potential disputes";
}
/**
* @title iOVM_BondManager
*/
interface iOVM_BondManager {
/*******************
* Data Structures *
*******************/
/// The lifecycle of a proposer's bond
enum State {
// Before depositing or after getting slashed, a user is uncollateralized
NOT_COLLATERALIZED,
// After depositing, a user is collateralized
COLLATERALIZED,
// After a user has initiated a withdrawal
WITHDRAWING
}
/// A bond posted by a proposer
struct Bond {
// The user's state
State state;
// The timestamp at which a proposer issued their withdrawal request
uint32 withdrawalTimestamp;
// The time when the first disputed was initiated for this bond
uint256 firstDisputeAt;
// The earliest observed state root for this bond which has had fraud
bytes32 earliestDisputedStateRoot;
// The state root's timestamp
uint256 earliestTimestamp;
}
// Per pre-state root, store the number of state provisions that were made
// and how many of these calls were made by each user. Payouts will then be
// claimed by users proportionally for that dispute.
struct Rewards {
// Flag to check if rewards for a fraud proof are claimable
bool canClaim;
// Total number of `recordGasSpent` calls made
uint256 total;
// The gas spent by each user to provide witness data. The sum of all
// values inside this map MUST be equal to the value of `total`
mapping(address => uint256) gasSpent;
}
/********************
* Public Functions *
********************/
function recordGasSpent(
bytes32 _preStateRoot,
bytes32 _txHash,
address _who,
uint256 _gasSpent
) external;
function finalize(
bytes32 _preStateRoot,
address _publisher,
uint256 _timestamp
) external;
function deposit() external;
function startWithdrawal() external;
function finalizeWithdrawal() external;
function claim(
address _who
) external;
function isCollateralized(
address _who
) external view returns (bool);
function getGasSpent(
bytes32 _preStateRoot,
address _who
) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
/* Interface Imports */
import { iOVM_ChainStorageContainer } from "./iOVM_ChainStorageContainer.sol";
/**
* @title iOVM_CanonicalTransactionChain
*/
interface iOVM_CanonicalTransactionChain {
/**********
* Events *
**********/
event TransactionEnqueued(
address _l1TxOrigin,
address _target,
uint256 _gasLimit,
bytes _data,
uint256 _queueIndex,
uint256 _timestamp
);
event QueueBatchAppended(
uint256 _startingQueueIndex,
uint256 _numQueueElements,
uint256 _totalElements
);
event SequencerBatchAppended(
uint256 _startingQueueIndex,
uint256 _numQueueElements,
uint256 _totalElements
);
event TransactionBatchAppended(
uint256 indexed _batchIndex,
bytes32 _batchRoot,
uint256 _batchSize,
uint256 _prevTotalElements,
bytes _extraData
);
/***********
* Structs *
***********/
struct BatchContext {
uint256 numSequencedTransactions;
uint256 numSubsequentQueueTransactions;
uint256 timestamp;
uint256 blockNumber;
}
/********************
* Public Functions *
********************/
/**
* Accesses the batch storage container.
* @return Reference to the batch storage container.
*/
function batches()
external
view
returns (
iOVM_ChainStorageContainer
);
/**
* Accesses the queue storage container.
* @return Reference to the queue storage container.
*/
function queue()
external
view
returns (
iOVM_ChainStorageContainer
);
/**
* Retrieves the total number of elements submitted.
* @return _totalElements Total submitted elements.
*/
function getTotalElements()
external
view
returns (
uint256 _totalElements
);
/**
* Retrieves the total number of batches submitted.
* @return _totalBatches Total submitted batches.
*/
function getTotalBatches()
external
view
returns (
uint256 _totalBatches
);
/**
* Returns the index of the next element to be enqueued.
* @return Index for the next queue element.
*/
function getNextQueueIndex()
external
view
returns (
uint40
);
/**
* Gets the queue element at a particular index.
* @param _index Index of the queue element to access.
* @return _element Queue element at the given index.
*/
function getQueueElement(
uint256 _index
)
external
view
returns (
Lib_OVMCodec.QueueElement memory _element
);
/**
* Returns the timestamp of the last transaction.
* @return Timestamp for the last transaction.
*/
function getLastTimestamp()
external
view
returns (
uint40
);
/**
* Returns the blocknumber of the last transaction.
* @return Blocknumber for the last transaction.
*/
function getLastBlockNumber()
external
view
returns (
uint40
);
/**
* Get the number of queue elements which have not yet been included.
* @return Number of pending queue elements.
*/
function getNumPendingQueueElements()
external
view
returns (
uint40
);
/**
* Retrieves the length of the queue, including
* both pending and canonical transactions.
* @return Length of the queue.
*/
function getQueueLength()
external
view
returns (
uint40
);
/**
* Adds a transaction to the queue.
* @param _target Target contract to send the transaction to.
* @param _gasLimit Gas limit for the given transaction.
* @param _data Transaction data.
*/
function enqueue(
address _target,
uint256 _gasLimit,
bytes memory _data
)
external;
/**
* Appends a given number of queued transactions as a single batch.
* @param _numQueuedTransactions Number of transactions to append.
*/
function appendQueueBatch(
uint256 _numQueuedTransactions
)
external;
/**
* Allows the sequencer to append a batch of transactions.
* @dev This function uses a custom encoding scheme for efficiency reasons.
* .param _shouldStartAtElement Specific batch we expect to start appending to.
* .param _totalElementsToAppend Total number of batch elements we expect to append.
* .param _contexts Array of batch contexts.
* .param _transactionDataFields Array of raw transaction data.
*/
function appendSequencerBatch(
// uint40 _shouldStartAtElement,
// uint24 _totalElementsToAppend,
// BatchContext[] _contexts,
// bytes[] _transactionDataFields
)
external;
/**
* Verifies whether a transaction is included in the chain.
* @param _transaction Transaction to verify.
* @param _txChainElement Transaction chain element corresponding to the transaction.
* @param _batchHeader Header of the batch the transaction was included in.
* @param _inclusionProof Inclusion proof for the provided transaction chain element.
* @return True if the transaction exists in the CTC, false if not.
*/
function verifyTransaction(
Lib_OVMCodec.Transaction memory _transaction,
Lib_OVMCodec.TransactionChainElement memory _txChainElement,
Lib_OVMCodec.ChainBatchHeader memory _batchHeader,
Lib_OVMCodec.ChainInclusionProof memory _inclusionProof
)
external
view
returns (
bool
);
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/**
* @title iOVM_ChainStorageContainer
*/
interface iOVM_ChainStorageContainer {
/********************
* Public Functions *
********************/
/**
* Sets the container's global metadata field. We're using `bytes27` here because we use five
* bytes to maintain the length of the underlying data structure, meaning we have an extra
* 27 bytes to store arbitrary data.
* @param _globalMetadata New global metadata to set.
*/
function setGlobalMetadata(
bytes27 _globalMetadata
)
external;
/**
* Retrieves the container's global metadata field.
* @return Container global metadata field.
*/
function getGlobalMetadata()
external
view
returns (
bytes27
);
/**
* Retrieves the number of objects stored in the container.
* @return Number of objects in the container.
*/
function length()
external
view
returns (
uint256
);
/**
* Pushes an object into the container.
* @param _object A 32 byte value to insert into the container.
*/
function push(
bytes32 _object
)
external;
/**
* Pushes an object into the container. Function allows setting the global metadata since
* we'll need to touch the "length" storage slot anyway, which also contains the global
* metadata (it's an optimization).
* @param _object A 32 byte value to insert into the container.
* @param _globalMetadata New global metadata for the container.
*/
function push(
bytes32 _object,
bytes27 _globalMetadata
)
external;
/**
* Retrieves an object from the container.
* @param _index Index of the particular object to access.
* @return 32 byte object value.
*/
function get(
uint256 _index
)
external
view
returns (
bytes32
);
/**
* Removes all objects after and including a given index.
* @param _index Object index to delete from.
*/
function deleteElementsAfterInclusive(
uint256 _index
)
external;
/**
* Removes all objects after and including a given index. Also allows setting the global
* metadata field.
* @param _index Object index to delete from.
* @param _globalMetadata New global metadata for the container.
*/
function deleteElementsAfterInclusive(
uint256 _index,
bytes27 _globalMetadata
)
external;
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/**
* @title iOVM_CrossDomainMessenger
*/
interface iOVM_CrossDomainMessenger {
/**********
* Events *
**********/
event SentMessage(bytes message);
event RelayedMessage(bytes32 msgHash);
event FailedRelayedMessage(bytes32 msgHash);
/*************
* Variables *
*************/
function xDomainMessageSender() external view returns (address);
/********************
* Public Functions *
********************/
/**
* Sends a cross domain message to the target messenger.
* @param _target Target contract address.
* @param _message Message to send to the target.
* @param _gasLimit Gas limit for the provided message.
*/
function sendMessage(
address _target,
bytes calldata _message,
uint32 _gasLimit
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/**
* @title iOVM_DeployerWhitelist
*/
interface iOVM_DeployerWhitelist {
/********************
* Public Functions *
********************/
function initialize(address _owner, bool _allowArbitraryDeployment) external;
function owner() external returns (address _owner);
function setWhitelistedDeployer(address _deployer, bool _isWhitelisted) external;
function setOwner(address _newOwner) external;
function setAllowArbitraryDeployment(bool _allowArbitraryDeployment) external;
function enableArbitraryContractDeployment() external;
function isDeployerAllowed(address _deployer) external returns (bool _allowed);
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_EIP155Tx } from "../../libraries/codec/Lib_EIP155Tx.sol";
/**
* @title iOVM_ECDSAContractAccount
*/
interface iOVM_ECDSAContractAccount {
/********************
* Public Functions *
********************/
function execute(
Lib_EIP155Tx.EIP155Tx memory _transaction
)
external
returns (
bool,
bytes memory
);
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
interface iOVM_ExecutionManager {
/**********
* Enums *
*********/
enum RevertFlag {
OUT_OF_GAS,
INTENTIONAL_REVERT,
EXCEEDS_NUISANCE_GAS,
INVALID_STATE_ACCESS,
UNSAFE_BYTECODE,
CREATE_COLLISION,
STATIC_VIOLATION,
CREATOR_NOT_ALLOWED
}
enum GasMetadataKey {
CURRENT_EPOCH_START_TIMESTAMP,
CUMULATIVE_SEQUENCER_QUEUE_GAS,
CUMULATIVE_L1TOL2_QUEUE_GAS,
PREV_EPOCH_SEQUENCER_QUEUE_GAS,
PREV_EPOCH_L1TOL2_QUEUE_GAS
}
enum MessageType {
ovmCALL,
ovmSTATICCALL,
ovmDELEGATECALL,
ovmCREATE,
ovmCREATE2
}
/***********
* Structs *
***********/
struct GasMeterConfig {
uint256 minTransactionGasLimit;
uint256 maxTransactionGasLimit;
uint256 maxGasPerQueuePerEpoch;
uint256 secondsPerEpoch;
}
struct GlobalContext {
uint256 ovmCHAINID;
}
struct TransactionContext {
Lib_OVMCodec.QueueOrigin ovmL1QUEUEORIGIN;
uint256 ovmTIMESTAMP;
uint256 ovmNUMBER;
uint256 ovmGASLIMIT;
uint256 ovmTXGASLIMIT;
address ovmL1TXORIGIN;
}
struct TransactionRecord {
uint256 ovmGasRefund;
}
struct MessageContext {
address ovmCALLER;
address ovmADDRESS;
uint256 ovmCALLVALUE;
bool isStatic;
}
struct MessageRecord {
uint256 nuisanceGasLeft;
}
/************************************
* Transaction Execution Entrypoint *
************************************/
function run(
Lib_OVMCodec.Transaction calldata _transaction,
address _txStateManager
) external returns (bytes memory);
/*******************
* Context Opcodes *
*******************/
function ovmCALLER() external view returns (address _caller);
function ovmADDRESS() external view returns (address _address);
function ovmCALLVALUE() external view returns (uint _callValue);
function ovmTIMESTAMP() external view returns (uint256 _timestamp);
function ovmNUMBER() external view returns (uint256 _number);
function ovmGASLIMIT() external view returns (uint256 _gasLimit);
function ovmCHAINID() external view returns (uint256 _chainId);
/**********************
* L2 Context Opcodes *
**********************/
function ovmL1QUEUEORIGIN() external view returns (Lib_OVMCodec.QueueOrigin _queueOrigin);
function ovmL1TXORIGIN() external view returns (address _l1TxOrigin);
/*******************
* Halting Opcodes *
*******************/
function ovmREVERT(bytes memory _data) external;
/*****************************
* Contract Creation Opcodes *
*****************************/
function ovmCREATE(bytes memory _bytecode) external
returns (address _contract, bytes memory _revertdata);
function ovmCREATE2(bytes memory _bytecode, bytes32 _salt) external
returns (address _contract, bytes memory _revertdata);
/*******************************
* Account Abstraction Opcodes *
******************************/
function ovmGETNONCE() external returns (uint256 _nonce);
function ovmINCREMENTNONCE() external;
function ovmCREATEEOA(bytes32 _messageHash, uint8 _v, bytes32 _r, bytes32 _s) external;
/****************************
* Contract Calling Opcodes *
****************************/
// Valueless ovmCALL for maintaining backwards compatibility with legacy OVM bytecode.
function ovmCALL(uint256 _gasLimit, address _address, bytes memory _calldata) external
returns (bool _success, bytes memory _returndata);
function ovmCALL(uint256 _gasLimit, address _address, uint256 _value, bytes memory _calldata)
external returns (bool _success, bytes memory _returndata);
function ovmSTATICCALL(uint256 _gasLimit, address _address, bytes memory _calldata) external
returns (bool _success, bytes memory _returndata);
function ovmDELEGATECALL(uint256 _gasLimit, address _address, bytes memory _calldata) external
returns (bool _success, bytes memory _returndata);
/****************************
* Contract Storage Opcodes *
****************************/
function ovmSLOAD(bytes32 _key) external returns (bytes32 _value);
function ovmSSTORE(bytes32 _key, bytes32 _value) external;
/*************************
* Contract Code Opcodes *
*************************/
function ovmEXTCODECOPY(address _contract, uint256 _offset, uint256 _length) external
returns (bytes memory _code);
function ovmEXTCODESIZE(address _contract) external returns (uint256 _size);
function ovmEXTCODEHASH(address _contract) external returns (bytes32 _hash);
/*********************
* ETH Value Opcodes *
*********************/
function ovmBALANCE(address _contract) external returns (uint256 _balance);
function ovmSELFBALANCE() external returns (uint256 _balance);
/***************************************
* Public Functions: Execution Context *
***************************************/
function getMaxTransactionGasLimit() external view returns (uint _maxTransactionGasLimit);
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
/* Interface Imports */
import { iOVM_StateTransitioner } from "./iOVM_StateTransitioner.sol";
/**
* @title iOVM_FraudVerifier
*/
interface iOVM_FraudVerifier {
/**********
* Events *
**********/
event FraudProofInitialized(
bytes32 _preStateRoot,
uint256 _preStateRootIndex,
bytes32 _transactionHash,
address _who
);
event FraudProofFinalized(
bytes32 _preStateRoot,
uint256 _preStateRootIndex,
bytes32 _transactionHash,
address _who
);
/***************************************
* Public Functions: Transition Status *
***************************************/
function getStateTransitioner(bytes32 _preStateRoot, bytes32 _txHash) external view
returns (iOVM_StateTransitioner _transitioner);
/****************************************
* Public Functions: Fraud Verification *
****************************************/
function initializeFraudVerification(
bytes32 _preStateRoot,
Lib_OVMCodec.ChainBatchHeader calldata _preStateRootBatchHeader,
Lib_OVMCodec.ChainInclusionProof calldata _preStateRootProof,
Lib_OVMCodec.Transaction calldata _transaction,
Lib_OVMCodec.TransactionChainElement calldata _txChainElement,
Lib_OVMCodec.ChainBatchHeader calldata _transactionBatchHeader,
Lib_OVMCodec.ChainInclusionProof calldata _transactionProof
) external;
function finalizeFraudVerification(
bytes32 _preStateRoot,
Lib_OVMCodec.ChainBatchHeader calldata _preStateRootBatchHeader,
Lib_OVMCodec.ChainInclusionProof calldata _preStateRootProof,
bytes32 _txHash,
bytes32 _postStateRoot,
Lib_OVMCodec.ChainBatchHeader calldata _postStateRootBatchHeader,
Lib_OVMCodec.ChainInclusionProof calldata _postStateRootProof
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_OVMCodec } from "../../../libraries/codec/Lib_OVMCodec.sol";
/* Interface Imports */
import { iOVM_CrossDomainMessenger } from "./iOVM_CrossDomainMessenger.sol";
/**
* @title iOVM_L1CrossDomainMessenger
*/
interface iOVM_L1CrossDomainMessenger is iOVM_CrossDomainMessenger {
/*******************
* Data Structures *
*******************/
struct L2MessageInclusionProof {
bytes32 stateRoot;
Lib_OVMCodec.ChainBatchHeader stateRootBatchHeader;
Lib_OVMCodec.ChainInclusionProof stateRootProof;
bytes stateTrieWitness;
bytes storageTrieWitness;
}
/********************
* Public Functions *
********************/
/**
* Relays a cross domain message to a contract.
* @param _target Target contract address.
* @param _sender Message sender address.
* @param _message Message to send to the target.
* @param _messageNonce Nonce for the provided message.
* @param _proof Inclusion proof for the given message.
*/
function relayMessage(
address _target,
address _sender,
bytes memory _message,
uint256 _messageNonce,
L2MessageInclusionProof memory _proof
) external;
/**
* Replays a cross domain message to the target messenger.
* @param _target Target contract address.
* @param _sender Original sender address.
* @param _message Message to send to the target.
* @param _queueIndex CTC Queue index for the message to replay.
* @param _gasLimit Gas limit for the provided message.
*/
function replayMessage(
address _target,
address _sender,
bytes memory _message,
uint256 _queueIndex,
uint32 _gasLimit
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0;
pragma experimental ABIEncoderV2;
/**
* @title iOVM_L1ERC20Bridge
*/
interface iOVM_L1ERC20Bridge {
/**********
* Events *
**********/
event ERC20DepositInitiated (
address indexed _l1Token,
address indexed _l2Token,
address indexed _from,
address _to,
uint256 _amount,
bytes _data
);
event ERC20WithdrawalFinalized (
address indexed _l1Token,
address indexed _l2Token,
address indexed _from,
address _to,
uint256 _amount,
bytes _data
);
/********************
* Public Functions *
********************/
/**
* @dev deposit an amount of the ERC20 to the caller's balance on L2.
* @param _l1Token Address of the L1 ERC20 we are depositing
* @param _l2Token Address of the L1 respective L2 ERC20
* @param _amount Amount of the ERC20 to deposit
* @param _l2Gas Gas limit required to complete the deposit on L2.
* @param _data Optional data to forward to L2. This data is provided
* solely as a convenience for external contracts. Aside from enforcing a maximum
* length, these contracts provide no guarantees about its content.
*/
function depositERC20 (
address _l1Token,
address _l2Token,
uint _amount,
uint32 _l2Gas,
bytes calldata _data
)
external;
/**
* @dev deposit an amount of ERC20 to a recipient's balance on L2.
* @param _l1Token Address of the L1 ERC20 we are depositing
* @param _l2Token Address of the L1 respective L2 ERC20
* @param _to L2 address to credit the withdrawal to.
* @param _amount Amount of the ERC20 to deposit.
* @param _l2Gas Gas limit required to complete the deposit on L2.
* @param _data Optional data to forward to L2. This data is provided
* solely as a convenience for external contracts. Aside from enforcing a maximum
* length, these contracts provide no guarantees about its content.
*/
function depositERC20To (
address _l1Token,
address _l2Token,
address _to,
uint _amount,
uint32 _l2Gas,
bytes calldata _data
)
external;
/*************************
* Cross-chain Functions *
*************************/
/**
* @dev Complete a withdrawal from L2 to L1, and credit funds to the recipient's balance of the
* L1 ERC20 token.
* This call will fail if the initialized withdrawal from L2 has not been finalized.
*
* @param _l1Token Address of L1 token to finalizeWithdrawal for.
* @param _l2Token Address of L2 token where withdrawal was initiated.
* @param _from L2 address initiating the transfer.
* @param _to L1 address to credit the withdrawal to.
* @param _amount Amount of the ERC20 to deposit.
* @param _data Data provided by the sender on L2. This data is provided
* solely as a convenience for external contracts. Aside from enforcing a maximum
* length, these contracts provide no guarantees about its content.
*/
function finalizeERC20Withdrawal (
address _l1Token,
address _l2Token,
address _from,
address _to,
uint _amount,
bytes calldata _data
)
external;
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/**
* @title iOVM_L1MessageSender
*/
interface iOVM_L1MessageSender {
/********************
* Public Functions *
********************/
function getL1MessageSender() external view returns (address _l1MessageSender);
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Interface Imports */
import { iOVM_L1CrossDomainMessenger } from
"../../../iOVM/bridge/messaging/iOVM_L1CrossDomainMessenger.sol";
interface iOVM_L1MultiMessageRelayer {
struct L2ToL1Message {
address target;
address sender;
bytes message;
uint256 messageNonce;
iOVM_L1CrossDomainMessenger.L2MessageInclusionProof proof;
}
function batchRelayMessages(L2ToL1Message[] calldata _messages) external;
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0;
pragma experimental ABIEncoderV2;
import "./iOVM_L1ERC20Bridge.sol";
/**
* @title iOVM_L1StandardBridge
*/
interface iOVM_L1StandardBridge is iOVM_L1ERC20Bridge {
/**********
* Events *
**********/
event ETHDepositInitiated (
address indexed _from,
address indexed _to,
uint256 _amount,
bytes _data
);
event ETHWithdrawalFinalized (
address indexed _from,
address indexed _to,
uint256 _amount,
bytes _data
);
/********************
* Public Functions *
********************/
/**
* @dev Deposit an amount of the ETH to the caller's balance on L2.
* @param _l2Gas Gas limit required to complete the deposit on L2.
* @param _data Optional data to forward to L2. This data is provided
* solely as a convenience for external contracts. Aside from enforcing a maximum
* length, these contracts provide no guarantees about its content.
*/
function depositETH (
uint32 _l2Gas,
bytes calldata _data
)
external
payable;
/**
* @dev Deposit an amount of ETH to a recipient's balance on L2.
* @param _to L2 address to credit the withdrawal to.
* @param _l2Gas Gas limit required to complete the deposit on L2.
* @param _data Optional data to forward to L2. This data is provided
* solely as a convenience for external contracts. Aside from enforcing a maximum
* length, these contracts provide no guarantees about its content.
*/
function depositETHTo (
address _to,
uint32 _l2Gas,
bytes calldata _data
)
external
payable;
/*************************
* Cross-chain Functions *
*************************/
/**
* @dev Complete a withdrawal from L2 to L1, and credit funds to the recipient's balance of the
* L1 ETH token. Since only the xDomainMessenger can call this function, it will never be called
* before the withdrawal is finalized.
* @param _from L2 address initiating the transfer.
* @param _to L1 address to credit the withdrawal to.
* @param _amount Amount of the ERC20 to deposit.
* @param _data Optional data to forward to L2. This data is provided
* solely as a convenience for external contracts. Aside from enforcing a maximum
* length, these contracts provide no guarantees about its content.
*/
function finalizeETHWithdrawal (
address _from,
address _to,
uint _amount,
bytes calldata _data
)
external;
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Interface Imports */
import { iOVM_CrossDomainMessenger } from "./iOVM_CrossDomainMessenger.sol";
/**
* @title iOVM_L2CrossDomainMessenger
*/
interface iOVM_L2CrossDomainMessenger is iOVM_CrossDomainMessenger {
/********************
* Public Functions *
********************/
/**
* Relays a cross domain message to a contract.
* @param _target Target contract address.
* @param _sender Message sender address.
* @param _message Message to send to the target.
* @param _messageNonce Nonce for the provided message.
*/
function relayMessage(
address _target,
address _sender,
bytes memory _message,
uint256 _messageNonce
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0;
pragma experimental ABIEncoderV2;
/**
* @title iOVM_L2ERC20Bridge
*/
interface iOVM_L2ERC20Bridge {
/**********
* Events *
**********/
event WithdrawalInitiated (
address indexed _l1Token,
address indexed _l2Token,
address indexed _from,
address _to,
uint256 _amount,
bytes _data
);
event DepositFinalized (
address indexed _l1Token,
address indexed _l2Token,
address indexed _from,
address _to,
uint256 _amount,
bytes _data
);
event DepositFailed (
address indexed _l1Token,
address indexed _l2Token,
address indexed _from,
address _to,
uint256 _amount,
bytes _data
);
/********************
* Public Functions *
********************/
/**
* @dev initiate a withdraw of some tokens to the caller's account on L1
* @param _l2Token Address of L2 token where withdrawal was initiated.
* @param _amount Amount of the token to withdraw.
* param _l1Gas Unused, but included for potential forward compatibility considerations.
* @param _data Optional data to forward to L1. This data is provided
* solely as a convenience for external contracts. Aside from enforcing a maximum
* length, these contracts provide no guarantees about its content.
*/
function withdraw (
address _l2Token,
uint _amount,
uint32 _l1Gas,
bytes calldata _data
)
external;
/**
* @dev initiate a withdraw of some token to a recipient's account on L1.
* @param _l2Token Address of L2 token where withdrawal is initiated.
* @param _to L1 adress to credit the withdrawal to.
* @param _amount Amount of the token to withdraw.
* param _l1Gas Unused, but included for potential forward compatibility considerations.
* @param _data Optional data to forward to L1. This data is provided
* solely as a convenience for external contracts. Aside from enforcing a maximum
* length, these contracts provide no guarantees about its content.
*/
function withdrawTo (
address _l2Token,
address _to,
uint _amount,
uint32 _l1Gas,
bytes calldata _data
)
external;
/*************************
* Cross-chain Functions *
*************************/
/**
* @dev Complete a deposit from L1 to L2, and credits funds to the recipient's balance of this
* L2 token. This call will fail if it did not originate from a corresponding deposit in
* OVM_l1TokenGateway.
* @param _l1Token Address for the l1 token this is called with
* @param _l2Token Address for the l2 token this is called with
* @param _from Account to pull the deposit from on L2.
* @param _to Address to receive the withdrawal at
* @param _amount Amount of the token to withdraw
* @param _data Data provider by the sender on L1. This data is provided
* solely as a convenience for external contracts. Aside from enforcing a maximum
* length, these contracts provide no guarantees about its content.
*/
function finalizeDeposit (
address _l1Token,
address _l2Token,
address _from,
address _to,
uint _amount,
bytes calldata _data
)
external;
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/**
* @title iOVM_L2ToL1MessagePasser
*/
interface iOVM_L2ToL1MessagePasser {
/**********
* Events *
**********/
event L2ToL1Message(
uint256 _nonce,
address _sender,
bytes _data
);
/********************
* Public Functions *
********************/
function passMessageToL1(bytes calldata _message) external;
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/**
* @title iOVM_SafetyChecker
*/
interface iOVM_SafetyChecker {
/********************
* Public Functions *
********************/
function isBytecodeSafe(bytes calldata _bytecode) external pure returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
/**
* @title iOVM_StateCommitmentChain
*/
interface iOVM_StateCommitmentChain {
/**********
* Events *
**********/
event StateBatchAppended(
uint256 indexed _batchIndex,
bytes32 _batchRoot,
uint256 _batchSize,
uint256 _prevTotalElements,
bytes _extraData
);
event StateBatchDeleted(
uint256 indexed _batchIndex,
bytes32 _batchRoot
);
/********************
* Public Functions *
********************/
/**
* Retrieves the total number of elements submitted.
* @return _totalElements Total submitted elements.
*/
function getTotalElements()
external
view
returns (
uint256 _totalElements
);
/**
* Retrieves the total number of batches submitted.
* @return _totalBatches Total submitted batches.
*/
function getTotalBatches()
external
view
returns (
uint256 _totalBatches
);
/**
* Retrieves the timestamp of the last batch submitted by the sequencer.
* @return _lastSequencerTimestamp Last sequencer batch timestamp.
*/
function getLastSequencerTimestamp()
external
view
returns (
uint256 _lastSequencerTimestamp
);
/**
* Appends a batch of state roots to the chain.
* @param _batch Batch of state roots.
* @param _shouldStartAtElement Index of the element at which this batch should start.
*/
function appendStateBatch(
bytes32[] calldata _batch,
uint256 _shouldStartAtElement
)
external;
/**
* Deletes all state roots after (and including) a given batch.
* @param _batchHeader Header of the batch to start deleting from.
*/
function deleteStateBatch(
Lib_OVMCodec.ChainBatchHeader memory _batchHeader
)
external;
/**
* Verifies a batch inclusion proof.
* @param _element Hash of the element to verify a proof for.
* @param _batchHeader Header of the batch in which the element was included.
* @param _proof Merkle inclusion proof for the element.
*/
function verifyStateCommitment(
bytes32 _element,
Lib_OVMCodec.ChainBatchHeader memory _batchHeader,
Lib_OVMCodec.ChainInclusionProof memory _proof
)
external
view
returns (
bool _verified
);
/**
* Checks whether a given batch is still inside its fraud proof window.
* @param _batchHeader Header of the batch to check.
* @return _inside Whether or not the batch is inside the fraud proof window.
*/
function insideFraudProofWindow(
Lib_OVMCodec.ChainBatchHeader memory _batchHeader
)
external
view
returns (
bool _inside
);
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
/**
* @title iOVM_StateManager
*/
interface iOVM_StateManager {
/*******************
* Data Structures *
*******************/
enum ItemState {
ITEM_UNTOUCHED,
ITEM_LOADED,
ITEM_CHANGED,
ITEM_COMMITTED
}
/***************************
* Public Functions: Misc *
***************************/
function isAuthenticated(address _address) external view returns (bool);
/***************************
* Public Functions: Setup *
***************************/
function owner() external view returns (address _owner);
function ovmExecutionManager() external view returns (address _ovmExecutionManager);
function setExecutionManager(address _ovmExecutionManager) external;
/************************************
* Public Functions: Account Access *
************************************/
function putAccount(address _address, Lib_OVMCodec.Account memory _account) external;
function putEmptyAccount(address _address) external;
function getAccount(address _address) external view
returns (Lib_OVMCodec.Account memory _account);
function hasAccount(address _address) external view returns (bool _exists);
function hasEmptyAccount(address _address) external view returns (bool _exists);
function setAccountNonce(address _address, uint256 _nonce) external;
function getAccountNonce(address _address) external view returns (uint256 _nonce);
function getAccountEthAddress(address _address) external view returns (address _ethAddress);
function getAccountStorageRoot(address _address) external view returns (bytes32 _storageRoot);
function initPendingAccount(address _address) external;
function commitPendingAccount(address _address, address _ethAddress, bytes32 _codeHash)
external;
function testAndSetAccountLoaded(address _address) external
returns (bool _wasAccountAlreadyLoaded);
function testAndSetAccountChanged(address _address) external
returns (bool _wasAccountAlreadyChanged);
function commitAccount(address _address) external returns (bool _wasAccountCommitted);
function incrementTotalUncommittedAccounts() external;
function getTotalUncommittedAccounts() external view returns (uint256 _total);
function wasAccountChanged(address _address) external view returns (bool);
function wasAccountCommitted(address _address) external view returns (bool);
/************************************
* Public Functions: Storage Access *
************************************/
function putContractStorage(address _contract, bytes32 _key, bytes32 _value) external;
function getContractStorage(address _contract, bytes32 _key) external view
returns (bytes32 _value);
function hasContractStorage(address _contract, bytes32 _key) external view
returns (bool _exists);
function testAndSetContractStorageLoaded(address _contract, bytes32 _key) external
returns (bool _wasContractStorageAlreadyLoaded);
function testAndSetContractStorageChanged(address _contract, bytes32 _key) external
returns (bool _wasContractStorageAlreadyChanged);
function commitContractStorage(address _contract, bytes32 _key) external
returns (bool _wasContractStorageCommitted);
function incrementTotalUncommittedContractStorage() external;
function getTotalUncommittedContractStorage() external view returns (uint256 _total);
function wasContractStorageChanged(address _contract, bytes32 _key) external view
returns (bool);
function wasContractStorageCommitted(address _contract, bytes32 _key) external view
returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Contract Imports */
import { iOVM_StateManager } from "./iOVM_StateManager.sol";
/**
* @title iOVM_StateManagerFactory
*/
interface iOVM_StateManagerFactory {
/***************************************
* Public Functions: Contract Creation *
***************************************/
function create(
address _owner
)
external
returns (
iOVM_StateManager _ovmStateManager
);
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_OVMCodec } from "../../libraries/codec/Lib_OVMCodec.sol";
/**
* @title iOVM_StateTransitioner
*/
interface iOVM_StateTransitioner {
/**********
* Events *
**********/
event AccountCommitted(
address _address
);
event ContractStorageCommitted(
address _address,
bytes32 _key
);
/**********************************
* Public Functions: State Access *
**********************************/
function getPreStateRoot() external view returns (bytes32 _preStateRoot);
function getPostStateRoot() external view returns (bytes32 _postStateRoot);
function isComplete() external view returns (bool _complete);
/***********************************
* Public Functions: Pre-Execution *
***********************************/
function proveContractState(
address _ovmContractAddress,
address _ethContractAddress,
bytes calldata _stateTrieWitness
) external;
function proveStorageSlot(
address _ovmContractAddress,
bytes32 _key,
bytes calldata _storageTrieWitness
) external;
/*******************************
* Public Functions: Execution *
*******************************/
function applyTransaction(
Lib_OVMCodec.Transaction calldata _transaction
) external;
/************************************
* Public Functions: Post-Execution *
************************************/
function commitContractState(
address _ovmContractAddress,
bytes calldata _stateTrieWitness
) external;
function commitStorageSlot(
address _ovmContractAddress,
bytes32 _key,
bytes calldata _storageTrieWitness
) external;
/**********************************
* Public Functions: Finalization *
**********************************/
function completeTransition() external;
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Contract Imports */
import { iOVM_StateTransitioner } from "./iOVM_StateTransitioner.sol";
/**
* @title iOVM_StateTransitionerFactory
*/
interface iOVM_StateTransitionerFactory {
/***************************************
* Public Functions: Contract Creation *
***************************************/
function create(
address _proxyManager,
uint256 _stateTransitionIndex,
bytes32 _preStateRoot,
bytes32 _transactionHash
)
external
returns (
iOVM_StateTransitioner _ovmStateTransitioner
);
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Interface Imports */
import { iOVM_BondManager } from "../../iOVM/verification/iOVM_BondManager.sol";
/* Contract Imports */
import { Lib_AddressResolver } from "../../libraries/resolver/Lib_AddressResolver.sol";
/**
* @title mockOVM_BondManager
*/
contract mockOVM_BondManager is iOVM_BondManager, Lib_AddressResolver {
constructor(
address _libAddressManager
)
Lib_AddressResolver(_libAddressManager)
{}
function recordGasSpent(
bytes32 _preStateRoot,
bytes32 _txHash,
address _who,
uint256 _gasSpent
)
override
public
{}
function finalize(
bytes32 _preStateRoot,
address _publisher,
uint256 _timestamp
)
override
public
{}
function deposit()
override
public
{}
function startWithdrawal()
override
public
{}
function finalizeWithdrawal()
override
public
{}
function claim(
address _who
)
override
public
{}
function isCollateralized(
address _who
)
override
public
view
returns (
bool
)
{
// Only authenticate sequencer to submit state root batches.
return _who == resolve("OVM_Proposer");
}
function getGasSpent(
bytes32, // _preStateRoot,
address // _who
)
override
public
pure
returns (
uint256
)
{
return 0;
}
}
{
"compilationTarget": {
"contracts/optimistic-ethereum/OVM/chain/OVM_CanonicalTransactionChain.sol": "OVM_CanonicalTransactionChain"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "none",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_libAddressManager","type":"address"},{"internalType":"uint256","name":"_forceInclusionPeriodSeconds","type":"uint256"},{"internalType":"uint256","name":"_forceInclusionPeriodBlocks","type":"uint256"},{"internalType":"uint256","name":"_maxTransactionGasLimit","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_startingQueueIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_numQueueElements","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_totalElements","type":"uint256"}],"name":"QueueBatchAppended","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_startingQueueIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_numQueueElements","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_totalElements","type":"uint256"}],"name":"SequencerBatchAppended","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_batchIndex","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"_batchRoot","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"_batchSize","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_prevTotalElements","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"TransactionBatchAppended","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_l1TxOrigin","type":"address"},{"indexed":false,"internalType":"address","name":"_target","type":"address"},{"indexed":false,"internalType":"uint256","name":"_gasLimit","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"_data","type":"bytes"},{"indexed":false,"internalType":"uint256","name":"_queueIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_timestamp","type":"uint256"}],"name":"TransactionEnqueued","type":"event"},{"inputs":[],"name":"L2_GAS_DISCOUNT_DIVISOR","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_ROLLUP_TX_SIZE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_ROLLUP_TX_GAS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"appendQueueBatch","outputs":[],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"appendSequencerBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"batches","outputs":[{"internalType":"contract iOVM_ChainStorageContainer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_target","type":"address"},{"internalType":"uint256","name":"_gasLimit","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"enqueue","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"forceInclusionPeriodBlocks","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"forceInclusionPeriodSeconds","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLastBlockNumber","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLastTimestamp","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getNextQueueIndex","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getNumPendingQueueElements","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_index","type":"uint256"}],"name":"getQueueElement","outputs":[{"components":[{"internalType":"bytes32","name":"transactionHash","type":"bytes32"},{"internalType":"uint40","name":"timestamp","type":"uint40"},{"internalType":"uint40","name":"blockNumber","type":"uint40"}],"internalType":"struct Lib_OVMCodec.QueueElement","name":"_element","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getQueueLength","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalBatches","outputs":[{"internalType":"uint256","name":"_totalBatches","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalElements","outputs":[{"internalType":"uint256","name":"_totalElements","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"libAddressManager","outputs":[{"internalType":"contract Lib_AddressManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxTransactionGasLimit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"queue","outputs":[{"internalType":"contract iOVM_ChainStorageContainer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"_name","type":"string"}],"name":"resolve","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"blockNumber","type":"uint256"},{"internalType":"enum Lib_OVMCodec.QueueOrigin","name":"l1QueueOrigin","type":"uint8"},{"internalType":"address","name":"l1TxOrigin","type":"address"},{"internalType":"address","name":"entrypoint","type":"address"},{"internalType":"uint256","name":"gasLimit","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Lib_OVMCodec.Transaction","name":"_transaction","type":"tuple"},{"components":[{"internalType":"bool","name":"isSequenced","type":"bool"},{"internalType":"uint256","name":"queueIndex","type":"uint256"},{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"blockNumber","type":"uint256"},{"internalType":"bytes","name":"txData","type":"bytes"}],"internalType":"struct Lib_OVMCodec.TransactionChainElement","name":"_txChainElement","type":"tuple"},{"components":[{"internalType":"uint256","name":"batchIndex","type":"uint256"},{"internalType":"bytes32","name":"batchRoot","type":"bytes32"},{"internalType":"uint256","name":"batchSize","type":"uint256"},{"internalType":"uint256","name":"prevTotalElements","type":"uint256"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"internalType":"struct Lib_OVMCodec.ChainBatchHeader","name":"_batchHeader","type":"tuple"},{"components":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"bytes32[]","name":"siblings","type":"bytes32[]"}],"internalType":"struct Lib_OVMCodec.ChainInclusionProof","name":"_inclusionProof","type":"tuple"}],"name":"verifyTransaction","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]