// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
pragma solidity ^0.8.13;
library Base64 {
bytes internal constant TABLE =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/// @notice Encodes some bytes to the base64 representation
function encode(bytes memory data) internal pure returns (string memory) {
uint256 len = data.length;
if (len == 0) return "";
// multiply by 4/3 rounded up
uint256 encodedLen = 4 * ((len + 2) / 3);
// Add some extra buffer at the end
bytes memory result = new bytes(encodedLen + 32);
bytes memory table = TABLE;
assembly {
let tablePtr := add(table, 1)
let resultPtr := add(result, 32)
for {
let i := 0
} lt(i, len) {
} {
i := add(i, 3)
let input := and(mload(add(data, i)), 0xffffff)
let out := mload(add(tablePtr, and(shr(18, input), 0x3F)))
out := shl(8, out)
out := add(
out,
and(mload(add(tablePtr, and(shr(12, input), 0x3F))), 0xFF)
)
out := shl(8, out)
out := add(
out,
and(mload(add(tablePtr, and(shr(6, input), 0x3F))), 0xFF)
)
out := shl(8, out)
out := add(
out,
and(mload(add(tablePtr, and(input, 0x3F))), 0xFF)
)
out := shl(224, out)
mstore(resultPtr, out)
resultPtr := add(resultPtr, 4)
}
switch mod(len, 3)
case 1 {
mstore(sub(resultPtr, 2), shl(240, 0x3d3d))
}
case 2 {
mstore(sub(resultPtr, 1), shl(248, 0x3d))
}
mstore(result, encodedLen)
}
return string(result);
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC721A.sol';
/**
* @dev Interface of ERC721 token receiver.
*/
interface ERC721A__IERC721Receiver {
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
/**
* @title ERC721A
*
* @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
* Non-Fungible Token Standard, including the Metadata extension.
* Optimized for lower gas during batch mints.
*
* Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
* starting from `_startTokenId()`.
*
* Assumptions:
*
* - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
* - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
*/
contract ERC721A is IERC721A {
// Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
struct TokenApprovalRef {
address value;
}
// =============================================================
// CONSTANTS
// =============================================================
// Mask of an entry in packed address data.
uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
// The bit position of `numberMinted` in packed address data.
uint256 private constant _BITPOS_NUMBER_MINTED = 64;
// The bit position of `numberBurned` in packed address data.
uint256 private constant _BITPOS_NUMBER_BURNED = 128;
// The bit position of `aux` in packed address data.
uint256 private constant _BITPOS_AUX = 192;
// Mask of all 256 bits in packed address data except the 64 bits for `aux`.
uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
// The bit position of `startTimestamp` in packed ownership.
uint256 private constant _BITPOS_START_TIMESTAMP = 160;
// The bit mask of the `burned` bit in packed ownership.
uint256 private constant _BITMASK_BURNED = 1 << 224;
// The bit position of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
// The bit mask of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
// The bit position of `extraData` in packed ownership.
uint256 private constant _BITPOS_EXTRA_DATA = 232;
// Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
// The mask of the lower 160 bits for addresses.
uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
// The maximum `quantity` that can be minted with {_mintERC2309}.
// This limit is to prevent overflows on the address data entries.
// For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
// is required to cause an overflow, which is unrealistic.
uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
// The `Transfer` event signature is given by:
// `keccak256(bytes("Transfer(address,address,uint256)"))`.
bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
// =============================================================
// STORAGE
// =============================================================
// The next token ID to be minted.
uint256 private _currentIndex;
// The number of tokens burned.
uint256 private _burnCounter;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Mapping from token ID to ownership details
// An empty struct value does not necessarily mean the token is unowned.
// See {_packedOwnershipOf} implementation for details.
//
// Bits Layout:
// - [0..159] `addr`
// - [160..223] `startTimestamp`
// - [224] `burned`
// - [225] `nextInitialized`
// - [232..255] `extraData`
mapping(uint256 => uint256) private _packedOwnerships;
// Mapping owner address to address data.
//
// Bits Layout:
// - [0..63] `balance`
// - [64..127] `numberMinted`
// - [128..191] `numberBurned`
// - [192..255] `aux`
mapping(address => uint256) private _packedAddressData;
// Mapping from token ID to approved address.
mapping(uint256 => TokenApprovalRef) internal _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
// =============================================================
// CONSTRUCTOR
// =============================================================
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
_currentIndex = _startTokenId();
}
// =============================================================
// TOKEN COUNTING OPERATIONS
// =============================================================
/**
* @dev Returns the starting token ID.
* To change the starting token ID, please override this function.
*/
function _startTokenId() internal view virtual returns (uint256) {
return 0;
}
/**
* @dev Returns the next token ID to be minted.
*/
function _nextTokenId() internal view virtual returns (uint256) {
return _currentIndex;
}
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() public view virtual override returns (uint256) {
// Counter underflow is impossible as _burnCounter cannot be incremented
// more than `_currentIndex - _startTokenId()` times.
unchecked {
return _currentIndex - _burnCounter - _startTokenId();
}
}
/**
* @dev Returns the total amount of tokens minted in the contract.
*/
function _totalMinted() internal view virtual returns (uint256) {
// Counter underflow is impossible as `_currentIndex` does not decrement,
// and it is initialized to `_startTokenId()`.
unchecked {
return _currentIndex - _startTokenId();
}
}
/**
* @dev Returns the total number of tokens burned.
*/
function _totalBurned() internal view virtual returns (uint256) {
return _burnCounter;
}
// =============================================================
// ADDRESS DATA OPERATIONS
// =============================================================
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
if (owner == address(0)) revert BalanceQueryForZeroAddress();
return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens minted by `owner`.
*/
function _numberMinted(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens burned by or on behalf of `owner`.
*/
function _numberBurned(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
*/
function _getAux(address owner) internal view returns (uint64) {
return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
}
/**
* Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
* If there are multiple variables, please pack them into a uint64.
*/
function _setAux(address owner, uint64 aux) internal virtual {
uint256 packed = _packedAddressData[owner];
uint256 auxCasted;
// Cast `aux` with assembly to avoid redundant masking.
assembly {
auxCasted := aux
}
packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
_packedAddressData[owner] = packed;
}
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
// The interface IDs are constants representing the first 4 bytes
// of the XOR of all function selectors in the interface.
// See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
// (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
return
interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
}
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the token collection symbol.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
string memory baseURI = _baseURI();
return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, it can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return '';
}
// =============================================================
// OWNERSHIPS OPERATIONS
// =============================================================
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
return address(uint160(_packedOwnershipOf(tokenId)));
}
/**
* @dev Gas spent here starts off proportional to the maximum mint batch size.
* It gradually moves to O(1) as tokens get transferred around over time.
*/
function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnershipOf(tokenId));
}
/**
* @dev Returns the unpacked `TokenOwnership` struct at `index`.
*/
function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnerships[index]);
}
/**
* @dev Initializes the ownership slot minted at `index` for efficiency purposes.
*/
function _initializeOwnershipAt(uint256 index) internal virtual {
if (_packedOwnerships[index] == 0) {
_packedOwnerships[index] = _packedOwnershipOf(index);
}
}
/**
* Returns the packed ownership data of `tokenId`.
*/
function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) {
uint256 curr = tokenId;
unchecked {
if (_startTokenId() <= curr)
if (curr < _currentIndex) {
uint256 packed = _packedOwnerships[curr];
// If not burned.
if (packed & _BITMASK_BURNED == 0) {
// Invariant:
// There will always be an initialized ownership slot
// (i.e. `ownership.addr != address(0) && ownership.burned == false`)
// before an unintialized ownership slot
// (i.e. `ownership.addr == address(0) && ownership.burned == false`)
// Hence, `curr` will not underflow.
//
// We can directly compare the packed value.
// If the address is zero, packed will be zero.
while (packed == 0) {
packed = _packedOwnerships[--curr];
}
return packed;
}
}
}
revert OwnerQueryForNonexistentToken();
}
/**
* @dev Returns the unpacked `TokenOwnership` struct from `packed`.
*/
function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
ownership.addr = address(uint160(packed));
ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
ownership.burned = packed & _BITMASK_BURNED != 0;
ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
}
/**
* @dev Packs ownership data into a single uint256.
*/
function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
}
}
/**
* @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
*/
function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
// For branchless setting of the `nextInitialized` flag.
assembly {
// `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
}
}
// =============================================================
// APPROVAL OPERATIONS
// =============================================================
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) public payable virtual override {
address owner = ownerOf(tokenId);
if (_msgSenderERC721A() != owner)
if (!isApprovedForAll(owner, _msgSenderERC721A())) {
revert ApprovalCallerNotOwnerNorApproved();
}
_tokenApprovals[tokenId].value = to;
emit Approval(owner, to, tokenId);
}
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();
return _tokenApprovals[tokenId].value;
}
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_operatorApprovals[_msgSenderERC721A()][operator] = approved;
emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
}
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted. See {_mint}.
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return
_startTokenId() <= tokenId &&
tokenId < _currentIndex && // If within bounds,
_packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned.
}
/**
* @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
*/
function _isSenderApprovedOrOwner(
address approvedAddress,
address owner,
address msgSender
) private pure returns (bool result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
msgSender := and(msgSender, _BITMASK_ADDRESS)
// `msgSender == owner || msgSender == approvedAddress`.
result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
}
}
/**
* @dev Returns the storage slot and value for the approved address of `tokenId`.
*/
function _getApprovedSlotAndAddress(uint256 tokenId)
private
view
returns (uint256 approvedAddressSlot, address approvedAddress)
{
TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
// The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
assembly {
approvedAddressSlot := tokenApproval.slot
approvedAddress := sload(approvedAddressSlot)
}
}
// =============================================================
// TRANSFER OPERATIONS
// =============================================================
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner();
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
if (to == address(0)) revert TransferToZeroAddress();
_beforeTokenTransfers(from, to, tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// We can directly increment and decrement the balances.
--_packedAddressData[from]; // Updates: `balance -= 1`.
++_packedAddressData[to]; // Updates: `balance += 1`.
// Updates:
// - `address` to the next owner.
// - `startTimestamp` to the timestamp of transfering.
// - `burned` to `false`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
to,
_BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
emit Transfer(from, to, tokenId);
_afterTokenTransfers(from, to, tokenId, 1);
}
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
safeTransferFrom(from, to, tokenId, '');
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory _data
) public payable virtual override {
transferFrom(from, to, tokenId);
if (to.code.length != 0)
if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
revert TransferToNonERC721ReceiverImplementer();
}
}
/**
* @dev Hook that is called before a set of serially-ordered token IDs
* are about to be transferred. This includes minting.
* And also called before burning one token.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _beforeTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Hook that is called after a set of serially-ordered token IDs
* have been transferred. This includes minting.
* And also called after one token has been burned.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
* transferred to `to`.
* - When `from` is zero, `tokenId` has been minted for `to`.
* - When `to` is zero, `tokenId` has been burned by `from`.
* - `from` and `to` are never both zero.
*/
function _afterTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
*
* `from` - Previous owner of the given token ID.
* `to` - Target address that will receive the token.
* `tokenId` - Token ID to be transferred.
* `_data` - Optional data to send along with the call.
*
* Returns whether the call correctly returned the expected magic value.
*/
function _checkContractOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory _data
) private returns (bool) {
try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
bytes4 retval
) {
return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert TransferToNonERC721ReceiverImplementer();
} else {
assembly {
revert(add(32, reason), mload(reason))
}
}
}
}
// =============================================================
// MINT OPERATIONS
// =============================================================
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {Transfer} event for each mint.
*/
function _mint(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (quantity == 0) revert MintZeroQuantity();
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are incredibly unrealistic.
// `balance` and `numberMinted` have a maximum limit of 2**64.
// `tokenId` has a maximum limit of 2**256.
unchecked {
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
uint256 toMasked;
uint256 end = startTokenId + quantity;
// Use assembly to loop and emit the `Transfer` event for gas savings.
// The duplicated `log4` removes an extra check and reduces stack juggling.
// The assembly, together with the surrounding Solidity code, have been
// delicately arranged to nudge the compiler into producing optimized opcodes.
assembly {
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
toMasked := and(to, _BITMASK_ADDRESS)
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
0, // `address(0)`.
toMasked, // `to`.
startTokenId // `tokenId`.
)
// The `iszero(eq(,))` check ensures that large values of `quantity`
// that overflows uint256 will make the loop run out of gas.
// The compiler will optimize the `iszero` away for performance.
for {
let tokenId := add(startTokenId, 1)
} iszero(eq(tokenId, end)) {
tokenId := add(tokenId, 1)
} {
// Emit the `Transfer` event. Similar to above.
log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId)
}
}
if (toMasked == 0) revert MintToZeroAddress();
_currentIndex = end;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* This function is intended for efficient minting only during contract creation.
*
* It emits only one {ConsecutiveTransfer} as defined in
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
* instead of a sequence of {Transfer} event(s).
*
* Calling this function outside of contract creation WILL make your contract
* non-compliant with the ERC721 standard.
* For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
* {ConsecutiveTransfer} event is only permissible during contract creation.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {ConsecutiveTransfer} event.
*/
function _mintERC2309(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (to == address(0)) revert MintToZeroAddress();
if (quantity == 0) revert MintZeroQuantity();
if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit();
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are unrealistic due to the above check for `quantity` to be below the limit.
unchecked {
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
_currentIndex = startTokenId + quantity;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Safely mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
* - `quantity` must be greater than 0.
*
* See {_mint}.
*
* Emits a {Transfer} event for each mint.
*/
function _safeMint(
address to,
uint256 quantity,
bytes memory _data
) internal virtual {
_mint(to, quantity);
unchecked {
if (to.code.length != 0) {
uint256 end = _currentIndex;
uint256 index = end - quantity;
do {
if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
revert TransferToNonERC721ReceiverImplementer();
}
} while (index < end);
// Reentrancy protection.
if (_currentIndex != end) revert();
}
}
}
/**
* @dev Equivalent to `_safeMint(to, quantity, '')`.
*/
function _safeMint(address to, uint256 quantity) internal virtual {
_safeMint(to, quantity, '');
}
// =============================================================
// BURN OPERATIONS
// =============================================================
/**
* @dev Equivalent to `_burn(tokenId, false)`.
*/
function _burn(uint256 tokenId) internal virtual {
_burn(tokenId, false);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
address from = address(uint160(prevOwnershipPacked));
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
if (approvalCheck) {
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
}
_beforeTokenTransfers(from, address(0), tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// Updates:
// - `balance -= 1`.
// - `numberBurned += 1`.
//
// We can directly decrement the balance, and increment the number burned.
// This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
_packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
// Updates:
// - `address` to the last owner.
// - `startTimestamp` to the timestamp of burning.
// - `burned` to `true`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
from,
(_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
emit Transfer(from, address(0), tokenId);
_afterTokenTransfers(from, address(0), tokenId, 1);
// Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
unchecked {
_burnCounter++;
}
}
// =============================================================
// EXTRA DATA OPERATIONS
// =============================================================
/**
* @dev Directly sets the extra data for the ownership data `index`.
*/
function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
uint256 packed = _packedOwnerships[index];
if (packed == 0) revert OwnershipNotInitializedForExtraData();
uint256 extraDataCasted;
// Cast `extraData` with assembly to avoid redundant masking.
assembly {
extraDataCasted := extraData
}
packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
_packedOwnerships[index] = packed;
}
/**
* @dev Called during each token transfer to set the 24bit `extraData` field.
* Intended to be overridden by the cosumer contract.
*
* `previousExtraData` - the value of `extraData` before transfer.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _extraData(
address from,
address to,
uint24 previousExtraData
) internal view virtual returns (uint24) {}
/**
* @dev Returns the next extra data for the packed ownership data.
* The returned result is shifted into position.
*/
function _nextExtraData(
address from,
address to,
uint256 prevOwnershipPacked
) private view returns (uint256) {
uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
}
// =============================================================
// OTHER OPERATIONS
// =============================================================
/**
* @dev Returns the message sender (defaults to `msg.sender`).
*
* If you are writing GSN compatible contracts, you need to override this function.
*/
function _msgSenderERC721A() internal view virtual returns (address) {
return msg.sender;
}
/**
* @dev Converts a uint256 to its ASCII string decimal representation.
*/
function _toString(uint256 value) internal pure virtual returns (string memory str) {
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
let m := add(mload(0x40), 0xa0)
// Update the free memory pointer to allocate.
mstore(0x40, m)
// Assign the `str` to the end.
str := sub(m, 0x20)
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end of the memory to calculate the length later.
let end := str
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
// prettier-ignore
for { let temp := value } 1 {} {
str := sub(str, 1)
// Write the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(str, add(48, mod(temp, 10)))
// Keep dividing `temp` until zero.
temp := div(temp, 10)
// prettier-ignore
if iszero(temp) { break }
}
let length := sub(end, str)
// Move the pointer 32 bytes leftwards to make room for the length.
str := sub(str, 0x20)
// Store the length.
mstore(str, length)
}
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC721AQueryable.sol';
import '../ERC721A.sol';
/**
* @title ERC721AQueryable.
*
* @dev ERC721A subclass with convenience query functions.
*/
abstract contract ERC721AQueryable is ERC721A, IERC721AQueryable {
/**
* @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
*
* If the `tokenId` is out of bounds:
*
* - `addr = address(0)`
* - `startTimestamp = 0`
* - `burned = false`
* - `extraData = 0`
*
* If the `tokenId` is burned:
*
* - `addr = <Address of owner before token was burned>`
* - `startTimestamp = <Timestamp when token was burned>`
* - `burned = true`
* - `extraData = <Extra data when token was burned>`
*
* Otherwise:
*
* - `addr = <Address of owner>`
* - `startTimestamp = <Timestamp of start of ownership>`
* - `burned = false`
* - `extraData = <Extra data at start of ownership>`
*/
function explicitOwnershipOf(uint256 tokenId) public view virtual override returns (TokenOwnership memory) {
TokenOwnership memory ownership;
if (tokenId < _startTokenId() || tokenId >= _nextTokenId()) {
return ownership;
}
ownership = _ownershipAt(tokenId);
if (ownership.burned) {
return ownership;
}
return _ownershipOf(tokenId);
}
/**
* @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
* See {ERC721AQueryable-explicitOwnershipOf}
*/
function explicitOwnershipsOf(uint256[] calldata tokenIds)
external
view
virtual
override
returns (TokenOwnership[] memory)
{
unchecked {
uint256 tokenIdsLength = tokenIds.length;
TokenOwnership[] memory ownerships = new TokenOwnership[](tokenIdsLength);
for (uint256 i; i != tokenIdsLength; ++i) {
ownerships[i] = explicitOwnershipOf(tokenIds[i]);
}
return ownerships;
}
}
/**
* @dev Returns an array of token IDs owned by `owner`,
* in the range [`start`, `stop`)
* (i.e. `start <= tokenId < stop`).
*
* This function allows for tokens to be queried if the collection
* grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
*
* Requirements:
*
* - `start < stop`
*/
function tokensOfOwnerIn(
address owner,
uint256 start,
uint256 stop
) external view virtual override returns (uint256[] memory) {
unchecked {
if (start >= stop) revert InvalidQueryRange();
uint256 tokenIdsIdx;
uint256 stopLimit = _nextTokenId();
// Set `start = max(start, _startTokenId())`.
if (start < _startTokenId()) {
start = _startTokenId();
}
// Set `stop = min(stop, stopLimit)`.
if (stop > stopLimit) {
stop = stopLimit;
}
uint256 tokenIdsMaxLength = balanceOf(owner);
// Set `tokenIdsMaxLength = min(balanceOf(owner), stop - start)`,
// to cater for cases where `balanceOf(owner)` is too big.
if (start < stop) {
uint256 rangeLength = stop - start;
if (rangeLength < tokenIdsMaxLength) {
tokenIdsMaxLength = rangeLength;
}
} else {
tokenIdsMaxLength = 0;
}
uint256[] memory tokenIds = new uint256[](tokenIdsMaxLength);
if (tokenIdsMaxLength == 0) {
return tokenIds;
}
// We need to call `explicitOwnershipOf(start)`,
// because the slot at `start` may not be initialized.
TokenOwnership memory ownership = explicitOwnershipOf(start);
address currOwnershipAddr;
// If the starting slot exists (i.e. not burned), initialize `currOwnershipAddr`.
// `ownership.address` will not be zero, as `start` is clamped to the valid token ID range.
if (!ownership.burned) {
currOwnershipAddr = ownership.addr;
}
for (uint256 i = start; i != stop && tokenIdsIdx != tokenIdsMaxLength; ++i) {
ownership = _ownershipAt(i);
if (ownership.burned) {
continue;
}
if (ownership.addr != address(0)) {
currOwnershipAddr = ownership.addr;
}
if (currOwnershipAddr == owner) {
tokenIds[tokenIdsIdx++] = i;
}
}
// Downsize the array to fit.
assembly {
mstore(tokenIds, tokenIdsIdx)
}
return tokenIds;
}
}
/**
* @dev Returns an array of token IDs owned by `owner`.
*
* This function scans the ownership mapping and is O(`totalSupply`) in complexity.
* It is meant to be called off-chain.
*
* See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
* multiple smaller scans if the collection is large enough to cause
* an out-of-gas error (10K collections should be fine).
*/
function tokensOfOwner(address owner) external view virtual override returns (uint256[] memory) {
unchecked {
uint256 tokenIdsIdx;
address currOwnershipAddr;
uint256 tokenIdsLength = balanceOf(owner);
uint256[] memory tokenIds = new uint256[](tokenIdsLength);
TokenOwnership memory ownership;
for (uint256 i = _startTokenId(); tokenIdsIdx != tokenIdsLength; ++i) {
ownership = _ownershipAt(i);
if (ownership.burned) {
continue;
}
if (ownership.addr != address(0)) {
currOwnershipAddr = ownership.addr;
}
if (currOwnershipAddr == owner) {
tokenIds[tokenIdsIdx++] = i;
}
}
return tokenIds;
}
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
/**
* @dev Interface of ERC721A.
*/
interface IERC721A {
/**
* The caller must own the token or be an approved operator.
*/
error ApprovalCallerNotOwnerNorApproved();
/**
* The token does not exist.
*/
error ApprovalQueryForNonexistentToken();
/**
* Cannot query the balance for the zero address.
*/
error BalanceQueryForZeroAddress();
/**
* Cannot mint to the zero address.
*/
error MintToZeroAddress();
/**
* The quantity of tokens minted must be more than zero.
*/
error MintZeroQuantity();
/**
* The token does not exist.
*/
error OwnerQueryForNonexistentToken();
/**
* The caller must own the token or be an approved operator.
*/
error TransferCallerNotOwnerNorApproved();
/**
* The token must be owned by `from`.
*/
error TransferFromIncorrectOwner();
/**
* Cannot safely transfer to a contract that does not implement the
* ERC721Receiver interface.
*/
error TransferToNonERC721ReceiverImplementer();
/**
* Cannot transfer to the zero address.
*/
error TransferToZeroAddress();
/**
* The token does not exist.
*/
error URIQueryForNonexistentToken();
/**
* The `quantity` minted with ERC2309 exceeds the safety limit.
*/
error MintERC2309QuantityExceedsLimit();
/**
* The `extraData` cannot be set on an unintialized ownership slot.
*/
error OwnershipNotInitializedForExtraData();
// =============================================================
// STRUCTS
// =============================================================
struct TokenOwnership {
// The address of the owner.
address addr;
// Stores the start time of ownership with minimal overhead for tokenomics.
uint64 startTimestamp;
// Whether the token has been burned.
bool burned;
// Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
uint24 extraData;
}
// =============================================================
// TOKEN COUNTERS
// =============================================================
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() external view returns (uint256);
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
// =============================================================
// IERC721
// =============================================================
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables
* (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`,
* checking first that contract recipients are aware of the ERC721 protocol
* to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move
* this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external payable;
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom}
* whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external payable;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
// =============================================================
// IERC2309
// =============================================================
/**
* @dev Emitted when tokens in `fromTokenId` to `toTokenId`
* (inclusive) is transferred from `from` to `to`, as defined in the
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
*
* See {_mintERC2309} for more details.
*/
event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import '../IERC721A.sol';
/**
* @dev Interface of ERC721AQueryable.
*/
interface IERC721AQueryable is IERC721A {
/**
* Invalid query range (`start` >= `stop`).
*/
error InvalidQueryRange();
/**
* @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
*
* If the `tokenId` is out of bounds:
*
* - `addr = address(0)`
* - `startTimestamp = 0`
* - `burned = false`
* - `extraData = 0`
*
* If the `tokenId` is burned:
*
* - `addr = <Address of owner before token was burned>`
* - `startTimestamp = <Timestamp when token was burned>`
* - `burned = true`
* - `extraData = <Extra data when token was burned>`
*
* Otherwise:
*
* - `addr = <Address of owner>`
* - `startTimestamp = <Timestamp of start of ownership>`
* - `burned = false`
* - `extraData = <Extra data at start of ownership>`
*/
function explicitOwnershipOf(uint256 tokenId) external view returns (TokenOwnership memory);
/**
* @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
* See {ERC721AQueryable-explicitOwnershipOf}
*/
function explicitOwnershipsOf(uint256[] memory tokenIds) external view returns (TokenOwnership[] memory);
/**
* @dev Returns an array of token IDs owned by `owner`,
* in the range [`start`, `stop`)
* (i.e. `start <= tokenId < stop`).
*
* This function allows for tokens to be queried if the collection
* grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
*
* Requirements:
*
* - `start < stop`
*/
function tokensOfOwnerIn(
address owner,
uint256 start,
uint256 stop
) external view returns (uint256[] memory);
/**
* @dev Returns an array of token IDs owned by `owner`.
*
* This function scans the ownership mapping and is O(`totalSupply`) in complexity.
* It is meant to be called off-chain.
*
* See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
* multiple smaller scans if the collection is large enough to cause
* an out-of-gas error (10K collections should be fine).
*/
function tokensOfOwner(address owner) external view returns (uint256[] memory);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
/// @notice Efficient library for creating string representations of integers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
/// @author Modified from Solady (https://github.com/Vectorized/solady/blob/main/src/utils/LibString.sol)
library LibString {
function toString(uint256 value) internal pure returns (string memory str) {
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but we allocate 160 bytes
// to keep the free memory pointer word aligned. We'll need 1 word for the length, 1 word for the
// trailing zeros padding, and 3 other words for a max of 78 digits. In total: 5 * 32 = 160 bytes.
let newFreeMemoryPointer := add(mload(0x40), 160)
// Update the free memory pointer to avoid overriding our string.
mstore(0x40, newFreeMemoryPointer)
// Assign str to the end of the zone of newly allocated memory.
str := sub(newFreeMemoryPointer, 32)
// Clean the last word of memory it may not be overwritten.
mstore(str, 0)
// Cache the end of the memory to calculate the length later.
let end := str
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
// prettier-ignore
for { let temp := value } 1 {} {
// Move the pointer 1 byte to the left.
str := sub(str, 1)
// Write the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(str, add(48, mod(temp, 10)))
// Keep dividing temp until zero.
temp := div(temp, 10)
// prettier-ignore
if iszero(temp) { break }
}
// Compute and cache the final total length of the string.
let length := sub(end, str)
// Move the pointer 32 bytes leftwards to make room for the length.
str := sub(str, 32)
// Store the string's length at the start of memory allocated for our string.
mstore(str, length)
}
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Simple single owner authorization mixin.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol)
abstract contract Owned {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event OwnershipTransferred(address indexed user, address indexed newOwner);
/*//////////////////////////////////////////////////////////////
OWNERSHIP STORAGE
//////////////////////////////////////////////////////////////*/
address public owner;
modifier onlyOwner() virtual {
require(msg.sender == owner, "UNAUTHORIZED");
_;
}
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(address _owner) {
owner = _owner;
emit OwnershipTransferred(address(0), _owner);
}
/*//////////////////////////////////////////////////////////////
OWNERSHIP LOGIC
//////////////////////////////////////////////////////////////*/
function transferOwnership(address newOwner) public virtual onlyOwner {
owner = newOwner;
emit OwnershipTransferred(msg.sender, newOwner);
}
}
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;
/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivFixedPointOverflow(uint256 prod1);
/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator);
/// @notice Emitted when one of the inputs is type(int256).min.
error PRBMath__MulDivSignedInputTooSmall();
/// @notice Emitted when the intermediary absolute result overflows int256.
error PRBMath__MulDivSignedOverflow(uint256 rAbs);
/// @notice Emitted when the input is MIN_SD59x18.
error PRBMathSD59x18__AbsInputTooSmall();
/// @notice Emitted when ceiling a number overflows SD59x18.
error PRBMathSD59x18__CeilOverflow(int256 x);
/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__DivInputTooSmall();
/// @notice Emitted when one of the intermediary unsigned results overflows SD59x18.
error PRBMathSD59x18__DivOverflow(uint256 rAbs);
/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathSD59x18__ExpInputTooBig(int256 x);
/// @notice Emitted when the input is greater than 192.
error PRBMathSD59x18__Exp2InputTooBig(int256 x);
/// @notice Emitted when flooring a number underflows SD59x18.
error PRBMathSD59x18__FloorUnderflow(int256 x);
/// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMathSD59x18__FromIntOverflow(int256 x);
/// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMathSD59x18__FromIntUnderflow(int256 x);
/// @notice Emitted when the product of the inputs is negative.
error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y);
/// @notice Emitted when multiplying the inputs overflows SD59x18.
error PRBMathSD59x18__GmOverflow(int256 x, int256 y);
/// @notice Emitted when the input is less than or equal to zero.
error PRBMathSD59x18__LogInputTooSmall(int256 x);
/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__MulInputTooSmall();
/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__MulOverflow(uint256 rAbs);
/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__PowuOverflow(uint256 rAbs);
/// @notice Emitted when the input is negative.
error PRBMathSD59x18__SqrtNegativeInput(int256 x);
/// @notice Emitted when the calculating the square root overflows SD59x18.
error PRBMathSD59x18__SqrtOverflow(int256 x);
/// @notice Emitted when addition overflows UD60x18.
error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y);
/// @notice Emitted when ceiling a number overflows UD60x18.
error PRBMathUD60x18__CeilOverflow(uint256 x);
/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathUD60x18__ExpInputTooBig(uint256 x);
/// @notice Emitted when the input is greater than 192.
error PRBMathUD60x18__Exp2InputTooBig(uint256 x);
/// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18.
error PRBMathUD60x18__FromUintOverflow(uint256 x);
/// @notice Emitted when multiplying the inputs overflows UD60x18.
error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y);
/// @notice Emitted when the input is less than 1.
error PRBMathUD60x18__LogInputTooSmall(uint256 x);
/// @notice Emitted when the calculating the square root overflows UD60x18.
error PRBMathUD60x18__SqrtOverflow(uint256 x);
/// @notice Emitted when subtraction underflows UD60x18.
error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y);
/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
/// representation. When it does not, it is explicitly mentioned in the NatSpec documentation.
library PRBMath {
/// STRUCTS ///
struct SD59x18 {
int256 value;
}
struct UD60x18 {
uint256 value;
}
/// STORAGE ///
/// @dev How many trailing decimals can be represented.
uint256 internal constant SCALE = 1e18;
/// @dev Largest power of two divisor of SCALE.
uint256 internal constant SCALE_LPOTD = 262144;
/// @dev SCALE inverted mod 2^256.
uint256 internal constant SCALE_INVERSE =
78156646155174841979727994598816262306175212592076161876661_508869554232690281;
/// FUNCTIONS ///
/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers.
/// See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function exp2(uint256 x) internal pure returns (uint256 result) {
unchecked {
// Start from 0.5 in the 192.64-bit fixed-point format.
result = 0x800000000000000000000000000000000000000000000000;
// Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows
// because the initial result is 2^191 and all magic factors are less than 2^65.
if (x & 0x8000000000000000 > 0) {
result = (result * 0x16A09E667F3BCC909) >> 64;
}
if (x & 0x4000000000000000 > 0) {
result = (result * 0x1306FE0A31B7152DF) >> 64;
}
if (x & 0x2000000000000000 > 0) {
result = (result * 0x1172B83C7D517ADCE) >> 64;
}
if (x & 0x1000000000000000 > 0) {
result = (result * 0x10B5586CF9890F62A) >> 64;
}
if (x & 0x800000000000000 > 0) {
result = (result * 0x1059B0D31585743AE) >> 64;
}
if (x & 0x400000000000000 > 0) {
result = (result * 0x102C9A3E778060EE7) >> 64;
}
if (x & 0x200000000000000 > 0) {
result = (result * 0x10163DA9FB33356D8) >> 64;
}
if (x & 0x100000000000000 > 0) {
result = (result * 0x100B1AFA5ABCBED61) >> 64;
}
if (x & 0x80000000000000 > 0) {
result = (result * 0x10058C86DA1C09EA2) >> 64;
}
if (x & 0x40000000000000 > 0) {
result = (result * 0x1002C605E2E8CEC50) >> 64;
}
if (x & 0x20000000000000 > 0) {
result = (result * 0x100162F3904051FA1) >> 64;
}
if (x & 0x10000000000000 > 0) {
result = (result * 0x1000B175EFFDC76BA) >> 64;
}
if (x & 0x8000000000000 > 0) {
result = (result * 0x100058BA01FB9F96D) >> 64;
}
if (x & 0x4000000000000 > 0) {
result = (result * 0x10002C5CC37DA9492) >> 64;
}
if (x & 0x2000000000000 > 0) {
result = (result * 0x1000162E525EE0547) >> 64;
}
if (x & 0x1000000000000 > 0) {
result = (result * 0x10000B17255775C04) >> 64;
}
if (x & 0x800000000000 > 0) {
result = (result * 0x1000058B91B5BC9AE) >> 64;
}
if (x & 0x400000000000 > 0) {
result = (result * 0x100002C5C89D5EC6D) >> 64;
}
if (x & 0x200000000000 > 0) {
result = (result * 0x10000162E43F4F831) >> 64;
}
if (x & 0x100000000000 > 0) {
result = (result * 0x100000B1721BCFC9A) >> 64;
}
if (x & 0x80000000000 > 0) {
result = (result * 0x10000058B90CF1E6E) >> 64;
}
if (x & 0x40000000000 > 0) {
result = (result * 0x1000002C5C863B73F) >> 64;
}
if (x & 0x20000000000 > 0) {
result = (result * 0x100000162E430E5A2) >> 64;
}
if (x & 0x10000000000 > 0) {
result = (result * 0x1000000B172183551) >> 64;
}
if (x & 0x8000000000 > 0) {
result = (result * 0x100000058B90C0B49) >> 64;
}
if (x & 0x4000000000 > 0) {
result = (result * 0x10000002C5C8601CC) >> 64;
}
if (x & 0x2000000000 > 0) {
result = (result * 0x1000000162E42FFF0) >> 64;
}
if (x & 0x1000000000 > 0) {
result = (result * 0x10000000B17217FBB) >> 64;
}
if (x & 0x800000000 > 0) {
result = (result * 0x1000000058B90BFCE) >> 64;
}
if (x & 0x400000000 > 0) {
result = (result * 0x100000002C5C85FE3) >> 64;
}
if (x & 0x200000000 > 0) {
result = (result * 0x10000000162E42FF1) >> 64;
}
if (x & 0x100000000 > 0) {
result = (result * 0x100000000B17217F8) >> 64;
}
if (x & 0x80000000 > 0) {
result = (result * 0x10000000058B90BFC) >> 64;
}
if (x & 0x40000000 > 0) {
result = (result * 0x1000000002C5C85FE) >> 64;
}
if (x & 0x20000000 > 0) {
result = (result * 0x100000000162E42FF) >> 64;
}
if (x & 0x10000000 > 0) {
result = (result * 0x1000000000B17217F) >> 64;
}
if (x & 0x8000000 > 0) {
result = (result * 0x100000000058B90C0) >> 64;
}
if (x & 0x4000000 > 0) {
result = (result * 0x10000000002C5C860) >> 64;
}
if (x & 0x2000000 > 0) {
result = (result * 0x1000000000162E430) >> 64;
}
if (x & 0x1000000 > 0) {
result = (result * 0x10000000000B17218) >> 64;
}
if (x & 0x800000 > 0) {
result = (result * 0x1000000000058B90C) >> 64;
}
if (x & 0x400000 > 0) {
result = (result * 0x100000000002C5C86) >> 64;
}
if (x & 0x200000 > 0) {
result = (result * 0x10000000000162E43) >> 64;
}
if (x & 0x100000 > 0) {
result = (result * 0x100000000000B1721) >> 64;
}
if (x & 0x80000 > 0) {
result = (result * 0x10000000000058B91) >> 64;
}
if (x & 0x40000 > 0) {
result = (result * 0x1000000000002C5C8) >> 64;
}
if (x & 0x20000 > 0) {
result = (result * 0x100000000000162E4) >> 64;
}
if (x & 0x10000 > 0) {
result = (result * 0x1000000000000B172) >> 64;
}
if (x & 0x8000 > 0) {
result = (result * 0x100000000000058B9) >> 64;
}
if (x & 0x4000 > 0) {
result = (result * 0x10000000000002C5D) >> 64;
}
if (x & 0x2000 > 0) {
result = (result * 0x1000000000000162E) >> 64;
}
if (x & 0x1000 > 0) {
result = (result * 0x10000000000000B17) >> 64;
}
if (x & 0x800 > 0) {
result = (result * 0x1000000000000058C) >> 64;
}
if (x & 0x400 > 0) {
result = (result * 0x100000000000002C6) >> 64;
}
if (x & 0x200 > 0) {
result = (result * 0x10000000000000163) >> 64;
}
if (x & 0x100 > 0) {
result = (result * 0x100000000000000B1) >> 64;
}
if (x & 0x80 > 0) {
result = (result * 0x10000000000000059) >> 64;
}
if (x & 0x40 > 0) {
result = (result * 0x1000000000000002C) >> 64;
}
if (x & 0x20 > 0) {
result = (result * 0x10000000000000016) >> 64;
}
if (x & 0x10 > 0) {
result = (result * 0x1000000000000000B) >> 64;
}
if (x & 0x8 > 0) {
result = (result * 0x10000000000000006) >> 64;
}
if (x & 0x4 > 0) {
result = (result * 0x10000000000000003) >> 64;
}
if (x & 0x2 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
if (x & 0x1 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
// We're doing two things at the same time:
//
// 1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for
// the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191
// rather than 192.
// 2. Convert the result to the unsigned 60.18-decimal fixed-point format.
//
// This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n".
result *= SCALE;
result >>= (191 - (x >> 64));
}
}
/// @notice Finds the zero-based index of the first one in the binary representation of x.
/// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return msb The index of the most significant bit as an uint256.
function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) {
if (x >= 2**128) {
x >>= 128;
msb += 128;
}
if (x >= 2**64) {
x >>= 64;
msb += 64;
}
if (x >= 2**32) {
x >>= 32;
msb += 32;
}
if (x >= 2**16) {
x >>= 16;
msb += 16;
}
if (x >= 2**8) {
x >>= 8;
msb += 8;
}
if (x >= 2**4) {
x >>= 4;
msb += 4;
}
if (x >= 2**2) {
x >>= 2;
msb += 2;
}
if (x >= 2**1) {
// No need to shift x any more.
msb += 1;
}
}
/// @notice Calculates floor(x*y÷denominator) with full precision.
///
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Requirements:
/// - The denominator cannot be zero.
/// - The result must fit within uint256.
///
/// Caveats:
/// - This function does not work with fixed-point numbers.
///
/// @param x The multiplicand as an uint256.
/// @param y The multiplier as an uint256.
/// @param denominator The divisor as an uint256.
/// @return result The result as an uint256.
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
unchecked {
result = prod0 / denominator;
}
return result;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (prod1 >= denominator) {
revert PRBMath__MulDivOverflow(prod1, denominator);
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
unchecked {
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 lpotdod = denominator & (~denominator + 1);
assembly {
// Divide denominator by lpotdod.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one.
lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * lpotdod;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/// @notice Calculates floor(x*y÷1e18) with full precision.
///
/// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the
/// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of
/// being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717.
///
/// Requirements:
/// - The result must fit within uint256.
///
/// Caveats:
/// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works.
/// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations:
/// 1. x * y = type(uint256).max * SCALE
/// 2. (x * y) % SCALE >= SCALE / 2
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 >= SCALE) {
revert PRBMath__MulDivFixedPointOverflow(prod1);
}
uint256 remainder;
uint256 roundUpUnit;
assembly {
remainder := mulmod(x, y, SCALE)
roundUpUnit := gt(remainder, 499999999999999999)
}
if (prod1 == 0) {
unchecked {
result = (prod0 / SCALE) + roundUpUnit;
return result;
}
}
assembly {
result := add(
mul(
or(
div(sub(prod0, remainder), SCALE_LPOTD),
mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1))
),
SCALE_INVERSE
),
roundUpUnit
)
}
}
/// @notice Calculates floor(x*y÷denominator) with full precision.
///
/// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately.
///
/// Requirements:
/// - None of the inputs can be type(int256).min.
/// - The result must fit within int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
function mulDivSigned(
int256 x,
int256 y,
int256 denominator
) internal pure returns (int256 result) {
if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
revert PRBMath__MulDivSignedInputTooSmall();
}
// Get hold of the absolute values of x, y and the denominator.
uint256 ax;
uint256 ay;
uint256 ad;
unchecked {
ax = x < 0 ? uint256(-x) : uint256(x);
ay = y < 0 ? uint256(-y) : uint256(y);
ad = denominator < 0 ? uint256(-denominator) : uint256(denominator);
}
// Compute the absolute value of (x*y)÷denominator. The result must fit within int256.
uint256 rAbs = mulDiv(ax, ay, ad);
if (rAbs > uint256(type(int256).max)) {
revert PRBMath__MulDivSignedOverflow(rAbs);
}
// Get the signs of x, y and the denominator.
uint256 sx;
uint256 sy;
uint256 sd;
assembly {
sx := sgt(x, sub(0, 1))
sy := sgt(y, sub(0, 1))
sd := sgt(denominator, sub(0, 1))
}
// XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs.
// If yes, the result should be negative.
result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs);
}
/// @notice Calculates the square root of x, rounding down.
/// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Caveats:
/// - This function does not work with fixed-point numbers.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as an uint256.
function sqrt(uint256 x) internal pure returns (uint256 result) {
if (x == 0) {
return 0;
}
// Set the initial guess to the least power of two that is greater than or equal to sqrt(x).
uint256 xAux = uint256(x);
result = 1;
if (xAux >= 0x100000000000000000000000000000000) {
xAux >>= 128;
result <<= 64;
}
if (xAux >= 0x10000000000000000) {
xAux >>= 64;
result <<= 32;
}
if (xAux >= 0x100000000) {
xAux >>= 32;
result <<= 16;
}
if (xAux >= 0x10000) {
xAux >>= 16;
result <<= 8;
}
if (xAux >= 0x100) {
xAux >>= 8;
result <<= 4;
}
if (xAux >= 0x10) {
xAux >>= 4;
result <<= 2;
}
if (xAux >= 0x4) {
result <<= 1;
}
// The operations can never overflow because the result is max 2^127 when it enters this block.
unchecked {
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1; // Seven iterations should be enough
uint256 roundedDownResult = x / result;
return result >= roundedDownResult ? roundedDownResult : result;
}
}
}
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;
import "./PRBMath.sol";
/// @title PRBMathUD60x18
/// @author Paul Razvan Berg
/// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18
/// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60
/// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the
/// maximum values permitted by the Solidity type uint256.
library PRBMathUD60x18 {
/// @dev Half the SCALE number.
uint256 internal constant HALF_SCALE = 5e17;
/// @dev log2(e) as an unsigned 60.18-decimal fixed-point number.
uint256 internal constant LOG2_E = 1_442695040888963407;
/// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have.
uint256 internal constant MAX_UD60x18 =
115792089237316195423570985008687907853269984665640564039457_584007913129639935;
/// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have.
uint256 internal constant MAX_WHOLE_UD60x18 =
115792089237316195423570985008687907853269984665640564039457_000000000000000000;
/// @dev How many trailing decimals can be represented.
uint256 internal constant SCALE = 1e18;
/// @notice Calculates the arithmetic average of x and y, rounding down.
/// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
/// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
/// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number.
function avg(uint256 x, uint256 y) internal pure returns (uint256 result) {
// The operations can never overflow.
unchecked {
// The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need
// to do this because if both numbers are odd, the 0.5 remainder gets truncated twice.
result = (x >> 1) + (y >> 1) + (x & y & 1);
}
}
/// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x.
///
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to MAX_WHOLE_UD60x18.
///
/// @param x The unsigned 60.18-decimal fixed-point number to ceil.
/// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number.
function ceil(uint256 x) internal pure returns (uint256 result) {
if (x > MAX_WHOLE_UD60x18) {
revert PRBMathUD60x18__CeilOverflow(x);
}
assembly {
// Equivalent to "x % SCALE" but faster.
let remainder := mod(x, SCALE)
// Equivalent to "SCALE - remainder" but faster.
let delta := sub(SCALE, remainder)
// Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster.
result := add(x, mul(delta, gt(remainder, 0)))
}
}
/// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number.
///
/// @dev Uses mulDiv to enable overflow-safe multiplication and division.
///
/// Requirements:
/// - The denominator cannot be zero.
///
/// @param x The numerator as an unsigned 60.18-decimal fixed-point number.
/// @param y The denominator as an unsigned 60.18-decimal fixed-point number.
/// @param result The quotient as an unsigned 60.18-decimal fixed-point number.
function div(uint256 x, uint256 y) internal pure returns (uint256 result) {
result = PRBMath.mulDiv(x, SCALE, y);
}
/// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number.
/// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant).
function e() internal pure returns (uint256 result) {
result = 2_718281828459045235;
}
/// @notice Calculates the natural exponent of x.
///
/// @dev Based on the insight that e^x = 2^(x * log2(e)).
///
/// Requirements:
/// - All from "log2".
/// - x must be less than 133.084258667509499441.
///
/// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function exp(uint256 x) internal pure returns (uint256 result) {
// Without this check, the value passed to "exp2" would be greater than 192.
if (x >= 133_084258667509499441) {
revert PRBMathUD60x18__ExpInputTooBig(x);
}
// Do the fixed-point multiplication inline to save gas.
unchecked {
uint256 doubleScaleProduct = x * LOG2_E;
result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE);
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Requirements:
/// - x must be 192 or less.
/// - The result must fit within MAX_UD60x18.
///
/// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function exp2(uint256 x) internal pure returns (uint256 result) {
// 2^192 doesn't fit within the 192.64-bit format used internally in this function.
if (x >= 192e18) {
revert PRBMathUD60x18__Exp2InputTooBig(x);
}
unchecked {
// Convert x to the 192.64-bit fixed-point format.
uint256 x192x64 = (x << 64) / SCALE;
// Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation.
result = PRBMath.exp2(x192x64);
}
}
/// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x.
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
/// @param x The unsigned 60.18-decimal fixed-point number to floor.
/// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number.
function floor(uint256 x) internal pure returns (uint256 result) {
assembly {
// Equivalent to "x % SCALE" but faster.
let remainder := mod(x, SCALE)
// Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster.
result := sub(x, mul(remainder, gt(remainder, 0)))
}
}
/// @notice Yields the excess beyond the floor of x.
/// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part.
/// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of.
/// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number.
function frac(uint256 x) internal pure returns (uint256 result) {
assembly {
result := mod(x, SCALE)
}
}
/// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation.
///
/// @dev Requirements:
/// - x must be less than or equal to MAX_UD60x18 divided by SCALE.
///
/// @param x The basic integer to convert.
/// @param result The same number in unsigned 60.18-decimal fixed-point representation.
function fromUint(uint256 x) internal pure returns (uint256 result) {
unchecked {
if (x > MAX_UD60x18 / SCALE) {
revert PRBMathUD60x18__FromUintOverflow(x);
}
result = x * SCALE;
}
}
/// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down.
///
/// @dev Requirements:
/// - x * y must fit within MAX_UD60x18, lest it overflows.
///
/// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
/// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function gm(uint256 x, uint256 y) internal pure returns (uint256 result) {
if (x == 0) {
return 0;
}
unchecked {
// Checking for overflow this way is faster than letting Solidity do it.
uint256 xy = x * y;
if (xy / x != y) {
revert PRBMathUD60x18__GmOverflow(x, y);
}
// We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE
// during multiplication. See the comments within the "sqrt" function.
result = PRBMath.sqrt(xy);
}
}
/// @notice Calculates 1 / x, rounding toward zero.
///
/// @dev Requirements:
/// - x cannot be zero.
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse.
/// @return result The inverse as an unsigned 60.18-decimal fixed-point number.
function inv(uint256 x) internal pure returns (uint256 result) {
unchecked {
// 1e36 is SCALE * SCALE.
result = 1e36 / x;
}
}
/// @notice Calculates the natural logarithm of x.
///
/// @dev Based on the insight that ln(x) = log2(x) / log2(e).
///
/// Requirements:
/// - All from "log2".
///
/// Caveats:
/// - All from "log2".
/// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision.
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm.
/// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number.
function ln(uint256 x) internal pure returns (uint256 result) {
// Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x)
// can return is 196205294292027477728.
unchecked {
result = (log2(x) * SCALE) / LOG2_E;
}
}
/// @notice Calculates the common logarithm of x.
///
/// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common
/// logarithm based on the insight that log10(x) = log2(x) / log2(10).
///
/// Requirements:
/// - All from "log2".
///
/// Caveats:
/// - All from "log2".
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm.
/// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number.
function log10(uint256 x) internal pure returns (uint256 result) {
if (x < SCALE) {
revert PRBMathUD60x18__LogInputTooSmall(x);
}
// Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined
// in this contract.
// prettier-ignore
assembly {
switch x
case 1 { result := mul(SCALE, sub(0, 18)) }
case 10 { result := mul(SCALE, sub(1, 18)) }
case 100 { result := mul(SCALE, sub(2, 18)) }
case 1000 { result := mul(SCALE, sub(3, 18)) }
case 10000 { result := mul(SCALE, sub(4, 18)) }
case 100000 { result := mul(SCALE, sub(5, 18)) }
case 1000000 { result := mul(SCALE, sub(6, 18)) }
case 10000000 { result := mul(SCALE, sub(7, 18)) }
case 100000000 { result := mul(SCALE, sub(8, 18)) }
case 1000000000 { result := mul(SCALE, sub(9, 18)) }
case 10000000000 { result := mul(SCALE, sub(10, 18)) }
case 100000000000 { result := mul(SCALE, sub(11, 18)) }
case 1000000000000 { result := mul(SCALE, sub(12, 18)) }
case 10000000000000 { result := mul(SCALE, sub(13, 18)) }
case 100000000000000 { result := mul(SCALE, sub(14, 18)) }
case 1000000000000000 { result := mul(SCALE, sub(15, 18)) }
case 10000000000000000 { result := mul(SCALE, sub(16, 18)) }
case 100000000000000000 { result := mul(SCALE, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := SCALE }
case 100000000000000000000 { result := mul(SCALE, 2) }
case 1000000000000000000000 { result := mul(SCALE, 3) }
case 10000000000000000000000 { result := mul(SCALE, 4) }
case 100000000000000000000000 { result := mul(SCALE, 5) }
case 1000000000000000000000000 { result := mul(SCALE, 6) }
case 10000000000000000000000000 { result := mul(SCALE, 7) }
case 100000000000000000000000000 { result := mul(SCALE, 8) }
case 1000000000000000000000000000 { result := mul(SCALE, 9) }
case 10000000000000000000000000000 { result := mul(SCALE, 10) }
case 100000000000000000000000000000 { result := mul(SCALE, 11) }
case 1000000000000000000000000000000 { result := mul(SCALE, 12) }
case 10000000000000000000000000000000 { result := mul(SCALE, 13) }
case 100000000000000000000000000000000 { result := mul(SCALE, 14) }
case 1000000000000000000000000000000000 { result := mul(SCALE, 15) }
case 10000000000000000000000000000000000 { result := mul(SCALE, 16) }
case 100000000000000000000000000000000000 { result := mul(SCALE, 17) }
case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) }
case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) }
case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) }
case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) }
case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) }
case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) }
default {
result := MAX_UD60x18
}
}
if (result == MAX_UD60x18) {
// Do the fixed-point division inline to save gas. The denominator is log2(10).
unchecked {
result = (log2(x) * SCALE) / 3_321928094887362347;
}
}
}
/// @notice Calculates the binary logarithm of x.
///
/// @dev Based on the iterative approximation algorithm.
/// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Requirements:
/// - x must be greater than or equal to SCALE, otherwise the result would be negative.
///
/// Caveats:
/// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation.
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm.
/// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number.
function log2(uint256 x) internal pure returns (uint256 result) {
if (x < SCALE) {
revert PRBMathUD60x18__LogInputTooSmall(x);
}
unchecked {
// Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n).
uint256 n = PRBMath.mostSignificantBit(x / SCALE);
// The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow
// because n is maximum 255 and SCALE is 1e18.
result = n * SCALE;
// This is y = x * 2^(-n).
uint256 y = x >> n;
// If y = 1, the fractional part is zero.
if (y == SCALE) {
return result;
}
// Calculate the fractional part via the iterative approximation.
// The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster.
for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) {
y = (y * y) / SCALE;
// Is y^2 > 2 and so in the range [2,4)?
if (y >= 2 * SCALE) {
// Add the 2^(-m) factor to the logarithm.
result += delta;
// Corresponds to z/2 on Wikipedia.
y >>= 1;
}
}
}
}
/// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal
/// fixed-point number.
/// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function.
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The product as an unsigned 60.18-decimal fixed-point number.
function mul(uint256 x, uint256 y) internal pure returns (uint256 result) {
result = PRBMath.mulDivFixedPoint(x, y);
}
/// @notice Returns PI as an unsigned 60.18-decimal fixed-point number.
function pi() internal pure returns (uint256 result) {
result = 3_141592653589793238;
}
/// @notice Raises x to the power of y.
///
/// @dev Based on the insight that x^y = 2^(log2(x) * y).
///
/// Requirements:
/// - All from "exp2", "log2" and "mul".
///
/// Caveats:
/// - All from "exp2", "log2" and "mul".
/// - Assumes 0^0 is 1.
///
/// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number.
/// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number.
/// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number.
function pow(uint256 x, uint256 y) internal pure returns (uint256 result) {
if (x == 0) {
result = y == 0 ? SCALE : uint256(0);
} else {
result = exp2(mul(log2(x), y));
}
}
/// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the
/// famous algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring
///
/// Requirements:
/// - The result must fit within MAX_UD60x18.
///
/// Caveats:
/// - All from "mul".
/// - Assumes 0^0 is 1.
///
/// @param x The base as an unsigned 60.18-decimal fixed-point number.
/// @param y The exponent as an uint256.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function powu(uint256 x, uint256 y) internal pure returns (uint256 result) {
// Calculate the first iteration of the loop in advance.
result = y & 1 > 0 ? x : SCALE;
// Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster.
for (y >>= 1; y > 0; y >>= 1) {
x = PRBMath.mulDivFixedPoint(x, x);
// Equivalent to "y % 2 == 1" but faster.
if (y & 1 > 0) {
result = PRBMath.mulDivFixedPoint(result, x);
}
}
}
/// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number.
function scale() internal pure returns (uint256 result) {
result = SCALE;
}
/// @notice Calculates the square root of x, rounding down.
/// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Requirements:
/// - x must be less than MAX_UD60x18 / SCALE.
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root.
/// @return result The result as an unsigned 60.18-decimal fixed-point .
function sqrt(uint256 x) internal pure returns (uint256 result) {
unchecked {
if (x > MAX_UD60x18 / SCALE) {
revert PRBMathUD60x18__SqrtOverflow(x);
}
// Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned
// 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root).
result = PRBMath.sqrt(x * SCALE);
}
}
/// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process.
/// @param x The unsigned 60.18-decimal fixed-point number to convert.
/// @return result The same number in basic integer form.
function toUint(uint256 x) internal pure returns (uint256 result) {
unchecked {
result = x / SCALE;
}
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Gas optimized reentrancy protection for smart contracts.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ReentrancyGuard.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol)
abstract contract ReentrancyGuard {
uint256 private locked = 1;
modifier nonReentrant() virtual {
require(locked == 1, "REENTRANCY");
locked = 2;
_;
locked = 1;
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Read and write to persistent storage at a fraction of the cost.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SSTORE2.sol)
/// @author Modified from 0xSequence (https://github.com/0xSequence/sstore2/blob/master/contracts/SSTORE2.sol)
library SSTORE2 {
uint256 internal constant DATA_OFFSET = 1; // We skip the first byte as it's a STOP opcode to ensure the contract can't be called.
/*//////////////////////////////////////////////////////////////
WRITE LOGIC
//////////////////////////////////////////////////////////////*/
function write(bytes memory data) internal returns (address pointer) {
// Prefix the bytecode with a STOP opcode to ensure it cannot be called.
bytes memory runtimeCode = abi.encodePacked(hex"00", data);
bytes memory creationCode = abi.encodePacked(
//---------------------------------------------------------------------------------------------------------------//
// Opcode | Opcode + Arguments | Description | Stack View //
//---------------------------------------------------------------------------------------------------------------//
// 0x60 | 0x600B | PUSH1 11 | codeOffset //
// 0x59 | 0x59 | MSIZE | 0 codeOffset //
// 0x81 | 0x81 | DUP2 | codeOffset 0 codeOffset //
// 0x38 | 0x38 | CODESIZE | codeSize codeOffset 0 codeOffset //
// 0x03 | 0x03 | SUB | (codeSize - codeOffset) 0 codeOffset //
// 0x80 | 0x80 | DUP | (codeSize - codeOffset) (codeSize - codeOffset) 0 codeOffset //
// 0x92 | 0x92 | SWAP3 | codeOffset (codeSize - codeOffset) 0 (codeSize - codeOffset) //
// 0x59 | 0x59 | MSIZE | 0 codeOffset (codeSize - codeOffset) 0 (codeSize - codeOffset) //
// 0x39 | 0x39 | CODECOPY | 0 (codeSize - codeOffset) //
// 0xf3 | 0xf3 | RETURN | //
//---------------------------------------------------------------------------------------------------------------//
hex"60_0B_59_81_38_03_80_92_59_39_F3", // Returns all code in the contract except for the first 11 (0B in hex) bytes.
runtimeCode // The bytecode we want the contract to have after deployment. Capped at 1 byte less than the code size limit.
);
assembly {
// Deploy a new contract with the generated creation code.
// We start 32 bytes into the code to avoid copying the byte length.
pointer := create(0, add(creationCode, 32), mload(creationCode))
}
require(pointer != address(0), "DEPLOYMENT_FAILED");
}
/*//////////////////////////////////////////////////////////////
READ LOGIC
//////////////////////////////////////////////////////////////*/
function read(address pointer) internal view returns (bytes memory) {
return readBytecode(pointer, DATA_OFFSET, pointer.code.length - DATA_OFFSET);
}
function read(address pointer, uint256 start) internal view returns (bytes memory) {
start += DATA_OFFSET;
return readBytecode(pointer, start, pointer.code.length - start);
}
function read(
address pointer,
uint256 start,
uint256 end
) internal view returns (bytes memory) {
start += DATA_OFFSET;
end += DATA_OFFSET;
require(pointer.code.length >= end, "OUT_OF_BOUNDS");
return readBytecode(pointer, start, end - start);
}
/*//////////////////////////////////////////////////////////////
INTERNAL HELPER LOGIC
//////////////////////////////////////////////////////////////*/
function readBytecode(
address pointer,
uint256 start,
uint256 size
) private view returns (bytes memory data) {
assembly {
// Get a pointer to some free memory.
data := mload(0x40)
// Update the free memory pointer to prevent overriding our data.
// We use and(x, not(31)) as a cheaper equivalent to sub(x, mod(x, 32)).
// Adding 31 to size and running the result through the logic above ensures
// the memory pointer remains word-aligned, following the Solidity convention.
mstore(0x40, add(data, and(add(add(size, 32), 31), not(31))))
// Store the size of the data in the first 32 byte chunk of free memory.
mstore(data, size)
// Copy the code into memory right after the 32 bytes we used to store the size.
extcodecopy(pointer, add(data, 32), start, size)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import "ERC721A/extensions/ERC721AQueryable.sol";
import "solmate/utils/SSTORE2.sol";
import "solmate/auth/Owned.sol";
import "solmate/utils/LibString.sol";
import "solmate/utils/ReentrancyGuard.sol";
import "openzeppelin-contracts/utils/Address.sol";
import "prb-math/PRBMathUD60x18.sol";
import "./Base64.sol";
import "./TheLPRenderer.sol";
contract TheLP is ERC721AQueryable, Owned, ReentrancyGuard {
using LibString for uint256;
using PRBMathUD60x18 for uint256;
TheLPRenderer renderer;
event PaymentReceived(address from, uint256 amount);
event PaymentReleased(address to, uint256 amount);
uint256 public MAX_SUPPLY;
uint256 public MAX_PUB_SALE;
uint256 public MAX_TEAM;
uint256 public MAX_LP;
uint256 public DURATION;
uint256 public MIN_PRICE;
uint256 public MAX_PRICE;
uint256 public DISCOUNT_RATE;
uint256 public startTime;
uint256 public endTime;
address public traitsImagePointer;
uint256 public totalEthClaimed;
bool public lockedIn = false;
uint256 public feeSplit = 2 * 10**18;
mapping(uint256 => uint256) public _rewardDebt;
mapping(uint256 => TokenMintInfo) public tokenMintInfo;
struct TokenMintInfo {
bytes32 seed;
uint256 cost;
}
error TokenNotForSale();
error IncorrectPayment();
error AlreadyLocked();
error NotGameOver();
error AlreadyGameOver();
error LockedIn();
error CannotRedeem();
error InvalidTokenId(uint256 tokenId);
error NotOwner(uint256 tokenId);
error AuctionEnded();
error NotStarted();
error AmountRequired();
error SoldOut();
error NotLockedIn();
bytes32 teamMintBlockHash;
bytes32 lpMintBlockHash;
address teamMintWallet;
constructor(
string memory name,
string memory symbol,
uint256 _startTime,
TheLPRenderer _renderer,
uint256 minPrice,
uint256 maxPrice,
uint256 maxPubSale,
uint256 maxTeam,
uint256 maxLp,
uint256 duration,
address _teamMintWallet
) ERC721A(name, symbol) Owned(msg.sender) {
startTime = _startTime;
endTime = startTime + duration;
renderer = _renderer;
MIN_PRICE = minPrice;
MAX_PRICE = maxPrice;
MAX_LP = maxLp;
MAX_TEAM = maxTeam;
MAX_PUB_SALE = maxPubSale;
MAX_SUPPLY = MAX_LP + MAX_TEAM + MAX_PUB_SALE;
DURATION = duration;
DISCOUNT_RATE = uint256(MAX_PRICE - MIN_PRICE).div((duration) * 10**18);
teamMintWallet = _teamMintWallet;
_mintERC2309(teamMintWallet, MAX_TEAM);
teamMintBlockHash = blockhash(block.number - 1);
}
/// @dev Public function to get the usable ETH balanance.
/// This balance does not include ETH set aside of holder fees.
function getEthBalance() external view returns (uint256) {
return _getEthBalance(0);
}
/// @dev Private function to get usable ETH balance of the smart contract.
/// This ETH balance is what is used for liquidity. It should not include
/// ETH that is set aside for fees. Includes minus argument to subtract
/// msg.value which should not be included in calculation.
function _getEthBalance(uint256 minus) private view returns (uint256) {
uint256 balance = address(this).balance - minus;
uint256 fees = getFeeBalance();
if (fees > balance) return 0;
return balance - fees;
}
/// @dev Public function to update the fee split
function updateFeeSplit(uint256 newSplit) public onlyOwner {
feeSplit = newSplit;
}
/// @dev Public get price function
function getBuyPrice() external view returns (uint256, uint256) {
return _getBuyPrice(0);
}
/// @dev Internal function to get the current price and fee
function _getPrice(uint256 minus, bool isBuy)
internal
view
returns (uint256, uint256)
{
uint256 balance = balanceOf(address(this));
uint256 priceA = _getEthBalance(minus).div(balance * 10**18);
if (isBuy) {
balance -= 1;
} else {
balance += 1;
}
uint256 priceB = _getEthBalance(minus).div(balance * 10**18);
uint256 fee;
if (priceB > priceA) {
fee = priceB - priceA;
} else {
fee = priceA - priceB;
}
return (priceB, fee);
}
/// @dev Get buy price. Includes minus params to account for
/// additional msg.value that should not be part of calculation.
function _getBuyPrice(uint256 minus)
private
view
returns (uint256, uint256)
{
return _getPrice(minus, true);
}
/// @dev Public get sell price function
function getSellPrice() external view returns (uint256, uint256) {
return _getSellPrice(0);
}
/// @dev Get sell price. Includes minus params to account for
/// additional msg.value that should not be part of calculation.
function _getSellPrice(uint256 minus)
private
view
returns (uint256, uint256)
{
return _getPrice(minus, false);
}
/// @dev Function used to buy an NFT within the LP contract
/// Must send buy price. Will refund any additional amounts.
function buy(uint256 id) public payable nonReentrant {
if (ownerOf(id) != address(this)) {
revert NotOwner(id);
}
(uint256 cost, uint256 fee) = _getBuyPrice(msg.value);
if (msg.value < cost) {
revert IncorrectPayment();
}
_totalFees += fee.div(feeSplit);
// Approve sender to move this token
// ERC721a doesn't abstract transfer functionality by default
_tokenApprovals[id].value = msg.sender;
transferFrom(address(this), msg.sender, id);
uint256 refund = msg.value - cost;
if (refund > 0) {
Address.sendValue(payable(msg.sender), refund);
}
}
error ApprovalRequired(uint256 tokenId);
/// @dev Function used to sell an NFT
/// Token ID must be owned by msg.sender
function sell(uint256 tokenId) public payable nonReentrant {
if (ownerOf(tokenId) != msg.sender) {
revert NotOwner(tokenId);
}
(uint256 sellPrice, uint256 fee) = _getSellPrice(msg.value);
_totalFees += fee.div(feeSplit);
transferFrom(msg.sender, address(this), tokenId);
Address.sendValue(payable(msg.sender), sellPrice);
}
uint256 private _totalFees;
/// @dev Function to get the total fees accumulated over time
function getFeeBalance() public view returns (uint256) {
return _totalFees;
}
/// @dev Function to manually migrate ETH from pool
/// Can be disabled by changing owner to address(0)
function migrate(uint256 amount) public onlyOwner {
Address.sendValue(payable(owner), amount);
}
/// @dev Public function that can be used to calculate the pending ETH payment for a given NFT ID
function calculatePendingPayment(uint256 nftId)
public
view
returns (uint256)
{
uint256 a = getFeeBalance() + totalEthClaimed - _rewardDebt[nftId];
if (a == 0) return 0;
return (a).div(MAX_SUPPLY * 10**18);
}
error InvalidDepositAmount();
/// @dev External function that can be used to add to ETH pool and total fees
function externalDeposit(uint256 amountTowardsFees)
external
payable
returns (bool)
{
if (msg.value == 0) {
revert InvalidDepositAmount();
}
if (amountTowardsFees > msg.value) {
revert InvalidDepositAmount();
}
_totalFees += amountTowardsFees;
return true;
}
error NothingToClaim();
/// @dev Internal function used to claim share of fees for a given NFT ID
/// Throws if trying to claim for NFTs in pool
function _claim(uint256 nftId) private {
if (!lockedIn) {
revert NotLockedIn();
}
uint256 payment = calculatePendingPayment(nftId);
if (payment == 0) {
revert NothingToClaim();
}
totalEthClaimed += payment;
address ownerAddr = ownerOf(nftId);
if (ownerAddr == address(this)) {
revert NothingToClaim();
}
_totalFees -= payment;
_rewardDebt[nftId] = _totalFees + totalEthClaimed;
Address.sendValue(payable(ownerAddr), payment);
emit PaymentReleased(ownerAddr, payment);
}
/// @dev Public function used to claim share of available fees for a given NFT ID
function claim(uint256 nftId) public nonReentrant {
_claim(nftId);
}
/// @dev Convenience method to claim fees for many NFT IDs
function claimMany(uint256[] memory nftIds) public nonReentrant {
for (uint256 i = 0; i < nftIds.length; i++) {
_claim(nftIds[i]);
}
}
/// @dev Get on-chain token URI
/// Accounts for NFTs that were minted using ERC-2309
function tokenURI(uint256 tokenId)
public
view
override(ERC721A, IERC721A)
returns (string memory)
{
bytes32 seed;
// 1 - 1000
if (tokenId <= MAX_TEAM) {
seed = keccak256(abi.encodePacked(teamMintBlockHash, tokenId));
// 9001 - 10000
} else if (tokenId >= MAX_PUB_SALE + MAX_TEAM + 1) {
seed = keccak256(abi.encodePacked(lpMintBlockHash, tokenId));
} else {
// 1001 - 9000
seed = tokenMintInfo[tokenId].seed;
}
return renderer.getJsonUri(tokenId, seed);
}
function _startTokenId() internal view virtual override returns (uint256) {
return 1;
}
/// @dev Public function that returns game over status
function isGameOver() public view returns (bool) {
return block.timestamp >= endTime && _totalMinted() < MAX_SUPPLY;
}
/// @dev Private function to redeem mint costs for a given NFT ID
function _redeem(uint256 tokenId) private {
if (tokenMintInfo[tokenId].cost == 0) {
revert InvalidTokenId(tokenId);
}
if (ownerOf(tokenId) != msg.sender) {
revert NotOwner(tokenId);
}
Address.sendValue(payable(msg.sender), tokenMintInfo[tokenId].cost);
tokenMintInfo[tokenId].cost = 0;
}
/// @dev Public function to redeem mint costs for multiple NFT IDs
/// This function can only be called if game over is true.
function redeem(uint256[] memory tokenIds) public nonReentrant {
if (!isGameOver()) {
revert NotGameOver();
}
for (uint256 i = 0; i < tokenIds.length; i++) {
_redeem(tokenIds[i]);
}
}
/// @dev This function disables transfers until mint is complete.
function _beforeTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual override {
if (from == address(0)) return;
if (!lockedIn) {
revert NotLockedIn();
}
}
/// @dev Private function that is called once the last NFT of public sale is minted.
function _lockItIn() private {
if (lockedIn) {
revert AlreadyLocked();
}
uint256 half = address(this).balance.div(2 * 10**18);
Address.sendValue(payable(owner), half);
lpMintBlockHash = blockhash(block.number - 1);
_mintERC2309(address(this), MAX_LP);
lockedIn = true;
}
/// @dev Gets the current mint price for dutch auction
function getCurrentMintPrice() public view returns (uint256) {
if (block.timestamp < startTime) {
revert NotStarted();
}
uint256 timeElapsed = block.timestamp - startTime;
uint256 discount = DISCOUNT_RATE * timeElapsed;
if (discount > MAX_PRICE) return MIN_PRICE;
return MAX_PRICE - discount;
}
/// @dev Public mint function
/// Must pass msg.value greater than or equal to current mint price * amount
function mint(uint256 amount) public payable nonReentrant {
if (block.timestamp >= endTime) {
revert AuctionEnded();
}
if (block.timestamp < startTime) {
revert NotStarted();
}
if (amount <= 0) {
revert AmountRequired();
}
uint256 totalMinted = _totalMinted();
uint256 totalAfterMint = totalMinted + amount;
if (totalAfterMint > MAX_PUB_SALE + MAX_TEAM) {
revert SoldOut();
}
uint256 mintPrice = getCurrentMintPrice();
uint256 totalCost = amount * mintPrice;
if (msg.value < totalCost) {
revert IncorrectPayment();
}
uint256 current = _nextTokenId();
uint256 end = current + amount - 1;
for (; current <= end; current++) {
tokenMintInfo[current] = TokenMintInfo({
seed: keccak256(
abi.encodePacked(blockhash(block.number - 1), current)
),
cost: mintPrice
});
}
uint256 refund = msg.value - totalCost;
if (refund > 0) {
Address.sendValue(payable(msg.sender), refund);
}
_mint(msg.sender, amount);
if (totalAfterMint == MAX_PUB_SALE + MAX_TEAM) {
_lockItIn();
}
}
/// @dev Receive function called when this contract receives Ether
receive() external payable virtual {
emit PaymentReceived(msg.sender, msg.value);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import "ERC721A/ERC721A.sol";
import "solmate/utils/SSTORE2.sol";
import "solmate/auth/Owned.sol";
import "solmate/utils/LibString.sol";
import "solmate/utils/ReentrancyGuard.sol";
import "openzeppelin-contracts/utils/Address.sol";
import "prb-math/PRBMathUD60x18.sol";
import "./TheLPTraits.sol";
import "./Base64.sol";
contract TheLPRenderer is Owned {
using LibString for uint256;
TheLPTraits traitsMetadata;
address public traitsImagePointer;
string description =
"AN EXPERIMENTAL APPROACH TO BOOTSTRAPPING NFT LIQUIDITY AND REWARDING HOLDERS";
error TraitsImageAlreadySet();
constructor(TheLPTraits _traitsMetadata) Owned(msg.sender) {
traitsMetadata = _traitsMetadata;
}
function setTraitsImage(string calldata data) external onlyOwner {
if (traitsImagePointer != address(0)) {
revert TraitsImageAlreadySet();
}
traitsImagePointer = SSTORE2.write(bytes(data));
}
function getTraitsImage() public view returns (string memory) {
return string(SSTORE2.read(traitsImagePointer));
}
function updateDescription(string memory d) public onlyOwner {
description = d;
}
function _r(
uint256 seed,
uint256 from,
uint256 to
) private pure returns (uint256) {
return from + (seed % (to - from + 1));
}
function _svgStart() private view returns (string memory) {
return
string(
abi.encodePacked(
'<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 40 40" height="350" width="350"><defs><image height="1120" width="120" image-rendering="pixelated" id="s" href="',
getTraitsImage(),
'" /><clipPath id="c"><rect width="40" height="40" /></clipPath></defs><g clip-path="url(#c)">'
)
);
}
struct Traits {
uint256 back;
uint256 pants;
uint256 shirt;
uint256 logo;
uint256 clothingItem;
uint256 gloves;
uint256 hat;
uint256 kitFront;
uint256 hand;
}
struct Seeds {
uint256 one;
uint256 two;
uint256 three;
uint256 four;
uint256 five;
uint256 six;
uint256 seven;
uint256 eight;
uint256 nine;
uint256 ten;
}
function _getUseString(uint256 col, uint256 row)
private
pure
returns (string memory)
{
return
string(
abi.encodePacked(
"<use height='40' width='40' href='#s' x='-",
col.toString(),
"' y='-",
row.toString(),
"' />"
)
);
}
function getSvgDataUri(bytes32 seed) public view returns (string memory) {
return
string(
abi.encodePacked(
"data:image/svg+xml;base64,",
Base64.encode(bytes(getSvg(seed)))
)
);
}
function _getSvgDataUri(uint256[11] memory traits)
private
view
returns (string memory)
{
return
string(
abi.encodePacked(
"data:image/svg+xml;base64,",
Base64.encode(bytes(_getSvg(traits)))
)
);
}
function getJsonUri(uint256 tokenId, bytes32 seed)
public
view
returns (string memory)
{
return
string(
abi.encodePacked(
"data:application/json;base64,",
Base64.encode(bytes(getJsonString(tokenId, seed)))
)
);
}
function getJsonString(uint256 tokenId, bytes32 seed)
public
view
returns (string memory)
{
uint256[11] memory traits = getTraits(seed);
return
string(
abi.encodePacked(
'{"name": "The LP #',
tokenId.toString(),
'", "description": "',
description,
'",',
'"image":"',
_getSvgDataUri(traits),
'","attributes":[',
_getTraitMetadata(traits),
"]}"
)
);
}
function _getTraitString(string memory key, string memory value)
private
pure
returns (string memory)
{
return
string(
abi.encodePacked(
'{"trait_type":"',
key,
'","value":"',
value,
'"}'
)
);
}
function _getTraitMetadata(uint256[11] memory traits)
private
view
returns (string memory)
{
string[9] memory parts;
for (uint256 i = 0; i < traits.length; i++) {
uint256 current = traits[i];
if (i == 0 && current != 0) {
parts[i] = _getTraitString(
"Back",
traitsMetadata.getBack(current)
);
}
if (i == 1 && current != 0) {
parts[i] = _getTraitString(
"Pants",
traitsMetadata.getPants(current)
);
}
if (i == 2 && current != 0) {
parts[i] = _getTraitString(
"Shirt",
traitsMetadata.getShirt(current)
);
}
if (i == 3 && current != 0) {
parts[i] = _getTraitString(
"Logo",
traitsMetadata.getLogo(current)
);
}
if (i == 4 && current != 0) {
parts[i] = _getTraitString(
"Clothing item",
traitsMetadata.getClothingItem(current)
);
}
if (i == 5 && current != 0) {
parts[i] = _getTraitString(
"Gloves",
traitsMetadata.getGloves(current)
);
}
if (i == 6 && current != 0) {
parts[i] = _getTraitString(
"Hat",
traitsMetadata.getHat(current)
);
}
if (i == 8 && current != 0) {
parts[7] = _getTraitString(
"Item",
traitsMetadata.getItem(current)
);
}
if (i == 9 && current != 0) {
parts[8] = _getTraitString(
"Special",
traitsMetadata.getSpecial(current)
);
}
}
string memory output;
for (uint256 i = 0; i < parts.length; i++) {
if (bytes(parts[i]).length > 0) {
output = string(
abi.encodePacked(
output,
bytes(output).length > 0 ? "," : "",
parts[i]
)
);
}
}
return output;
}
function getTraits(bytes32 _seed)
public
pure
returns (uint256[11] memory traits)
{
uint256 seed = uint256(_seed);
Seeds memory seeds = Seeds({
one: uint256(uint16(seed >> 16)),
two: uint256(uint16(seed >> 32)),
three: uint256(uint16(seed >> 48)),
four: uint256(uint16(seed >> 64)),
five: uint256(uint16(seed >> 80)),
six: uint256(uint16(seed >> 96)),
seven: uint256(uint16(seed >> 112)),
eight: uint256(uint16(seed >> 128)),
nine: uint256(uint16(seed >> 144)),
ten: uint256(uint16(seed >> 160))
});
bool hasShirt = _r(seeds.three, 1, 100) <= 96;
traits = [
// back
_r(seeds.one, 1, 100) <= 10 ? _r(seeds.one, 1, 2) : 0,
// pants
_r(seeds.two, 1, 100) <= 2 ? 0 : _r(seeds.two, 1, 100) <= 50
? _r(seed, 59, 62)
: _r(seed, 72, 75),
// shirt
hasShirt ? _r(seeds.three, 76, 83) : 0,
// logo
hasShirt && _r(seeds.four, 1, 100) <= 50
? _r(seeds.four, 50, 58)
: 0,
// clothing item
_r(seeds.five, 1, 100) <= 25 ? _r(seeds.five, 3, 15) : 0,
// gloves
_r(seeds.six, 1, 100) <= 50 ? _r(seeds.six, 16, 17) : 0,
//hat
_r(seeds.seven, 1, 100) <= 60 ? _r(seeds.seven, 18, 39) : 0,
//kit front
0,
// hand
_r(seeds.eight + 1, 1, 100) <= 25 ? _r(seeds.eight, 63, 71) : 0,
// kit
_r(seeds.nine, 1, 100) <= 10 ? _r(seeds.nine, 1, 4) : 0,
// bg
_r(seeds.ten, 0, 4)
];
uint256 kit = traits[9];
if (kit != 0) {
if (kit == 1) {
traits[0] = 49;
traits[7] = 40;
}
if (kit == 2) {
traits[0] = 41;
traits[7] = 42;
traits[6] = 43;
}
if (kit == 3) {
traits[7] = 45;
traits[0] = 44;
}
if (kit == 4) {
traits[0] = 46;
traits[7] = 47;
traits[6] = 48;
}
}
}
function getSvg(bytes32 _seed) public view returns (string memory) {
uint256[11] memory traits = getTraits(_seed);
return _getSvg(traits);
}
function _getPart(uint256 tile) internal pure returns (string memory) {
uint256 col = (tile % 3) * 40;
uint256 row = (tile / 3) * 40;
return _getUseString(col, row);
}
function _getSvg(uint256[11] memory traits)
private
view
returns (string memory)
{
string memory partString = string(
abi.encodePacked(
traits[0] != 0 ? _getPart(traits[0]) : "",
_getUseString(0, 0)
)
);
for (uint256 i = 1; i < 9; i++) {
uint256 tile = traits[i];
if (tile == 0) {
continue;
}
partString = string(abi.encodePacked(partString, _getPart(tile)));
}
return
string(
abi.encodePacked(
_svgStart(),
"<rect width='40' height='40' fill='",
traitsMetadata.colors(traits[10]),
"' />",
partString,
"</g></svg>"
)
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import "ERC721A/ERC721A.sol";
import "solmate/utils/SSTORE2.sol";
import "solmate/auth/Owned.sol";
import "solmate/utils/LibString.sol";
import "solmate/utils/ReentrancyGuard.sol";
import "openzeppelin-contracts/utils/Address.sol";
import "prb-math/PRBMathUD60x18.sol";
import "./Base64.sol";
contract TheLPTraits {
struct TraitInfo {
mapping(uint256 => string) map;
}
TraitInfo back;
TraitInfo pants;
TraitInfo shirt;
TraitInfo logo;
TraitInfo clothingItem;
TraitInfo gloves;
TraitInfo hat;
TraitInfo item;
TraitInfo special;
string[5] public colors = [
"#f8f8f8",
"#E5FBEF",
"#F5FCDD",
"#FDEEE8",
"#E5F1F6"
];
function getBack(uint256 i) public view returns (string memory) {
return back.map[i];
}
function getPants(uint256 i) public view returns (string memory) {
return pants.map[i];
}
function getShirt(uint256 i) public view returns (string memory) {
return shirt.map[i];
}
function getLogo(uint256 i) public view returns (string memory) {
return logo.map[i];
}
function getClothingItem(uint256 i) public view returns (string memory) {
return clothingItem.map[i];
}
function getGloves(uint256 i) public view returns (string memory) {
return gloves.map[i];
}
function getHat(uint256 i) public view returns (string memory) {
return hat.map[i];
}
function getItem(uint256 i) public view returns (string memory) {
return item.map[i];
}
function getSpecial(uint256 i) public view returns (string memory) {
return special.map[i];
}
constructor() {
back.map[1] = "Fairy Wings";
back.map[2] = "Jetpack";
pants.map[59] = "Orange Pants";
pants.map[60] = "Blue Jeans";
pants.map[61] = "Black Pants";
pants.map[62] = "Fun Jeans";
pants.map[72] = "Blue Shorts";
pants.map[73] = "Orange Shorts";
pants.map[74] = "Black Shorts";
pants.map[75] = "White Shorts";
shirt.map[76] = "Orange";
shirt.map[77] = "Yellow";
shirt.map[78] = "Black";
shirt.map[79] = "Blue";
shirt.map[80] = "Green";
shirt.map[81] = "Red";
shirt.map[82] = "White";
shirt.map[83] = "Peanut";
logo.map[50] = "Bear";
logo.map[51] = "Chicken";
logo.map[52] = "Computer";
logo.map[53] = "Dino";
logo.map[54] = "Eth";
logo.map[55] = "LP";
logo.map[56] = "Metal";
logo.map[57] = "Rainbow";
logo.map[58] = "Smile";
clothingItem.map[3] = "Fanny pack";
clothingItem.map[4] = "Hawaiian";
clothingItem.map[5] = "Karate";
clothingItem.map[6] = "Puffer white";
clothingItem.map[7] = "Puffer peanut";
clothingItem.map[8] = "Puffer red";
clothingItem.map[9] = "LP Puffer";
clothingItem.map[10] = "Puffer blue";
clothingItem.map[11] = "Puffer orange";
clothingItem.map[12] = "Puffer yellow";
clothingItem.map[13] = "Suit jacket";
clothingItem.map[14] = "Body suit blue";
clothingItem.map[15] = "Body suit red";
gloves.map[16] = "Motorcycle";
gloves.map[17] = "Wrist guards";
hat.map[18] = "Aquarium";
hat.map[19] = "Army";
hat.map[20] = "Baseball";
hat.map[21] = "Bear";
hat.map[22] = "Black hood";
hat.map[23] = "Bucket helmet";
hat.map[24] = "Bucket hat";
hat.map[25] = "Bull";
hat.map[26] = "Captain";
hat.map[27] = "Cowboy";
hat.map[28] = "Dino";
hat.map[29] = "M";
hat.map[30] = "Ninja";
hat.map[31] = "Pirate";
hat.map[32] = "Safari";
hat.map[33] = "Santa";
hat.map[34] = "Shower cap";
hat.map[35] = "Sombrero";
hat.map[36] = "Bad guy";
hat.map[37] = "Viking";
hat.map[38] = "Builder";
hat.map[39] = "Hero";
item.map[63] = "Cellphone";
item.map[64] = "Briefcase";
item.map[65] = "Gecko";
item.map[66] = "Saber";
item.map[67] = "Lobster";
item.map[68] = "Lolli";
item.map[69] = "Shroom";
item.map[70] = "Ray gun";
item.map[71] = "Hero Sword";
special.map[1] = "Unicorn floaty";
special.map[2] = "Astronaut";
special.map[3] = "Explorer";
special.map[4] = "Twilight Knight";
}
}
{
"compilationTarget": {
"src/TheLP.sol": "TheLP"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":721a-fork/=lib/721a-fork/contracts/",
":ERC721A/=lib/721a-fork/contracts/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
":prb-math/=lib/prb-math/contracts/",
":solmate/=lib/solmate/src/",
":sstore2/=lib/sstore2/contracts/"
]
}
[{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"_startTime","type":"uint256"},{"internalType":"contract TheLPRenderer","name":"_renderer","type":"address"},{"internalType":"uint256","name":"minPrice","type":"uint256"},{"internalType":"uint256","name":"maxPrice","type":"uint256"},{"internalType":"uint256","name":"maxPubSale","type":"uint256"},{"internalType":"uint256","name":"maxTeam","type":"uint256"},{"internalType":"uint256","name":"maxLp","type":"uint256"},{"internalType":"uint256","name":"duration","type":"uint256"},{"internalType":"address","name":"_teamMintWallet","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyGameOver","type":"error"},{"inputs":[],"name":"AlreadyLocked","type":"error"},{"inputs":[],"name":"AmountRequired","type":"error"},{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"ApprovalQueryForNonexistentToken","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ApprovalRequired","type":"error"},{"inputs":[],"name":"AuctionEnded","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"CannotRedeem","type":"error"},{"inputs":[],"name":"IncorrectPayment","type":"error"},{"inputs":[],"name":"InvalidDepositAmount","type":"error"},{"inputs":[],"name":"InvalidQueryRange","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"InvalidTokenId","type":"error"},{"inputs":[],"name":"LockedIn","type":"error"},{"inputs":[],"name":"MintERC2309QuantityExceedsLimit","type":"error"},{"inputs":[],"name":"MintToZeroAddress","type":"error"},{"inputs":[],"name":"MintZeroQuantity","type":"error"},{"inputs":[],"name":"NotGameOver","type":"error"},{"inputs":[],"name":"NotLockedIn","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"NotOwner","type":"error"},{"inputs":[],"name":"NotStarted","type":"error"},{"inputs":[],"name":"NothingToClaim","type":"error"},{"inputs":[],"name":"OwnerQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"OwnershipNotInitializedForExtraData","type":"error"},{"inputs":[{"internalType":"uint256","name":"prod1","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath__MulDivOverflow","type":"error"},{"inputs":[],"name":"SoldOut","type":"error"},{"inputs":[],"name":"TokenNotForSale","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"URIQueryForNonexistentToken","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toTokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"ConsecutiveTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PaymentReceived","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PaymentReleased","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DISCOUNT_RATE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DURATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_LP","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_PRICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_PUB_SALE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_TEAM","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_PRICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"_rewardDebt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"buy","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"calculatePendingPayment","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"nftIds","type":"uint256[]"}],"name":"claimMany","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"endTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"explicitOwnershipOf","outputs":[{"components":[{"internalType":"address","name":"addr","type":"address"},{"internalType":"uint64","name":"startTimestamp","type":"uint64"},{"internalType":"bool","name":"burned","type":"bool"},{"internalType":"uint24","name":"extraData","type":"uint24"}],"internalType":"struct IERC721A.TokenOwnership","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"}],"name":"explicitOwnershipsOf","outputs":[{"components":[{"internalType":"address","name":"addr","type":"address"},{"internalType":"uint64","name":"startTimestamp","type":"uint64"},{"internalType":"bool","name":"burned","type":"bool"},{"internalType":"uint24","name":"extraData","type":"uint24"}],"internalType":"struct IERC721A.TokenOwnership[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountTowardsFees","type":"uint256"}],"name":"externalDeposit","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"feeSplit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBuyPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentMintPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getEthBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getFeeBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSellPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isGameOver","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lockedIn","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"migrate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"}],"name":"redeem","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"sell","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokenMintInfo","outputs":[{"internalType":"bytes32","name":"seed","type":"bytes32"},{"internalType":"uint256","name":"cost","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"tokensOfOwner","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"start","type":"uint256"},{"internalType":"uint256","name":"stop","type":"uint256"}],"name":"tokensOfOwnerIn","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalEthClaimed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"traitsImagePointer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newSplit","type":"uint256"}],"name":"updateFeeSplit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]