// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
pragma solidity 0.8.20;
import { SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol";
// BridgeWrapper Interface implementing BridgeWrapper.sol
interface IBridgeWrapper {
function receiveFromChain(uint16 _srcChainId, uint256 _amount, address _toAddress) external;
function wToken() external returns (address);
}
// Errors
error InvalidValsetNonce(uint256 newNonce, uint256 currentNonce);
error InvalidBatchNonce(uint256 newNonce, uint256 currentNonce);
error IncorrectCheckpoint();
error MalformedNewValidatorSet();
error MalformedCurrentValidatorSet();
error MalformedBatch();
error InsufficientPower(uint256 cumulativePower, uint256 powerThreshold);
error DeadlineExceeded();
error NewPowerThresholdTooLow();
error InvalidSignature();
/**
* @title ConsensusBridge
* @author Tensorplex Lab
* @notice This contract in addition to BridgeWrapper.sol, helps to facilitate the bridging of tokens from a given chain to Ethereum.
* In the short-term we intend to use these contracts to bridge TAO from BitTensor to a new wrapped TAO on Ethereum.
* In the future we hope to reuse these contracts to bridge from future partner blockchains to Ethereum.
*
* Specifically this contract implements
* 1. batch minting of wrapped Tokens on Ethereum in submitBatch()
* 2. replacing current bridge validators in updateValset()
*
* To successfully execute submitBatch or updateValset, a checkpoint (hash) validation must be passed.
* In both functions, a new checkpoint (hash) is created with the input valset.
* This checkpoint is checked against the bridge's state checkpoint. If they do not match the function will fail.
* This enforces that successful execution requires signatures from the state validators, ie. only the Tensorplex multisig wallet.
* We expect to use our relayers as validators.
*
*/
contract ConsensusBridge is ReentrancyGuard{
// Libraries
using SafeERC20 for IERC20;
// Variables
bytes32 public immutable state_gravityId;
uint256 public powerThreshold = 0; // powerThreshold must be >= 2. If submitted powers < powerThreshold then the transaction will fail.
uint256 public state_lastValsetNonce = 0;
uint256 public state_lastEventNonce = 0;
bytes32 public state_lastValsetCheckpoint; // is a hash that is assigned whenever bridge validators are updated (see updateValset() ).
mapping(address => uint256) public state_lastBatchNonces;
mapping(address => uint256) public state_lastTransactionNonce;
struct ValsetArgs {
// the validators in this set, represented by an Ethereum address
address[] validators;
// the powers of the given validators in the same order as above
// powers is a generalized representation of the voting influence held by that validator.
// For our inital implementation we intend for all validators to have the same power value of 1.
// In future deployments, powers might represent the # of governance tokens held by that validator.
uint256[] powers;
// Nonce value for a given valset, to prevent double execution.
uint256 valsetNonce;
}
// ECDSA Signature format
struct Signature {
uint8 v;
bytes32 r;
bytes32 s;
}
// Events
event TransactionBatchExecutedEvent(
uint256 indexed _batchNonce,
address indexed _token,
uint256 _eventNonce
);
event ValsetUpdatedEvent(
uint256 indexed _newValsetNonce,
uint256 _eventNonce,
address[] _validators,
uint256[] _powers
);
event ReceiveFromChain(
uint16 indexed _srcChainId,
address indexed _to,
uint _amount,
address wToken,
bytes32 txnId,
uint256 transactionNonce
);
/**
* @notice initializes a ConsensusBridge contract.
* @param _gravityId A unique identifier for this gravity instance to use in signatures
* @param _validators is an array of validator addresses. These should be the addresses of the Tensorplex relayers.
* @param _powers is an array of corresponding power values for the validators.
*/
constructor(
bytes32 _gravityId,
// The validator set, not in valset args format since many of it's arguments would never be used in this case
address[] memory _validators,
uint256[] memory _powers
) {
// CHECKS
// Check that validators, powers, and signatures (v,r,s) set is well-formed
if (_validators.length != _powers.length || _validators.length == 0) {
revert MalformedCurrentValidatorSet();
}
// assigning inital valset
ValsetArgs memory _valset;
_valset = ValsetArgs(_validators, _powers, 0);
bytes32 newCheckpoint = makeCheckpoint(_valset, _gravityId);
// ACTIONS
// If new powerThreshold is >= 2 then set the new powerThreshold, else revert.
uint256 newThreshold = calculatePowerThreshold(_powers);
if (newThreshold >= 2) {
powerThreshold = newThreshold;
} else {
revert NewPowerThresholdTooLow();
}
// set initial state checkpoint
state_gravityId = _gravityId;
state_lastValsetCheckpoint = newCheckpoint;
// LOGS
emit ValsetUpdatedEvent(
state_lastValsetNonce,
state_lastEventNonce,
_validators,
_powers
);
}
/**
* @dev ceil is a helper function to round up. It is a workaround to solidity's default rounding down behaviour.
* @dev used in PowerThreshold calculation to ensure that threshold is rounded up rather than down.
*
* @param a is the input value to be rounded
* @param m is the decimal to be rounded to (eg 10 to round to closest 10)
*/
function ceil(uint a, uint m) private pure returns (uint ) {
return ((a + m - 1) / m) * m;
}
/**
* @notice makeCheckpoint returns a checkpoint of an input valset
* @dev under the hood, this function returns a keccak256 hash of the valset and _gravityId.
* @dev used internally by this contract, and is also called by our relayers.
*
* @param _valsetArgs is the input valset that will be hashed
* @param _gravityId is the unique ID for this gravity instance to be used in signing.
*/
function makeCheckpoint(ValsetArgs memory _valsetArgs, bytes32 _gravityId)
public
pure
returns (bytes32)
{
// bytes32 encoding of the string "checkpoint"
bytes32 methodName = 0x636865636b706f696e7400000000000000000000000000000000000000000000;
bytes32 checkpoint = keccak256(
abi.encode(
_gravityId,
methodName,
_valsetArgs.valsetNonce,
_valsetArgs.validators,
_valsetArgs.powers
)
);
return checkpoint;
}
/**
* @notice calculatePowerThreshold returns the threshold for an input valset that is necessary for a vote to pass.
* @dev this is hardcoded to return 2/3rds of the input.
* @dev because solidity rounds down on divsion, we use scaling factor to retain decimal value.
* @dev because we are using a scaling factor of 1e18, powers in excess of 5.79 * 10^76 could cause an interger overflow.
*
* @param _powers is an array of power values. The threshold is calculated on the sum of this array.
*/
function calculatePowerThreshold(uint256[] memory _powers) internal returns (uint256) {
uint256 totalPower = 0;
for (uint256 i = 0; i < _powers.length; i++) {
totalPower += _powers[i];
}
// numerator = 2
// denominator = 3
// scalingFactor = 1e18
uint256 result = (totalPower * 2 * 1e18) / 3;
powerThreshold = (ceil(result, 1e18) / 1e18);
return powerThreshold;
}
/**
* @notice updateValset replaces the bridge's current valset with a new valset.
* @dev This function is expected to be called with the current validators.
* @dev To succeed, the checkpoint (hash) of input _currentValset must match the state valset checkpoint,
* meaning only the current validators can successfully call this function.
* @dev It is intended that only Tensorplex can successfully updateValset as enforced by this checkpoint matching.
* @param _newValset is the valset to be inserted
* @param _currentValset is the valset that is replaced
* @param _sigs is an array of signatures from _currentValset that have signed on the newValset.
*/
function updateValset(
// The new version of the validator set
ValsetArgs calldata _newValset,
// The current validators that approve the change
ValsetArgs calldata _currentValset,
// These are arrays of the parts of the current validator's signatures
Signature[] calldata _sigs
) external {
// Check that the valset nonce is greater than the old one
if (_newValset.valsetNonce <= _currentValset.valsetNonce) {
revert InvalidValsetNonce({
newNonce: _newValset.valsetNonce,
currentNonce: _currentValset.valsetNonce
});
}
// Check that the valset nonce is less than a million nonces forward from the old one
// this makes it difficult for an attacker to lock out the contract by getting a single
// bad validator set through with uint256 max nonce
if (_newValset.valsetNonce > _currentValset.valsetNonce + 1000000) {
revert InvalidValsetNonce({
newNonce: _newValset.valsetNonce,
currentNonce: _currentValset.valsetNonce
});
}
// Check that new validators and powers set is well-formed
if (
_newValset.validators.length != _newValset.powers.length ||
_newValset.validators.length == 0
) {
revert MalformedNewValidatorSet();
}
// Check that current validators, powers, and signatures (v,r,s) set is well-formed
validateValset(_currentValset, _sigs);
// Check that the supplied current validator set matches the saved checkpoint
if (makeCheckpoint(_currentValset, state_gravityId) != state_lastValsetCheckpoint) {
revert IncorrectCheckpoint();
}
// Check that enough current validators have signed off on the new validator set
bytes32 newCheckpoint = makeCheckpoint(_newValset, state_gravityId);
// Checks that current valset has signed on newCheckpoint and that it has sufficient power to pass.
checkValidatorSignatures(_currentValset, _sigs, newCheckpoint, powerThreshold);
// If new powerThreshold is >= 2 then set the new powerThreshold, else revert.
uint256 newThreshold = calculatePowerThreshold(_newValset.powers);
if (newThreshold >= 2) {
powerThreshold = newThreshold;
} else {
revert NewPowerThresholdTooLow();
}
// ACTIONS
// Stored to be used next time to validate that the valset
// supplied by the caller is correct.
state_lastValsetCheckpoint = newCheckpoint;
// Store new nonce
state_lastValsetNonce = _newValset.valsetNonce;
state_lastEventNonce = state_lastEventNonce + 1;
emit ValsetUpdatedEvent(
_newValset.valsetNonce,
state_lastEventNonce,
_newValset.validators,
_newValset.powers
);
}
// @notice Ensures a valset is well-formed against input signatures
// @param _valset is the valset to be validated
// @param _sigs is an array of signatures
function validateValset(ValsetArgs calldata _valset, Signature[] calldata _sigs) private pure {
// Check that current validators, powers, and signatures (v,r,s) set is well-formed
if (
_valset.validators.length != _valset.powers.length ||
_valset.validators.length != _sigs.length
) {
revert MalformedCurrentValidatorSet();
}
}
/**
* @notice verifySig checks if a signed message _sig was created by the input address _signer.
* @param _signer is the expected address that signed _sig
* @param _theHash is the expected hash used to sign the message
* @param _sig is the signature containing (r,s,v)
*/
function verifySig(
address _signer,
bytes32 _theHash,
Signature calldata _sig
) private pure returns (bool) {
bytes32 messageDigest = keccak256(
abi.encodePacked("\x19Ethereum Signed Message:\n32", _theHash)
);
address retrievedSigner = ECDSA.recover(messageDigest, _sig.v, _sig.r, _sig.s);
if(_signer != retrievedSigner) {
return false;
}
return true;
}
/**
* @notice checkValidatorSignatures checks if the input validator set has signed on the input hash value.
* @dev there is a 2/3rds quorum requirement. If 2/3rds of total validator power has signed, then the transaction can pass.
*
* @param _currentValset is the expected currentValset
* @param _sigs is an array of signatures to be validated
* @param _theHash is the hash of the transaction that was signed
* @param _powerThreshold is the value of power required to pass a vote. Cumulative validator power must exceed this to pass.
*/
function checkValidatorSignatures(
// The current validator set and their powers
ValsetArgs calldata _currentValset,
// The current validator's signatures
Signature[] calldata _sigs,
// This is what we are checking they have signed
bytes32 _theHash,
uint256 _powerThreshold
) private pure {
uint256 cumulativePower = 0;
for (uint256 i = 0; i < _currentValset.validators.length; i++) {
// V must be more than 0
// If not we shall not process it
if(_sigs[i].v != 0) {
// If v is set to 0, this signifies that it was not possible to get a signature from this validator and we skip evaluation
// (In a valid signature, it is either 27 or 28)
// Check that the current validator has signed off on the hash
bool result = verifySig(_currentValset.validators[i], _theHash, _sigs[i]);
if(!result) {
revert InvalidSignature();
}
// Sum up cumulative power
cumulativePower = cumulativePower + _currentValset.powers[i];
}
// Break early to avoid wasting gas
if (cumulativePower > _powerThreshold) {
break;
}
}
if (cumulativePower < _powerThreshold) {
revert InsufficientPower(cumulativePower, _powerThreshold);
}
// Success
}
/**
* @notice submitBatch batch executes minting of wrapped Token on Ethereum, sending tokens from the bridge to input addresses on Ethereum.
* @dev submitBatch should be triggered after corresponding events emitted on Finney
* @dev it is expected that this function is only called by Tensorplex validators.
*
* @param _currentValset is expected to be the state valset. If it is not, the submission will fail.
* @param _sigs is a corresponding array of validator signatures
* @param _amounts is an array of amounts to be transferred
* @param _destinations is an array of destination EVM addresses that will recieve amounts.
* @param _transactionIds is an array of transactionIds containing the hashes of corresponding transfer events from source chain.
* @param _sourceChainId a unqiue ID identifying the source chain. It is used by the Tensorplex relayers for record keeping.
* @param _batchNonce is the nonce.
* @param _tokenWrapperAddress is expected to be the address of a deployed BridgeWrapper.sol
* @param _deadline is the timestamp that the batch must be executed by.
*/
function submitBatch(
// The validators that approve the batch
ValsetArgs calldata _currentValset,
// These are arrays of the parts of the validators signatures
Signature[] calldata _sigs,
// The batch of transactions
uint256[] calldata _amounts,
address[] calldata _destinations,
bytes32[] calldata _transactionIds,
uint16 _sourceChainId,
uint256 _batchNonce,
address _tokenWrapperAddress,
uint256 _deadline
) external nonReentrant {
if (block.timestamp > _deadline) {
revert DeadlineExceeded();
}
if (_batchNonce <= state_lastBatchNonces[_tokenWrapperAddress] || _batchNonce > state_lastBatchNonces[_tokenWrapperAddress] + 1000000) {
revert InvalidBatchNonce({
newNonce: _batchNonce,
currentNonce: state_lastBatchNonces[_tokenWrapperAddress]
});
}
validateValset(_currentValset, _sigs);
if (_amounts.length != _destinations.length || _destinations.length != _transactionIds.length) {
revert MalformedBatch();
}
// Check that the supplied current validator set matches the saved checkpoint
if (makeCheckpoint(_currentValset, state_gravityId) != state_lastValsetCheckpoint) {
revert IncorrectCheckpoint();
}
checkValidatorSignatures(
_currentValset,
_sigs,
// Get hash of the transaction batch and checkpoint
keccak256(
abi.encode(
state_gravityId,
// bytes encoding for bridge batching
0x7472616e73616374696f6e426174636800000000000000000000000000000000,
_amounts,
_destinations,
_transactionIds,
_sourceChainId,
_batchNonce,
_tokenWrapperAddress,
_deadline
)
),
powerThreshold
);
state_lastBatchNonces[_tokenWrapperAddress] = _batchNonce;
state_lastEventNonce = state_lastEventNonce + 1;
{
// if any of the destination chains have a revert fallback, the whole function will revert
// should be okay considering destinations are expected to be wallet addresses?
for (uint256 i = 0; i < _destinations.length; i++) {
address destination = _destinations[i];
uint256 amount = _amounts[i];
address wToken = IBridgeWrapper(_tokenWrapperAddress).wToken();
bytes32 txnId = _transactionIds[i];
uint256 oldTxnNonce = state_lastTransactionNonce[_tokenWrapperAddress];
state_lastTransactionNonce[_tokenWrapperAddress] += 1;
IBridgeWrapper(_tokenWrapperAddress).receiveFromChain(_sourceChainId, amount, destination);
emit ReceiveFromChain(_sourceChainId, destination, amount, wToken, txnId, oldTxnNonce);
}
}
{
emit TransactionBatchExecutedEvent(_batchNonce, _tokenWrapperAddress, state_lastEventNonce);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError, bytes32) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
{
"compilationTarget": {
"src/ConsensusBridge.sol": "ConsensusBridge"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [],
"viaIR": true
}
[{"inputs":[{"internalType":"bytes32","name":"_gravityId","type":"bytes32"},{"internalType":"address[]","name":"_validators","type":"address[]"},{"internalType":"uint256[]","name":"_powers","type":"uint256[]"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"DeadlineExceeded","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"IncorrectCheckpoint","type":"error"},{"inputs":[{"internalType":"uint256","name":"cumulativePower","type":"uint256"},{"internalType":"uint256","name":"powerThreshold","type":"uint256"}],"name":"InsufficientPower","type":"error"},{"inputs":[{"internalType":"uint256","name":"newNonce","type":"uint256"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidBatchNonce","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"newNonce","type":"uint256"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidValsetNonce","type":"error"},{"inputs":[],"name":"MalformedBatch","type":"error"},{"inputs":[],"name":"MalformedCurrentValidatorSet","type":"error"},{"inputs":[],"name":"MalformedNewValidatorSet","type":"error"},{"inputs":[],"name":"NewPowerThresholdTooLow","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint16","name":"_srcChainId","type":"uint16"},{"indexed":true,"internalType":"address","name":"_to","type":"address"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"},{"indexed":false,"internalType":"address","name":"wToken","type":"address"},{"indexed":false,"internalType":"bytes32","name":"txnId","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"transactionNonce","type":"uint256"}],"name":"ReceiveFromChain","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_batchNonce","type":"uint256"},{"indexed":true,"internalType":"address","name":"_token","type":"address"},{"indexed":false,"internalType":"uint256","name":"_eventNonce","type":"uint256"}],"name":"TransactionBatchExecutedEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_newValsetNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_eventNonce","type":"uint256"},{"indexed":false,"internalType":"address[]","name":"_validators","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"_powers","type":"uint256[]"}],"name":"ValsetUpdatedEvent","type":"event"},{"inputs":[{"components":[{"internalType":"address[]","name":"validators","type":"address[]"},{"internalType":"uint256[]","name":"powers","type":"uint256[]"},{"internalType":"uint256","name":"valsetNonce","type":"uint256"}],"internalType":"struct ConsensusBridge.ValsetArgs","name":"_valsetArgs","type":"tuple"},{"internalType":"bytes32","name":"_gravityId","type":"bytes32"}],"name":"makeCheckpoint","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"powerThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"state_gravityId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"state_lastBatchNonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"state_lastEventNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"state_lastTransactionNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"state_lastValsetCheckpoint","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"state_lastValsetNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address[]","name":"validators","type":"address[]"},{"internalType":"uint256[]","name":"powers","type":"uint256[]"},{"internalType":"uint256","name":"valsetNonce","type":"uint256"}],"internalType":"struct ConsensusBridge.ValsetArgs","name":"_currentValset","type":"tuple"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct ConsensusBridge.Signature[]","name":"_sigs","type":"tuple[]"},{"internalType":"uint256[]","name":"_amounts","type":"uint256[]"},{"internalType":"address[]","name":"_destinations","type":"address[]"},{"internalType":"bytes32[]","name":"_transactionIds","type":"bytes32[]"},{"internalType":"uint16","name":"_sourceChainId","type":"uint16"},{"internalType":"uint256","name":"_batchNonce","type":"uint256"},{"internalType":"address","name":"_tokenWrapperAddress","type":"address"},{"internalType":"uint256","name":"_deadline","type":"uint256"}],"name":"submitBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address[]","name":"validators","type":"address[]"},{"internalType":"uint256[]","name":"powers","type":"uint256[]"},{"internalType":"uint256","name":"valsetNonce","type":"uint256"}],"internalType":"struct ConsensusBridge.ValsetArgs","name":"_newValset","type":"tuple"},{"components":[{"internalType":"address[]","name":"validators","type":"address[]"},{"internalType":"uint256[]","name":"powers","type":"uint256[]"},{"internalType":"uint256","name":"valsetNonce","type":"uint256"}],"internalType":"struct ConsensusBridge.ValsetArgs","name":"_currentValset","type":"tuple"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct ConsensusBridge.Signature[]","name":"_sigs","type":"tuple[]"}],"name":"updateValset","outputs":[],"stateMutability":"nonpayable","type":"function"}]