// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert Errors.FailedCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly ("memory-safe") {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
import "../interfaces/IGameManager.sol";
abstract contract GameAware {
IGameManager public gameManager;
constructor(address _gameManager) {
require(
_gameManager != address(0),
"GameManager address cannot be zero"
);
gameManager = IGameManager(_gameManager);
}
modifier onlyDuringGame() {
require(gameManager.isGameActive(), "Game is not active");
_;
}
modifier onlyBeforeGame() {
require(
!gameManager.isGameActive() && !gameManager.isGameEnded(),
"Game already started or ended"
);
_;
}
modifier onlyAfterGame() {
require(gameManager.isGameEnded(), "Game is not ended yet");
_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)
pragma solidity ^0.8.20;
/**
* @dev Library of standard hash functions.
*
* _Available since v5.1._
*/
library Hashes {
/**
* @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
*
* NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
*/
function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
assembly ("memory-safe") {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
interface IGameManager {
function isGameActive() external view returns (bool);
function isGameEnded() external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
interface ITransactionType {
enum TransactionType {
NORMAL_TRANSFER,
TOKEN_PURCHASE,
TOKEN_SELL
}
}
pragma solidity >=0.5.0;
interface IUniswapV2Factory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
}
pragma solidity >=0.5.0;
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}
pragma solidity >=0.6.2;
interface IUniswapV2Router01 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);
function removeLiquidityETH(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);
function removeLiquidityETHWithPermit(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}
pragma solidity >=0.6.2;
import './IUniswapV2Router01.sol';
interface IUniswapV2Router02 is IUniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountETH);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
/// @title IVirus Interface
/// @notice Interface for the Virus contract's airdrop functionality
interface IVirus {
/// @notice Records infection tracking for airdrop transfers
/// @param from The original sender of the tokens
/// @param to The recipient of the tokens
/// @param amount The amount of tokens being transferred
function airdropTransfer(address from, address to, uint256 amount) external;
/// @notice Burns tokens, reducing the total supply
/// @param amount The amount of tokens to burn
function burn(uint256 amount) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
interface IVirusFactory {
function isVirusToken(address token) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
interface IWETH {
function withdraw(uint256) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
import "./interfaces/ITransactionType.sol";
import "./abstracts/GameAware.sol";
import "./VirusFactory.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
contract InfectionManager is GameAware, Ownable {
enum TransactionType {
NORMAL_TRANSFER,
TOKEN_PURCHASE,
TOKEN_SELL
}
struct FirstInfection {
address infector;
address virusAddress;
bool isActive;
}
struct ActiveInfection {
address infector;
address virusAddress;
bool isActive;
uint256 infectionOrder;
}
address payable public virusFactory;
bool public isVirusFactorySet;
uint256 public constant ACTIVE_WALLET_CONDITION = 0.005 ether;
uint256 public constant MAX_VIRUS_COUNT = 30;
uint256 public constant MIN_INFECTION_AMOUNT = 1000 * 10**18;
mapping(address => bool) public registeredViruses;
mapping(address => address[3]) public topInfectorsByVirus;
//// Wallet Infection Status ////
// Wallet's first infection status
mapping(address => FirstInfection) public firstInfection;
// Wallet's current active infection status
mapping(address => ActiveInfection) public activeInfection;
//// Wallet Info ////
mapping(address => mapping(address => ActiveInfection)) public activeInfectorHistory; // wallet => virusAddress => infector
mapping(address => uint256) public activeInfectorHistoryUniqueSum; // wallet => Sum of unique infections caused
//// Spreader Status ////
// Infection count by virus
mapping(address => uint256) public activeInfectionCountByVirusContract;
// Infection count by virus by infector
mapping(address => mapping(address => uint256)) public infectorSuccessCount; // virusAddress => infector => count
// Add a mapping that maintains a FirstInfection count for each infector
mapping(address => mapping(address => uint256)) public firstInfectionCountByInfector; // virusAddress => infector => count
event TopInfectorUpdated(
address indexed virusAddress,
address indexed infector,
uint256 newCount,
uint256 rank
);
event FirstInfectionInitialized(
address indexed victim,
address indexed virusAddress,
address indexed infector,
uint256 timestamp
);
event ActiveInfectionSet(
address indexed victim,
address indexed infector,
address indexed virusAddress,
uint256 infectionOrder,
uint256 timestamp
);
event InfectionReset(
address indexed victim,
uint256 timestamp
);
event InfectionCountUpdated(
address indexed virusAddress,
address indexed infector,
uint256 newCount,
bool isIncrement,
uint256 timestamp
);
event VirusInfectionCountUpdated(
address indexed virusContract,
uint256 count,
uint256 timestamp
);
constructor(
address _gameManager
) GameAware(_gameManager) Ownable(msg.sender) {}
function setVirusFactory(address _virusFactory) external onlyOwner {
require(!isVirusFactorySet, "Virus factory already set");
require(_virusFactory != address(0), "Invalid virus factory address");
virusFactory = payable(_virusFactory);
isVirusFactorySet = true;
address[] memory existingTokens = VirusFactory(payable(_virusFactory))
.getAllTokens();
require(
existingTokens.length <= MAX_VIRUS_COUNT,
"Too many existing viruses"
);
for (uint i = 0; i < existingTokens.length; i++) {
registeredViruses[existingTokens[i]] = true;
}
}
function tryInfect(
address infector,
address victim,
uint256 newAmount,
TransactionType txType
) external returns (bool) {
address virusAddress = msg.sender;
require(registeredViruses[virusAddress], "Not a registered virus");
// Returns false if out of game period
if (!gameManager.isGameActive()) {
return false;
}
if (newAmount < MIN_INFECTION_AMOUNT) {
return false;
}
if (txType == TransactionType.TOKEN_PURCHASE) {
// Update the infection status of the victim's address
if (!_activeWalletCheck(victim)) {
return false;
}
// If there is no FirstInfection, create one.
_initializeFirstInfection(infector, victim, virusAddress);
// victim increase itself the virus balance.
_processTryActiveInfection(infector, victim, newAmount, true);
} else if (txType == TransactionType.TOKEN_SELL) {
// Update the infection status of the victim's address
// infector decrease itself (Infector, infector, ...) the virus balance.
_processTryActiveInfection(infector, infector, newAmount, false);
} else {
_processTryActiveInfection(infector, infector, newAmount, false);
// Update the address of the victim and the infection status of the token increase side.
if (!_activeWalletCheck(victim)) {
return false;
}
// If there is no FirstInfection, create one.
_initializeFirstInfection(infector, victim, virusAddress);
_processTryActiveInfection(infector, victim, newAmount, true);
}
return true;
}
function _activeWalletCheck(address victim) private view returns (bool) {
if (!_isEoaContract(victim)) {
return false;
}
return (victim.balance >= ACTIVE_WALLET_CONDITION) || (firstInfection[victim].isActive);
}
function _initializeFirstInfection(address infector, address victim, address virusAddress) private {
if (!firstInfection[victim].isActive) {
if (infector == victim) {
firstInfection[victim] = FirstInfection({
infector: address(0),
virusAddress: address(0),
isActive: true
});
} else {
firstInfection[victim] = FirstInfection({
infector: infector,
virusAddress: virusAddress,
isActive: true
});
firstInfectionCountByInfector[virusAddress][infector]++;
}
emit FirstInfectionInitialized(victim, virusAddress, infector, block.timestamp);
}
}
function _processTryActiveInfection(
address infector,
address victim,
uint256 newAmount,
bool isPlus
) internal {
address targetVirusAddress = msg.sender;
address activeVirusAddress = activeInfection[victim].virusAddress;
if (isPlus) {
// If you are infected with the same virus, the number of infections will not be updated.
if (activeVirusAddress != targetVirusAddress) {
uint256 currentInfectionVirusBalance = 0;
if (activeVirusAddress != address(0)) {
currentInfectionVirusBalance = IERC20(activeVirusAddress).balanceOf(victim);
}
uint256 targetVirusBalance = 0;
if (targetVirusAddress != address(0)) {
uint256 currentTargetVirusBalance = IERC20(targetVirusAddress).balanceOf(victim);
require(newAmount <= type(uint256).max - currentTargetVirusBalance, "Overflow would occur");
targetVirusBalance = currentTargetVirusBalance + newAmount;
}
if (currentInfectionVirusBalance < targetVirusBalance) {
ActiveInfection memory oldActiveInfection = activeInfection[victim];
if (oldActiveInfection.virusAddress != address(0)) {
_updateInfectionCounts(oldActiveInfection, false);
}
_setNewActiveInfection(
victim,
infector,
targetVirusAddress,
++activeInfectorHistoryUniqueSum[victim]
);
activeInfectorHistory[victim][targetVirusAddress] = activeInfection[victim];
_updateInfectionCounts(activeInfection[victim], true);
_updateTopInfectors(targetVirusAddress, infector);
}
}
} else {
if (activeVirusAddress == targetVirusAddress) {
address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
// Maximum holding capacity and tracking of tokens
uint256 maxBalance = 0;
address maxBalanceVirusAddress = address(0);
// Check the amount of each virus held.
for (uint i = 0; i < allVirusAddresses.length; i++) {
address virusAddress = allVirusAddresses[i];
if (!registeredViruses[virusAddress]) continue;
uint256 balance = IERC20(virusAddress).balanceOf(victim);
// In the case of targetVirusAddress, subtract the amount
if (virusAddress == targetVirusAddress) {
balance -= newAmount;
}
// Updated maximum holding amount
if (balance > maxBalance) {
maxBalance = balance;
maxBalanceVirusAddress = virusAddress;
} else if (balance == maxBalance && maxBalanceVirusAddress != address(0)) {
// In the case of the same balance, the one with the larger (more recent) infectionOrder takes priority.
uint256 currentInfectionOrder = activeInfectorHistory[victim][allVirusAddresses[i]].infectionOrder;
uint256 maxInfectionOrder = activeInfectorHistory[victim][maxBalanceVirusAddress].infectionOrder;
if (currentInfectionOrder > maxInfectionOrder) {
maxBalanceVirusAddress = virusAddress;
}
}
}
if (maxBalanceVirusAddress != address(0)) {
ActiveInfection memory oldActiveInfection = activeInfection[victim];
_updateInfectionCounts(oldActiveInfection, false);
if (maxBalance == 0) {
_resetActiveInfection(victim);
} else {
address newInfector = activeInfectorHistory[victim][maxBalanceVirusAddress].infector;
_setNewActiveInfection(
victim,
newInfector,
maxBalanceVirusAddress,
++activeInfectorHistoryUniqueSum[victim]
);
_updateInfectionCounts(activeInfection[victim], true);
}
// Update top infectors rankings
_updateTopInfectorsRankings(
oldActiveInfection,
maxBalanceVirusAddress,
activeInfectorHistory[victim][maxBalanceVirusAddress].infector
);
} else {
_resetActiveInfection(victim);
}
}
}
}
function _updateTopInfectors(
address virusAddress,
address infector
) internal {
if (infector == address(0)) {
return;
}
uint256 newCount = infectorSuccessCount[virusAddress][infector];
address[3] storage topAddresses = topInfectorsByVirus[virusAddress];
// Check if infector is already in top 3
for (uint256 i = 0; i < 3; i++) {
if (topAddresses[i] == infector) {
return;
}
}
// Find first empty slot or the slot with lowest count
uint256 lowestCount = type(uint256).max;
uint256 lowestCountIndex = 3;
for (uint256 i = 0; i < 3; i++) {
if (topAddresses[i] == address(0)) {
// Found empty slot
topAddresses[i] = infector;
emit TopInfectorUpdated(virusAddress, infector, newCount, i + 1);
return;
}
uint256 currentCount = infectorSuccessCount[virusAddress][topAddresses[i]];
if (currentCount < lowestCount) {
lowestCount = currentCount;
lowestCountIndex = i;
}
}
// Replace the lowest count if new count is higher
if (newCount > lowestCount && lowestCountIndex < 3) {
topAddresses[lowestCountIndex] = infector;
emit TopInfectorUpdated(virusAddress, infector, newCount, lowestCountIndex + 1);
}
}
// Obtain active infection for specified address
function getActiveInfection(
address victim
) external view returns (ActiveInfection memory) {
return activeInfection[victim];
}
// Get the current infection status of the specified address
function getCurrentInfection(
address victim
)
external
view
returns (
address infector,
address virusAddress,
bool isActive
)
{
ActiveInfection memory infection = activeInfection[victim];
return (
infection.infector,
infection.virusAddress,
infection.isActive
);
}
function getFirstInfection(
address victim
)
external
view
returns (
address infector,
address virusAddress,
bool isActive
)
{
FirstInfection memory infection = firstInfection[victim];
return (
infection.infector,
infection.virusAddress,
infection.isActive
);
}
function getActiveInfectionCountByVirusContract(
address virusAddress
) external view returns (uint256) {
require(registeredViruses[virusAddress], "Not a registered virus");
return activeInfectionCountByVirusContract[virusAddress];
}
function getAllActiveInfectionCounts()
external
view
returns (address[] memory, uint256[] memory)
{
// Get all tokens from virus factory
address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
// Create arrays of the same size as allTokens
address[] memory virusAddresses = new address[](allVirusAddresses.length);
uint256[] memory counts = new uint256[](allVirusAddresses.length);
uint256 currentIndex = 0;
// Iterate through all registered viruses
for (uint256 i = 0; i < allVirusAddresses.length; i++) {
address virusAddress = allVirusAddresses[i];
if (registeredViruses[virusAddress]) {
virusAddresses[currentIndex] = virusAddress;
counts[currentIndex] = activeInfectionCountByVirusContract[virusAddress];
currentIndex++;
}
}
address[] memory finalAddresses = new address[](currentIndex);
uint256[] memory finalCounts = new uint256[](currentIndex);
for (uint256 i = 0; i < currentIndex; i++) {
finalAddresses[i] = virusAddresses[i];
finalCounts[i] = counts[i];
}
return (finalAddresses, finalCounts);
}
function getInfectorSuccessCount(
address virusAddress,
address infector
) external view returns (uint256) {
return infectorSuccessCount[virusAddress][infector];
}
function getInfectorSuccessCountMulti(
address infector
) external view returns (uint256[] memory) {
address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
uint256[] memory counts = new uint256[](allVirusAddresses.length);
for (uint256 i = 0; i < allVirusAddresses.length; i++) {
counts[i] = infectorSuccessCount[allVirusAddresses[i]][infector];
}
return counts;
}
function getFirstInfectionCount(
address virusAddress,
address infector
) external view returns (uint256) {
return firstInfectionCountByInfector[virusAddress][infector];
}
function getFirstInfectionCountMulti(
address infector
) external view returns (uint256[] memory) {
address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
uint256[] memory counts = new uint256[](allVirusAddresses.length);
for (uint256 i = 0; i < allVirusAddresses.length; i++) {
counts[i] = firstInfectionCountByInfector[allVirusAddresses[i]][infector];
}
return counts;
}
function getTopInfectors(
address virusAddress
) external view returns (address[3] memory, uint256[3] memory) {
address[3] memory addresses = topInfectorsByVirus[virusAddress];
uint256[3] memory counts;
for (uint256 i = 0; i < 3; i++) {
counts[i] = infectorSuccessCount[virusAddress][addresses[i]];
}
for (uint256 i = 0; i < 2; i++) {
for (uint256 j = 0; j < 2 - i; j++) {
if (counts[j] < counts[j + 1]) {
uint256 tempCount = counts[j];
counts[j] = counts[j + 1];
counts[j + 1] = tempCount;
address tempAddr = addresses[j];
addresses[j] = addresses[j + 1];
addresses[j + 1] = tempAddr;
}
}
}
return (addresses, counts);
}
function _updateInfectionCounts(
ActiveInfection memory infection,
bool isIncrement
) private {
if (infection.isActive && infection.virusAddress != address(0)) {
if (isIncrement) {
_incrementActiveInfectionCount(infection.virusAddress);
infectorSuccessCount[infection.virusAddress][infection.infector]++;
} else {
if (activeInfectionCountByVirusContract[infection.virusAddress] > 0) {
_decrementActiveInfectionCount(infection.virusAddress);
}
if (infectorSuccessCount[infection.virusAddress][infection.infector] > 0) {
infectorSuccessCount[infection.virusAddress][infection.infector]--;
}
}
emit InfectionCountUpdated(
infection.virusAddress,
infection.infector,
infectorSuccessCount[infection.virusAddress][infection.infector],
isIncrement,
block.timestamp
);
}
}
function _resetActiveInfection(address victim) private {
activeInfection[victim] = ActiveInfection({
infector: address(0),
virusAddress: address(0),
isActive: false,
infectionOrder: 0
});
emit InfectionReset(victim, block.timestamp);
}
function _setNewActiveInfection(
address victim,
address infector,
address virusAddress,
uint256 infectionOrder
) private {
activeInfection[victim] = ActiveInfection({
infector: infector,
virusAddress: virusAddress,
isActive: true,
infectionOrder: infectionOrder
});
emit ActiveInfectionSet(
victim,
infector,
virusAddress,
infectionOrder,
block.timestamp
);
}
function _updateTopInfectorsRankings(
ActiveInfection memory oldInfection,
address maxBalanceVirusAddress,
address newInfector
) private {
_updateTopInfectors(
oldInfection.virusAddress,
oldInfection.infector
);
_updateTopInfectors(
maxBalanceVirusAddress,
newInfector
);
}
function _isEoaContract(address account) private view returns (bool) {
uint256 size;
assembly {
size := extcodesize(account)
}
return size == 0;
}
function _incrementActiveInfectionCount(address virusContract) internal {
activeInfectionCountByVirusContract[virusContract]++;
emit VirusInfectionCountUpdated(
virusContract,
activeInfectionCountByVirusContract[virusContract],
block.timestamp
);
}
function _decrementActiveInfectionCount(address virusContract) internal {
if (activeInfectionCountByVirusContract[virusContract] > 0) {
activeInfectionCountByVirusContract[virusContract]--;
emit VirusInfectionCountUpdated(
virusContract,
activeInfectionCountByVirusContract[virusContract],
block.timestamp
);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.
pragma solidity ^0.8.20;
import {Hashes} from "./Hashes.sol";
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*
* IMPORTANT: Consider memory side-effects when using custom hashing functions
* that access memory in an unsafe way.
*
* NOTE: This library supports proof verification for merkle trees built using
* custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
* leaf inclusion in trees built using non-commutative hashing functions requires
* additional logic that is not supported by this library.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in memory with the default hashing function.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in memory with the default hashing function.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in memory with a custom hashing function.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processProof(proof, leaf, hasher) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in memory with a custom hashing function.
*/
function processProof(
bytes32[] memory proof,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = hasher(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with the default hashing function.
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with the default hashing function.
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with a custom hashing function.
*/
function verifyCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processProofCalldata(proof, leaf, hasher) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with a custom hashing function.
*/
function processProofCalldata(
bytes32[] calldata proof,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = hasher(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in memory with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProof}.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in memory with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = Hashes.commutativeKeccak256(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in memory with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProof}.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processMultiProof(proof, proofFlags, leaves, hasher) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in memory with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = hasher(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in calldata with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProofCalldata}.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in calldata with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = Hashes.commutativeKeccak256(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in calldata with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProofCalldata}.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in calldata with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = hasher(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "./abstracts/GameAware.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./interfaces/IVirusFactory.sol";
contract RewardFirstInfection is GameAware, ReentrancyGuard {
IVirusFactory public virusFactory;
bool public isVirusFactorySet;
address public immutable deployer;
mapping(address => uint256) private rewards;
mapping(address => mapping(address => uint256)) private tokenRewardsVirus;
event RewardDeposited(address indexed infector, uint256 amount);
event RewardWithdrawn(address indexed infector, uint256 amount);
event VirusRewardDeposited(address indexed infector, uint256 amount, address token);
event VirusRewardWithdrawn(address indexed infector, uint256 amount, address token);
modifier onlyDeployer() {
require(msg.sender == deployer, "Only deployer can call");
_;
}
constructor(address _gameManager) GameAware(_gameManager) {
deployer = msg.sender;
}
function setVirusFactory(address _virusFactory) external onlyDeployer {
require(!isVirusFactorySet, "Virus factory already set");
require(_virusFactory != address(0), "Invalid virus factory address");
virusFactory = IVirusFactory(_virusFactory);
isVirusFactorySet = true;
}
function deposit(address infector) external payable {
require(msg.value > 0, "Deposit amount must be greater than 0");
require(infector != address(0), "Invalid infector address");
rewards[infector] += msg.value;
emit RewardDeposited(infector, msg.value);
}
function recordVirusDeposit(address infector, uint256 amount) external {
require(isVirusFactorySet, "Virus factory not set");
require(infector != address(0), "Invalid infector address");
require(amount > 0, "Amount must be greater than 0");
require(virusFactory.isVirusToken(msg.sender), "Not a valid virus token");
address token = msg.sender;
tokenRewardsVirus[token][infector] += amount;
emit VirusRewardDeposited(infector, amount, token);
}
function withdraw() external onlyAfterGame nonReentrant {
uint256 ethAmount = rewards[msg.sender];
require(ethAmount > 0, "No rewards available");
if (ethAmount > 0) {
rewards[msg.sender] = 0;
(bool success, ) = payable(msg.sender).call{value: ethAmount}("");
require(success, "ETH transfer failed");
emit RewardWithdrawn(msg.sender, ethAmount);
}
}
function withdrawVirus(address virus) external onlyAfterGame nonReentrant {
uint256 tokenAmount = tokenRewardsVirus[virus][msg.sender];
require(tokenAmount > 0, "No rewards available");
tokenRewardsVirus[virus][msg.sender] = 0;
IERC20(virus).transfer(msg.sender, tokenAmount);
emit VirusRewardWithdrawn(msg.sender, tokenAmount, virus);
}
function getRewardAmount(address infector) external view returns (uint256) {
return rewards[infector];
}
function getVirusRewardAmount(address infector, address virus) external view returns (uint256) {
return tokenRewardsVirus[virus][infector];
}
receive() external payable {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
import "./abstracts/GameAware.sol";
import "./InfectionManager.sol";
import "./VirusFactory.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Factory.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Pair.sol";
import "@uniswap-v2-periphery-1.1.0-beta.0/contracts/interfaces/IUniswapV2Router02.sol";
import "./interfaces/IVirus.sol";
import "./interfaces/IWETH.sol";
contract RewardWinnerPot is Ownable, ReentrancyGuard, GameAware {
using Address for address payable;
// Constants for fee distribution
uint256 private constant FIRST_PLACE_SHARE = 170; // 17%
uint256 private constant SECOND_PLACE_SHARE = 100; // 10%
uint256 private constant THIRD_PLACE_SHARE = 70; // 7%
uint256 public constant UNISWAP_SHARE = 660; // 66%
uint256 public constant TOTAL_SHARES = 1000; // 100%
address public immutable WETH;
address private immutable DEAD_ADDRESS;
uint256 public totalFees;
address public immutable deployerAddress;
address public uniswapFactory;
address public uniswapRouter;
bool public deployerClaimed;
mapping(address => uint256) public pendingRewards;
bool public isDistributed;
event FeesAccumulated(uint256 amount);
event RewardsDeposited(address indexed depositor, uint256 amount);
event RewardsDistributed(address[] winners, uint256[] amounts);
event RewardClaimed(address indexed user, uint256 amount);
event UniswapShareTransferred(uint256 amount);
event DeployerShareTransferred(uint256 amount);
event UniswapShareBurned(uint256 amount);
InfectionManager public infectionManager;
VirusFactory public virusFactory;
bool public contractsInitialized;
event ContractsInitialized(address virusFactory);
uint256 public initialSlippage = 950; // 95% (5% initial max slippage)
uint256 public maxSlippage = 900; // 90% (10% absolute max slippage)
uint256 public slippageStep = 10; // 1% steps
constructor(
address _uniswapFactory,
address _uniswapRouter,
address _gameManager,
address _infectionManager,
address _weth
) Ownable(msg.sender) GameAware(_gameManager) {
require(
_uniswapFactory != address(0),
"Invalid uniswap manager address"
);
require(
_infectionManager != address(0),
"Invalid infection manager address"
);
deployerAddress = msg.sender;
uniswapFactory = _uniswapFactory;
uniswapRouter = _uniswapRouter;
infectionManager = InfectionManager(_infectionManager);
WETH = _weth;
}
function setVirusFactory(
address _virusFactory
) external onlyOwner {
require(!contractsInitialized, "Contracts are already initialized");
require(_virusFactory != address(0), "Invalid virus factory address");
virusFactory = VirusFactory(payable(_virusFactory));
contractsInitialized = true;
emit ContractsInitialized(_virusFactory);
}
receive() external payable {
require(contractsInitialized, "Contracts not initialized");
require(msg.value > 0, "Must deposit some ETH");
totalFees += msg.value;
emit RewardsDeposited(msg.sender, msg.value);
emit FeesAccumulated(msg.value);
}
function aggregation() external onlyAfterGame {
require(virusFactory.allTokensUniswapEnabled(), "All viruses are not added to Uniswap V2.");
uint256 wethBalance = IERC20(WETH).balanceOf(address(this));
if (wethBalance > 0) {
IWETH(WETH).withdraw(wethBalance);
}
(
address winningVirusContract,
) = _getWinningVirus();
(
address[3] memory topInfectors,
) = _getTopInfectors(winningVirusContract);
_distributeWinnerRewards(topInfectors);
_buyAndBurnWinningVirus(winningVirusContract);
}
function _getWinningVirus()
internal
view
returns (address winningVirusContract, uint256 maxInfections)
{
(
address[] memory virusAddresses,
uint256[] memory counts
) = infectionManager.getAllActiveInfectionCounts();
maxInfections = 0;
for (uint256 i = 0; i < virusAddresses.length; i++) {
if (virusAddresses[i] == address(0)) break;
if (counts[i] > maxInfections) {
maxInfections = counts[i];
winningVirusContract = virusAddresses[i];
}
}
require(winningVirusContract != address(0), "No winning virus found");
return (winningVirusContract, maxInfections);
}
function _getTopInfectors(
address virusContract
) internal view returns (address[3] memory, uint256[3] memory) {
return infectionManager.getTopInfectors(virusContract);
}
function _distributeWinnerRewards(address[3] memory topInfectors) internal {
require(!isDistributed, "Rewards already distributed");
uint256 totalRewardAmount = totalFees;
uint256 firstPlaceAmount = (totalRewardAmount * FIRST_PLACE_SHARE) /
TOTAL_SHARES;
uint256 secondPlaceAmount = (totalRewardAmount * SECOND_PLACE_SHARE) /
TOTAL_SHARES;
uint256 thirdPlaceAmount = (totalRewardAmount * THIRD_PLACE_SHARE) /
TOTAL_SHARES;
pendingRewards[topInfectors[0]] += firstPlaceAmount;
pendingRewards[topInfectors[1]] += secondPlaceAmount;
pendingRewards[topInfectors[2]] += thirdPlaceAmount;
isDistributed = true;
}
function claimReward() external nonReentrant onlyAfterGame {
uint256 reward = pendingRewards[msg.sender];
require(reward > 0, "No rewards to claim");
pendingRewards[msg.sender] = 0;
require(address(this).balance >= reward, "Insufficient contract balance");
payable(msg.sender).sendValue(reward);
emit RewardClaimed(msg.sender, reward);
}
function setSlippageParameters(
uint256 _initialSlippage,
uint256 _maxSlippage,
uint256 _slippageStep
) external onlyOwner {
require(_initialSlippage > _maxSlippage, "Initial slippage must be higher than max");
require(_initialSlippage <= 1000 && _maxSlippage > 0, "Invalid slippage values");
require(_slippageStep > 0, "Invalid step value");
initialSlippage = _initialSlippage;
maxSlippage = _maxSlippage;
slippageStep = _slippageStep;
}
function _buyAndBurnWinningVirus(address winningVirusContract) internal {
uint256 uniswapAmount = (totalFees * UNISWAP_SHARE) / TOTAL_SHARES;
require(uniswapAmount > 0, "No ETH for Uniswap");
address pair = IUniswapV2Factory(uniswapFactory).getPair(
winningVirusContract,
WETH
);
require(pair != address(0), "Pair does not exist");
IUniswapV2Router02 router = IUniswapV2Router02(uniswapRouter);
// Set swap parameters
address[] memory path = new address[](2);
path[0] = router.WETH();
path[1] = winningVirusContract;
uint256[] memory amountsOut = router.getAmountsOut(uniswapAmount, path);
uint256 currentSlippage = initialSlippage;
bool swapSuccess = false;
while (currentSlippage >= maxSlippage && !swapSuccess) {
uint256 minAmountOut = (amountsOut[1] * currentSlippage) / 1000;
try router.swapExactETHForTokens{value: uniswapAmount}(
minAmountOut,
path,
address(this),
block.timestamp + 15
) {
swapSuccess = true;
} catch {
// Reduce acceptance threshold by step
currentSlippage = currentSlippage - slippageStep;
}
}
require(swapSuccess, "Swap failed at all slippage levels");
// Continue with token burning
uint256 tokenBalance = IERC20(winningVirusContract).balanceOf(address(this));
if (tokenBalance > 0) {
IVirus(winningVirusContract).burn(tokenBalance);
emit UniswapShareBurned(tokenBalance);
}
}
function getClaimableReward(address _address) public view returns (uint256) {
return pendingRewards[_address];
}
function getTotalBalance() public view returns (uint256) {
return address(this).balance + IERC20(WETH).balanceOf(address(this));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
import "./interfaces/ITransactionType.sol";
import "./InfectionManager.sol";
import "./RewardFirstInfection.sol";
import "./RewardWinnerPot.sol";
import "./abstracts/GameAware.sol";
import "./VirusFactory.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Factory.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Pair.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
contract Virus is ERC20, GameAware, ITransactionType, ReentrancyGuard {
IUniswapV2Router02 public immutable uniswap_router;
address payable public virusFactory;
address public immutable uniswap_factory;
address public immutable pairAddressWithWeth;
address public immutable WETH;
address public devAddress;
address public winnerPot;
address public virusDrop;
InfectionManager public immutable infectionManager;
RewardWinnerPot public immutable rewardWinnerPot;
RewardFirstInfection public immutable rewardFirstInfection;
uint256 public DEV_FEE_PERCENTAGE = 10; // 1% = 10/1000
uint256 public WINNER_POT_FEE_PERCENTAGE = 15; //1.5% = 15/1000
uint256 public AFTER_GAME_DEV_FEE_PERCENTAGE = 5; // 0.5% = 5/1000
uint256 public constant FIRST_INFECTED_FEE_PERCENTAGE = 10; // 1.0% = 10/1000
uint public constant FEE_DENOMINATOR = 1000;
uint256 public accumulatedWinnerPotFeeVirus;
uint256 public accumulatedDevFeeVirus;
uint256 public slippagePercentage = 50;
event FeesCollected(
uint256 winnerPotFee,
uint256 devFee,
uint256 firstInfectedFee,
address firstInfector
);
event TaxesProcessed(
uint256 winnerPotAmount,
uint256 devAmount
);
event UniswapStateChanged(
bool enabled
);
constructor(
string memory name,
string memory symbol,
uint initialMint,
address _rewardWinnerPot,
address _uniswapFactory,
address _uniswapRouter,
address _infectionManager,
address _rewardFirstInfection,
address _gameManager,
address _devAddress,
address _winnerPot,
address _weth,
address _virusDrop
) ERC20(name, symbol) GameAware(_gameManager) {
_mint(msg.sender, initialMint);
virusFactory = payable(msg.sender);
rewardWinnerPot = RewardWinnerPot(payable(_rewardWinnerPot));
uniswap_router = IUniswapV2Router02(_uniswapRouter);
uniswap_factory = _uniswapFactory;
rewardFirstInfection = RewardFirstInfection(payable(_rewardFirstInfection));
infectionManager = InfectionManager(_infectionManager);
devAddress = _devAddress;
winnerPot = _winnerPot;
WETH = _weth;
pairAddressWithWeth = IUniswapV2Factory(uniswap_factory).createPair(address(this), WETH);
virusDrop = _virusDrop;
}
function _calculateFees(
address from,
address to,
uint256 amount
) private returns (uint256 winnerPotFee, uint devFee, address firstInfectorAddress, uint256 firstInfectedFee) {
bool isActive = gameManager.isGameActive();
if (isActive) {
winnerPotFee = amount * WINNER_POT_FEE_PERCENTAGE / FEE_DENOMINATOR;
devFee = amount * DEV_FEE_PERCENTAGE / FEE_DENOMINATOR;
} else {
winnerPotFee = 0;
devFee = amount * AFTER_GAME_DEV_FEE_PERCENTAGE / FEE_DENOMINATOR;
}
if (from == pairAddressWithWeth) {
(address firstInfector,,bool isFirstInfectionActive) = infectionManager.getFirstInfection(to);
if (isFirstInfectionActive && firstInfector != address(0)) {
firstInfectedFee = (amount * FIRST_INFECTED_FEE_PERCENTAGE) / FEE_DENOMINATOR;
firstInfectorAddress = firstInfector;
}
}
emit FeesCollected(winnerPotFee, devFee, firstInfectedFee, firstInfectorAddress);
return (winnerPotFee, devFee, firstInfectorAddress, firstInfectedFee);
}
function processTaxes() external nonReentrant {
address[] memory path = new address[](2);
path[0] = address(this);
path[1] = WETH;
require(accumulatedWinnerPotFeeVirus > 0 || accumulatedDevFeeVirus > 0, "No fees to process");
if (IERC20(address(this)).allowance(address(this), address(uniswap_router)) == 0) {
_approve(address(this), address(uniswap_router), type(uint256).max);
}
if (accumulatedWinnerPotFeeVirus > 0) {
uint256 amountToSwap = accumulatedWinnerPotFeeVirus;
accumulatedWinnerPotFeeVirus = 0;
uint256[] memory amountsOut = uniswap_router.getAmountsOut(amountToSwap, path);
uint256 minAmountOut = amountsOut[1] * (1000 - slippagePercentage) / 1000;
uniswap_router.swapExactTokensForTokensSupportingFeeOnTransferTokens(
amountToSwap,
minAmountOut,
path,
address(rewardWinnerPot),
block.timestamp
);
}
if (accumulatedDevFeeVirus > 0) {
uint256 amountToSwap = accumulatedDevFeeVirus;
accumulatedDevFeeVirus = 0;
uint256[] memory amountsOut = uniswap_router.getAmountsOut(amountToSwap, path);
uint256 minAmountOut = amountsOut[1] * (1000 - slippagePercentage) / 1000;
uniswap_router.swapExactTokensForTokensSupportingFeeOnTransferTokens(
amountToSwap,
minAmountOut,
path,
address(devAddress),
block.timestamp
);
}
}
function _isUniswapEnabled() private view returns (bool) {
VirusFactory factory = VirusFactory(virusFactory);
return factory.tokens(address(this)) == VirusFactory.TokenState.UNISWAP_ENABLED;
}
function _update(
address from,
address to,
uint256 amount
) internal virtual override {
if (from == address(virusDrop)) {
super._update(from, to, amount);
return;
}
if (from == address(0) || to == address(0)) {
super._update(from, to, amount);
return;
}
bool _isTaxable = true;
if (_excludedFromTaxes(from) || _excludedFromTaxes(to)) {
_isTaxable = false;
}
if (_isTaxable) {
bool isUniswapTrade = from == pairAddressWithWeth ||
to == pairAddressWithWeth;
if (isUniswapTrade) {
if (!_isUniswapEnabled()) {
revert("Direct transfers with Uniswap pairs are not allowed until bonding curve is ended");
}
TransactionType txType;
if (from == pairAddressWithWeth) {
txType = TransactionType.TOKEN_PURCHASE;
} else {
txType = TransactionType.TOKEN_SELL;
}
(uint112 reserve0, uint112 reserve1, ) = IUniswapV2Pair(
pairAddressWithWeth
).getReserves();
bool uniswapEnabled = reserve0 > 0 && reserve1 > 0;
if ((to != address(this)) && uniswapEnabled) {
infectionManager.tryInfect(tx.origin, tx.origin, amount, InfectionManager.TransactionType(uint(txType)));
(uint256 winnerPotFee, uint256 devFee, address firstInfectorAddress, uint256 firstInfectedFee) = _calculateFees(from, to, amount);
uint allFee = winnerPotFee + devFee + firstInfectedFee;
amount -= allFee;
accumulatedWinnerPotFeeVirus += winnerPotFee;
accumulatedDevFeeVirus += devFee;
super._update(from, address(this), (winnerPotFee + devFee));
if (firstInfectedFee > 0) {
rewardFirstInfection.recordVirusDeposit(firstInfectorAddress, firstInfectedFee);
super._update(from, address(rewardFirstInfection), firstInfectedFee);
}
}
} else {
TransactionType txType = TransactionType.NORMAL_TRANSFER;
if (to == address(virusFactory)) {
txType = TransactionType.TOKEN_SELL;
}
infectionManager.tryInfect(
from,
to,
amount,
InfectionManager.TransactionType(uint(txType))
);
}
}
super._update(from, to, amount);
}
function _excludedFromTaxes(address addr) internal view returns (bool) {
if (addr == address(this)) return true;
if (addr == address(winnerPot)) return true;
if (addr == address(rewardFirstInfection)) return true;
if (addr == address(devAddress)) return true;
return false;
}
function mint(address to, uint256 amount) external {
require(msg.sender == virusFactory, "Only virusFactory can mint");
infectionManager.tryInfect(
to,
to,
amount,
InfectionManager.TransactionType(uint(TransactionType.TOKEN_PURCHASE))
);
_mint(to, amount);
}
function burn(uint256 amount) external {
_burn(msg.sender, amount);
}
function airdropTransfer(address from, address to, uint256 amount) external {
require(msg.sender == virusDrop, "Only virusDrop can call this function");
infectionManager.tryInfect(
from,
to,
amount,
InfectionManager.TransactionType(uint(TransactionType.NORMAL_TRANSFER))
);
}
function setSlippagePercentage(uint256 _slippagePercentage) external {
require(msg.sender == devAddress, "Only the developer can set this.");
slippagePercentage = _slippagePercentage;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
import "./Virus.sol";
import "./abstracts/GameAware.sol";
import "./RewardWinnerPot.sol";
import "./RewardFirstInfection.sol";
import "./InfectionManager.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Pair.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Factory.sol";
import "@uniswap-v2-periphery-1.1.0-beta.0/contracts/interfaces/IUniswapV2Router02.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
contract VirusFactory is Ownable, GameAware, ReentrancyGuard {
event TokenStateChanged(address indexed virus, TokenState state);
InfectionManager public infectionManager;
RewardWinnerPot public rewardWinnerPot;
RewardFirstInfection public rewardFirstInfection;
uint256 private nextVirusId;
address[] public allTokens;
bool public allTokensUniswapEnabled;
uint256 public lastProcessedIndex;
address public immutable UNISWAP_V2_FACTORY;
address public immutable UNISWAP_V2_ROUTER;
address public immutable devAddress;
address public immutable virusDrop;
uint256 public accumulatedEth;
bytes32 public merkleRoot;
uint256 public whitelistEndTime;
uint256 public constant WHITELIST_MAX_PURCHASE = 0.5 ether;
mapping(address => uint256) public whitelistPurchases;
constructor(
address _gameManager,
address _infectionManager,
address payable _rewardWinnerPot,
address payable _rewardFirstInfection,
address _uniswapFactory,
address _uniswapRouter,
address _devAddress,
address _virusDrop
) Ownable(msg.sender) GameAware(_gameManager) {
infectionManager = InfectionManager(_infectionManager);
rewardWinnerPot = RewardWinnerPot(_rewardWinnerPot);
rewardFirstInfection = RewardFirstInfection(payable(_rewardFirstInfection));
UNISWAP_V2_FACTORY = _uniswapFactory;
UNISWAP_V2_ROUTER = _uniswapRouter;
nextVirusId = 0;
devAddress = _devAddress;
virusDrop = _virusDrop;
}
enum TokenState {
NOT_CREATED,
ACTIVE,
UNISWAP_ENABLED
}
uint public constant FEE_PERCENTAGE = 25 * 1e15; // 2.5% = 0.025 * 1e18
uint public constant INFECTED_FEE_PERCENTAGE = 10 * 1e15; // 1% = 0.01 * 1e18
uint public constant DECIMALS = 1e18;
uint public constant MAX_SUPPLY = 100_000_000_000 * DECIMALS; // 100 billion
uint public constant SUPPLY_THRESHOLD = 67_000_000_000 * DECIMALS; // 67 billion
uint public constant WINNER_POT_SHARE = 60; // 60%
uint public constant ALL_SHARE = 100; // 100%
mapping(address => TokenState) public tokens;
mapping(address => uint) public collateral; // amount of ETH received
mapping(address => mapping(address => uint)) public balances; // token balances for ppl bought tokens not released yet
mapping(address => uint256) public customSlippageTolerances;
uint256 public constant DEFAULT_SLIPPAGE_TOLERANCE = 500; // 5%
uint256 public constant MAX_SLIPPAGE_TOLERANCE = 10000; // 100%
uint256 public sellCooldownPeriod = 1 minutes;
uint256 public constant MAX_COOLDOWN_PERIOD = 5 minutes;
mapping(address => uint256) public lastBuyTimestamp;
modifier validateTokenOperation(address virusAddress) {
require(
tokens[virusAddress] == TokenState.ACTIVE,
"Token not found or not available in ACTIVE"
);
_;
}
struct FeeBreakdown {
uint256 totalBasicFee;
uint256 winnerPotFee;
uint256 devFee;
}
function createToken(
string memory name,
string memory symbol
) external onlyOwner onlyBeforeGame returns (address) {
require(nextVirusId < 30, "Maximum number of viruses reached");
IUniswapV2Router02 router = IUniswapV2Router02(UNISWAP_V2_ROUTER);
Virus token = new Virus(
name,
symbol,
0,
address(rewardWinnerPot),
UNISWAP_V2_FACTORY,
UNISWAP_V2_ROUTER,
address(infectionManager),
payable(address(rewardFirstInfection)),
address(gameManager),
address(devAddress),
address(rewardWinnerPot),
router.WETH(),
address(virusDrop)
);
tokens[address(token)] = TokenState.ACTIVE;
nextVirusId++;
allTokens.push(address(token));
return address(token);
}
function buy(
address virusAddress,
uint256 virusAmount,
bytes32[] calldata merkleProof
) external payable validateTokenOperation(virusAddress) onlyDuringGame nonReentrant {
if (block.timestamp < whitelistEndTime) {
require(isWhitelisted(msg.sender, merkleProof), "Not whitelisted");
}
require(virusAmount > 0, "Amount must be greater than 0");
require(virusAmount % DECIMALS == 0, "Amount must be a whole number");
Virus token = Virus(virusAddress);
require(
token.totalSupply() + virusAmount <= SUPPLY_THRESHOLD,
"Purchase would exceed supply threshold"
);
uint requiredEth = _calculateTokenPrice(
virusAddress,
virusAmount,
true
);
(
uint baseFee,
uint firstInfectedFee,
address firstInfector
) = _calculateBuyFeesAndCreateNoInfection(msg.sender, requiredEth);
uint totalETHRequired = requiredEth + baseFee + firstInfectedFee;
require(msg.value >= totalETHRequired, "Insufficient ETH sent");
if (block.timestamp < whitelistEndTime) {
uint256 newTotalPurchase = whitelistPurchases[msg.sender] + totalETHRequired;
require(newTotalPurchase <= WHITELIST_MAX_PURCHASE, "Exceeds whitelist purchase limit");
whitelistPurchases[msg.sender] = newTotalPurchase;
}
collateral[virusAddress] += requiredEth;
token.mint(msg.sender, virusAmount);
if (token.totalSupply() >= SUPPLY_THRESHOLD) {
_enableUniswap(virusAddress);
}
if (firstInfectedFee > 0) {
rewardFirstInfection.deposit{value: firstInfectedFee}(
firstInfector
);
}
if (msg.value > totalETHRequired) {
(bool success, ) = payable(msg.sender).call{
value: msg.value - totalETHRequired
}("");
require(success, "ETH return failed");
}
lastBuyTimestamp[msg.sender] = block.timestamp;
}
function sell(
address virusAddress,
uint256 virusAmount,
uint256 minAmountOut
) external validateTokenOperation(virusAddress) onlyDuringGame nonReentrant {
require(virusAmount > 0, "Amount must be greater than 0");
require(virusAmount % DECIMALS == 0, "Amount must be a whole number");
require(
block.timestamp >= lastBuyTimestamp[msg.sender] + sellCooldownPeriod,
"Sell cooldown period not elapsed"
);
Virus token = Virus(virusAddress);
require(
token.balanceOf(msg.sender) >= virusAmount,
"Insufficient token balance"
);
require(
token.allowance(msg.sender, address(this)) >= virusAmount,
"Please approve tokens before selling"
);
uint256 sellPrice = _calculateTokenPrice(
virusAddress,
virusAmount,
false
);
uint256 fee = _calculateAndDistributeSellFees(sellPrice);
uint256 netAmount = sellPrice - fee;
require(netAmount >= minAmountOut, "Output amount below minimum");
require(
collateral[virusAddress] >= netAmount,
"Insufficient collateral for this virus"
);
collateral[virusAddress] -= sellPrice;
token.transferFrom(msg.sender, address(this), virusAmount);
token.burn(virusAmount);
(bool success, ) = payable(msg.sender).call{value: netAmount}("");
require(success, "ETH transfer failed");
}
function afterGameEndsUniswapAdded(uint256 batchSize) external onlyAfterGame {
require(!allTokensUniswapEnabled, "All tokens already Uniswap enabled");
require(batchSize > 0, "Batch size must be greater than 0");
uint256 startIndex = lastProcessedIndex;
uint256 endIndex = Math.min(startIndex + batchSize, allTokens.length);
for (uint i = startIndex; i < endIndex; i++) {
address virusAddress = allTokens[i];
if (
tokens[virusAddress] == TokenState.ACTIVE &&
collateral[virusAddress] > 0
) {
_enableUniswap(virusAddress);
}
if (
tokens[virusAddress] == TokenState.ACTIVE &&
collateral[virusAddress] == 0
) {
tokens[virusAddress] = TokenState.UNISWAP_ENABLED;
}
lastProcessedIndex = i + 1;
}
if (lastProcessedIndex == allTokens.length) {
allTokensUniswapEnabled = true;
}
}
function _createLiquidityPool(
address virusAddress
) internal returns (address) {
IUniswapV2Factory factory = IUniswapV2Factory(UNISWAP_V2_FACTORY);
IUniswapV2Router02 router = IUniswapV2Router02(UNISWAP_V2_ROUTER);
address pair = factory.getPair(virusAddress, router.WETH());
if (pair == address(0)) {
pair = factory.createPair(virusAddress, router.WETH());
}
return pair;
}
function _provideLiquidity(
address virusAddress,
uint256 tokenAmount,
uint256 ethAmount
) internal returns (uint) {
Virus token = Virus(virusAddress);
IUniswapV2Router02 router = IUniswapV2Router02(UNISWAP_V2_ROUTER);
token.approve(UNISWAP_V2_ROUTER, tokenAmount);
uint256 slippageBps = getSlippageTolerance(virusAddress);
uint256 minTokenAmount = tokenAmount * (10000 - slippageBps) / 10000;
uint256 minEthAmount = ethAmount * (10000 - slippageBps) / 10000;
(uint256 amountToken,, uint liquidity) = router.addLiquidityETH{value: ethAmount}(
virusAddress,
tokenAmount,
minTokenAmount,
minEthAmount,
address(this),
block.timestamp
);
if (amountToken < tokenAmount) {
uint256 unusedTokens = tokenAmount - amountToken;
token.burn(unusedTokens);
}
token.approve(UNISWAP_V2_ROUTER, 0);
return liquidity;
}
function _burnLpTokens(address poolAddress, uint256 amount) internal {
IUniswapV2Pair pool = IUniswapV2Pair(poolAddress);
pool.transfer(address(0), amount);
}
function _calculateBasicFee(
uint256 baseAmount
) internal pure returns (FeeBreakdown memory) {
uint256 totalBasicFee = (baseAmount * FEE_PERCENTAGE) / DECIMALS;
uint256 winnerPotFee = (totalBasicFee * WINNER_POT_SHARE) / ALL_SHARE;
uint256 devFee = totalBasicFee - winnerPotFee;
return FeeBreakdown({
totalBasicFee: totalBasicFee,
winnerPotFee: winnerPotFee,
devFee: devFee
});
}
function _distributeFees(FeeBreakdown memory fees) internal {
if (fees.winnerPotFee > 0) {
(bool success, ) = address(rewardWinnerPot).call{value: fees.winnerPotFee}("");
require(success, "Winner pot fee transfer failed");
}
if (fees.devFee > 0) {
require(
address(this).balance >= fees.devFee,
"Insufficient balance for dev fee"
);
(bool success, ) = devAddress.call{value: fees.devFee}("");
require(success, "Dev fee transfer failed");
}
}
function _calculateAndDistributeFees(uint256 baseAmount) internal returns (uint256) {
FeeBreakdown memory fees = _calculateBasicFee(baseAmount);
_distributeFees(fees);
return fees.totalBasicFee;
}
function _calculateBuyFeesAndCreateNoInfection(
address user,
uint256 baseAmount
)
internal
returns (
uint baseFee,
uint firstInfectedFee,
address firstInfectorAddress
)
{
baseFee = _calculateAndDistributeFees(baseAmount);
(address firstInfector, , bool isActive) = infectionManager
.getFirstInfection(user);
firstInfectedFee = (isActive && firstInfector != address(0))
? (baseAmount * INFECTED_FEE_PERCENTAGE) / DECIMALS
: 0;
return (baseFee, firstInfectedFee, firstInfector);
}
function _calculateAndDistributeSellFees(uint256 baseAmount) internal returns (uint) {
return _calculateAndDistributeFees(baseAmount);
}
function _calculateBuyPrice(
uint256 totalSupply,
uint256 numTokens
) internal pure returns (uint) {
uint256 finalSupply = totalSupply + numTokens;
return _curveIntegral(finalSupply) - _curveIntegral(totalSupply);
}
function _calculateSellPrice(
uint256 totalSupply,
uint256 numTokens
) internal pure returns (uint256) {
uint256 finalSupply = totalSupply - numTokens;
return _curveIntegral(totalSupply) - _curveIntegral(finalSupply);
}
// Add these helper functions
function _curveIntegral(uint256 _x) internal pure returns (uint256) {
uint256 scaledX = _x / DECIMALS;
return ((scaledX * scaledX) / 400) + scaledX;
}
function _calculateTokenPrice(
address virusAddress,
uint virusAmount,
bool isBuy
) internal view returns (uint) {
Virus token = Virus(virusAddress);
uint currentSupply = token.totalSupply();
if (isBuy) {
return _calculateBuyPrice(currentSupply, virusAmount);
} else {
require(
currentSupply >= virusAmount,
"Cannot sell more than total supply"
);
return _calculateSellPrice(currentSupply, virusAmount);
}
}
function _enableUniswap(address virusAddress) internal {
require(
tokens[virusAddress] == TokenState.ACTIVE,
"Token must be in ACTIVE state"
);
tokens[virusAddress] = TokenState.UNISWAP_ENABLED;
emit TokenStateChanged(virusAddress, TokenState.UNISWAP_ENABLED);
Virus token = Virus(virusAddress);
uint liquidityTokenAmount = MAX_SUPPLY - SUPPLY_THRESHOLD;
token.mint(address(this), liquidityTokenAmount);
address pool = _createLiquidityPool(virusAddress);
uint liquidity = _provideLiquidity(
virusAddress,
liquidityTokenAmount,
collateral[virusAddress]
);
_burnLpTokens(pool, liquidity);
}
function _calculateFeePercentage(address userAddress) internal view returns (uint256) {
(address firstInfector, , bool isActive) = infectionManager.getFirstInfection(
userAddress
);
uint256 feePercentage = FEE_PERCENTAGE;
if (isActive && firstInfector != address(0)) {
feePercentage += INFECTED_FEE_PERCENTAGE;
}
return feePercentage;
}
function getBuyVirusPrice(
address virusAddress,
address userAddress,
uint virusAmount
) external view returns (uint256 baseAmount, uint256 fee) {
require(
tokens[virusAddress] != TokenState.NOT_CREATED,
"Token does not exist"
);
baseAmount = _calculateTokenPrice(
virusAddress,
virusAmount,
true
);
fee = _calculateBasicFee(baseAmount).totalBasicFee;
(address firstInfector, , bool isActive) = infectionManager
.getFirstInfection(userAddress);
uint256 firstInfectedFee = (isActive && firstInfector != address(0))
? (baseAmount * INFECTED_FEE_PERCENTAGE) / DECIMALS
: 0;
fee += firstInfectedFee;
return (baseAmount, fee);
}
function getBuyVirusPriceFromETH(
address virusAddress,
address userAddress,
uint256 ethAmount
) external view returns (
uint256 virusAmount,
uint256 basicAmount,
uint256 fee
) {
require(
tokens[virusAddress] != TokenState.NOT_CREATED,
"Token does not exist"
);
uint256 feePercentage = _calculateFeePercentage(userAddress);
uint256 totalMultiplier = DECIMALS + feePercentage;
uint256 left = 0;
uint256 right = 1e36;
while (left < right - 1) {
uint256 mid = (left + right) / 2;
uint256 price = _calculateTokenPrice(virusAddress, mid, true);
uint256 totalPrice = (price * totalMultiplier) / DECIMALS;
if (totalPrice <= ethAmount) {
left = mid;
} else {
right = mid;
}
}
virusAmount = (left / 1e18) * 1e18;
require(virusAmount > 0, "Amount too small");
(basicAmount, fee) = this.getBuyVirusPrice(virusAddress, userAddress, virusAmount);
return (virusAmount, basicAmount, fee);
}
function getSellVirusPrice(
address virusAddress,
uint virusAmount
) external view returns (uint256 priceIncludedFees, uint256 fee) {
require(
tokens[virusAddress] != TokenState.NOT_CREATED,
"Token does not exist"
);
priceIncludedFees = _calculateTokenPrice(
virusAddress,
virusAmount,
false
);
uint256 feePercentage = FEE_PERCENTAGE;
fee = (priceIncludedFees * feePercentage) / DECIMALS;
return (priceIncludedFees, fee);
}
function getAllTokens() external view returns (address[] memory) {
return allTokens;
}
function getTokenCount() external view returns (uint256) {
return allTokens.length;
}
receive() external payable {
accumulatedEth += msg.value;
}
function withdrawAccumulatedEth() external onlyOwner {
uint256 amount = accumulatedEth;
accumulatedEth = 0;
(bool success, ) = payable(owner()).call{value: amount}("");
require(success, "ETH withdrawal failed");
}
function isVirusToken(address token) external view returns (bool) {
return tokens[token] != TokenState.NOT_CREATED;
}
function setCustomSlippageTolerance(
address virusAddress,
uint256 slippageBps
) external onlyOwner {
require(tokens[virusAddress] != TokenState.NOT_CREATED, "Token does not exist");
require(slippageBps <= MAX_SLIPPAGE_TOLERANCE, "Slippage too high");
customSlippageTolerances[virusAddress] = slippageBps;
}
function getSlippageTolerance(address virusAddress) public view returns (uint256) {
uint256 customTolerance = customSlippageTolerances[virusAddress];
return customTolerance > 0 ? customTolerance : DEFAULT_SLIPPAGE_TOLERANCE;
}
function setWhitelistEndTime(uint256 _endTime) external onlyOwner onlyBeforeGame {
require(_endTime > block.timestamp, "End time must be in the future");
whitelistEndTime = _endTime;
}
function setMerkleRoot(bytes32 _merkleRoot) external onlyOwner onlyBeforeGame {
merkleRoot = _merkleRoot;
}
function isWhitelisted(address account, bytes32[] calldata proof) public view returns (bool) {
bytes32 leaf = keccak256(abi.encodePacked(account));
return MerkleProof.verify(proof, merkleRoot, leaf);
}
function isWhitelistPeriod() public view returns (bool) {
return block.timestamp < whitelistEndTime;
}
function setSellCooldownPeriod(uint256 newPeriod) external onlyOwner {
require(newPeriod <= MAX_COOLDOWN_PERIOD, "Cooldown period too long");
sellCooldownPeriod = newPeriod;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
{
"compilationTarget": {
"src/Virus.sol": "Virus"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":@openzeppelin/=lib/openzeppelin-contracts/",
":@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
":@uniswap-v2-core-1.0.1/=dependencies/@uniswap-v2-core-1.0.1/",
":@uniswap-v2-periphery-1.1.0-beta.0/=dependencies/@uniswap-v2-periphery-1.1.0-beta.0/",
":ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/"
],
"viaIR": true
}
[{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"initialMint","type":"uint256"},{"internalType":"address","name":"_rewardWinnerPot","type":"address"},{"internalType":"address","name":"_uniswapFactory","type":"address"},{"internalType":"address","name":"_uniswapRouter","type":"address"},{"internalType":"address","name":"_infectionManager","type":"address"},{"internalType":"address","name":"_rewardFirstInfection","type":"address"},{"internalType":"address","name":"_gameManager","type":"address"},{"internalType":"address","name":"_devAddress","type":"address"},{"internalType":"address","name":"_winnerPot","type":"address"},{"internalType":"address","name":"_weth","type":"address"},{"internalType":"address","name":"_virusDrop","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"winnerPotFee","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"devFee","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"firstInfectedFee","type":"uint256"},{"indexed":false,"internalType":"address","name":"firstInfector","type":"address"}],"name":"FeesCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"winnerPotAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"devAmount","type":"uint256"}],"name":"TaxesProcessed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"}],"name":"UniswapStateChanged","type":"event"},{"inputs":[],"name":"AFTER_GAME_DEV_FEE_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEV_FEE_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FEE_DENOMINATOR","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FIRST_INFECTED_FEE_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WINNER_POT_FEE_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accumulatedDevFeeVirus","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accumulatedWinnerPotFeeVirus","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"airdropTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"devAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gameManager","outputs":[{"internalType":"contract IGameManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"infectionManager","outputs":[{"internalType":"contract InfectionManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pairAddressWithWeth","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"processTaxes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardFirstInfection","outputs":[{"internalType":"contract RewardFirstInfection","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardWinnerPot","outputs":[{"internalType":"contract RewardWinnerPot","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_slippagePercentage","type":"uint256"}],"name":"setSlippagePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"slippagePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"uniswap_factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"uniswap_router","outputs":[{"internalType":"contract IUniswapV2Router02","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"virusDrop","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"virusFactory","outputs":[{"internalType":"address payable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"winnerPot","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]