// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Base64.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides a set of functions to operate with Base64 strings.
*
* _Available since v4.5._
*/
library Base64 {
/**
* @dev Base64 Encoding/Decoding Table
*/
string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/**
* @dev Converts a `bytes` to its Bytes64 `string` representation.
*/
function encode(bytes memory data) internal pure returns (string memory) {
/**
* Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
* https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
*/
if (data.length == 0) return "";
// Loads the table into memory
string memory table = _TABLE;
// Encoding takes 3 bytes chunks of binary data from `bytes` data parameter
// and split into 4 numbers of 6 bits.
// The final Base64 length should be `bytes` data length multiplied by 4/3 rounded up
// - `data.length + 2` -> Round up
// - `/ 3` -> Number of 3-bytes chunks
// - `4 *` -> 4 characters for each chunk
string memory result = new string(4 * ((data.length + 2) / 3));
/// @solidity memory-safe-assembly
assembly {
// Prepare the lookup table (skip the first "length" byte)
let tablePtr := add(table, 1)
// Prepare result pointer, jump over length
let resultPtr := add(result, 32)
// Run over the input, 3 bytes at a time
for {
let dataPtr := data
let endPtr := add(data, mload(data))
} lt(dataPtr, endPtr) {
} {
// Advance 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// To write each character, shift the 3 bytes (18 bits) chunk
// 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
// and apply logical AND with 0x3F which is the number of
// the previous character in the ASCII table prior to the Base64 Table
// The result is then added to the table to get the character to write,
// and finally write it in the result pointer but with a left shift
// of 256 (1 byte) - 8 (1 ASCII char) = 248 bits
mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
}
// When data `bytes` is not exactly 3 bytes long
// it is padded with `=` characters at the end
switch mod(mload(data), 3)
case 1 {
mstore8(sub(resultPtr, 1), 0x3d)
mstore8(sub(resultPtr, 2), 0x3d)
}
case 2 {
mstore8(sub(resultPtr, 1), 0x3d)
}
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
pragma solidity ^0.8.0;
/**
* @title Counters
* @author Matt Condon (@shrugs)
* @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
* of elements in a mapping, issuing ERC721 ids, or counting request ids.
*
* Include with `using Counters for Counters.Counter;`
*/
library Counters {
struct Counter {
// This variable should never be directly accessed by users of the library: interactions must be restricted to
// the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
// this feature: see https://github.com/ethereum/solidity/issues/4637
uint256 _value; // default: 0
}
function current(Counter storage counter) internal view returns (uint256) {
return counter._value;
}
function increment(Counter storage counter) internal {
unchecked {
counter._value += 1;
}
}
function decrement(Counter storage counter) internal {
uint256 value = counter._value;
require(value > 0, "Counter: decrement overflow");
unchecked {
counter._value = value - 1;
}
}
function reset(Counter storage counter) internal {
counter._value = 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/ERC721.sol)
pragma solidity ^0.8.0;
import "./IERC721.sol";
import "./IERC721Receiver.sol";
import "./extensions/IERC721Metadata.sol";
import "../../utils/Address.sol";
import "../../utils/Context.sol";
import "../../utils/Strings.sol";
import "../../utils/introspection/ERC165.sol";
/**
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
* the Metadata extension, but not including the Enumerable extension, which is available separately as
* {ERC721Enumerable}.
*/
contract ERC721 is Context, ERC165, IERC721, IERC721Metadata {
using Address for address;
using Strings for uint256;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Mapping from token ID to owner address
mapping(uint256 => address) private _owners;
// Mapping owner address to token count
mapping(address => uint256) private _balances;
// Mapping from token ID to approved address
mapping(uint256 => address) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC721).interfaceId ||
interfaceId == type(IERC721Metadata).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
require(owner != address(0), "ERC721: address zero is not a valid owner");
return _balances[owner];
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
address owner = _ownerOf(tokenId);
require(owner != address(0), "ERC721: invalid token ID");
return owner;
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
_requireMinted(tokenId);
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return "";
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual override {
address owner = ERC721.ownerOf(tokenId);
require(to != owner, "ERC721: approval to current owner");
require(
_msgSender() == owner || isApprovedForAll(owner, _msgSender()),
"ERC721: approve caller is not token owner or approved for all"
);
_approve(to, tokenId);
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
_requireMinted(tokenId);
return _tokenApprovals[tokenId];
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(address from, address to, uint256 tokenId) public virtual override {
//solhint-disable-next-line max-line-length
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
_transfer(from, to, tokenId);
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual override {
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
_safeTransfer(from, to, tokenId, data);
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* `data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
_transfer(from, to, tokenId);
require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
}
/**
* @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
*/
function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
return _owners[tokenId];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted (`_mint`),
* and stop existing when they are burned (`_burn`).
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return _ownerOf(tokenId) != address(0);
}
/**
* @dev Returns whether `spender` is allowed to manage `tokenId`.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
address owner = ERC721.ownerOf(tokenId);
return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
}
/**
* @dev Safely mints `tokenId` and transfers it to `to`.
*
* Requirements:
*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 tokenId) internal virtual {
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
_mint(to, tokenId);
require(
_checkOnERC721Received(address(0), to, tokenId, data),
"ERC721: transfer to non ERC721Receiver implementer"
);
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/
function _mint(address to, uint256 tokenId) internal virtual {
require(to != address(0), "ERC721: mint to the zero address");
require(!_exists(tokenId), "ERC721: token already minted");
_beforeTokenTransfer(address(0), to, tokenId, 1);
// Check that tokenId was not minted by `_beforeTokenTransfer` hook
require(!_exists(tokenId), "ERC721: token already minted");
unchecked {
// Will not overflow unless all 2**256 token ids are minted to the same owner.
// Given that tokens are minted one by one, it is impossible in practice that
// this ever happens. Might change if we allow batch minting.
// The ERC fails to describe this case.
_balances[to] += 1;
}
_owners[tokenId] = to;
emit Transfer(address(0), to, tokenId);
_afterTokenTransfer(address(0), to, tokenId, 1);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
* This is an internal function that does not check if the sender is authorized to operate on the token.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal virtual {
address owner = ERC721.ownerOf(tokenId);
_beforeTokenTransfer(owner, address(0), tokenId, 1);
// Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook
owner = ERC721.ownerOf(tokenId);
// Clear approvals
delete _tokenApprovals[tokenId];
unchecked {
// Cannot overflow, as that would require more tokens to be burned/transferred
// out than the owner initially received through minting and transferring in.
_balances[owner] -= 1;
}
delete _owners[tokenId];
emit Transfer(owner, address(0), tokenId);
_afterTokenTransfer(owner, address(0), tokenId, 1);
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(address from, address to, uint256 tokenId) internal virtual {
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
require(to != address(0), "ERC721: transfer to the zero address");
_beforeTokenTransfer(from, to, tokenId, 1);
// Check that tokenId was not transferred by `_beforeTokenTransfer` hook
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
// Clear approvals from the previous owner
delete _tokenApprovals[tokenId];
unchecked {
// `_balances[from]` cannot overflow for the same reason as described in `_burn`:
// `from`'s balance is the number of token held, which is at least one before the current
// transfer.
// `_balances[to]` could overflow in the conditions described in `_mint`. That would require
// all 2**256 token ids to be minted, which in practice is impossible.
_balances[from] -= 1;
_balances[to] += 1;
}
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
_afterTokenTransfer(from, to, tokenId, 1);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* Emits an {Approval} event.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_tokenApprovals[tokenId] = to;
emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
require(owner != operator, "ERC721: approve to caller");
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Reverts if the `tokenId` has not been minted yet.
*/
function _requireMinted(uint256 tokenId) internal view virtual {
require(_exists(tokenId), "ERC721: invalid token ID");
}
/**
* @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
* The call is not executed if the target address is not a contract.
*
* @param from address representing the previous owner of the given token ID
* @param to target address that will receive the tokens
* @param tokenId uint256 ID of the token to be transferred
* @param data bytes optional data to send along with the call
* @return bool whether the call correctly returned the expected magic value
*/
function _checkOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory data
) private returns (bool) {
if (to.isContract()) {
try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
return retval == IERC721Receiver.onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert("ERC721: transfer to non ERC721Receiver implementer");
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
} else {
return true;
}
}
/**
* @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is
* used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`.
* - When `from` is zero, the tokens will be minted for `to`.
* - When `to` is zero, ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
* - `batchSize` is non-zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}
/**
* @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is
* used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`.
* - When `from` is zero, the tokens were minted for `to`.
* - When `to` is zero, ``from``'s tokens were burned.
* - `from` and `to` are never both zero.
* - `batchSize` is non-zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}
/**
* @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
*
* WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant
* being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such
* that `ownerOf(tokenId)` is `a`.
*/
// solhint-disable-next-line func-name-mixedcase
function __unsafe_increaseBalance(address account, uint256 amount) internal {
_balances[account] += amount;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/extensions/ERC721Burnable.sol)
pragma solidity ^0.8.0;
import "../ERC721.sol";
import "../../../utils/Context.sol";
/**
* @title ERC721 Burnable Token
* @dev ERC721 Token that can be burned (destroyed).
*/
abstract contract ERC721Burnable is Context, ERC721 {
/**
* @dev Burns `tokenId`. See {ERC721-_burn}.
*
* Requirements:
*
* - The caller must own `tokenId` or be an approved operator.
*/
function burn(uint256 tokenId) public virtual {
//solhint-disable-next-line max-line-length
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
_burn(tokenId);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.0;
import "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// ██ ██ ███ ███ ██ ██████ ███ ██████
// ██ ██ ██ ██ ████ ██ ██ ██ ██ ██ ██ ██
// ███ ███████ ██ ██ ██ ██ ██ ███████ ██ ██
// ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
// ██ ██ ██ ██ ██ ███ ██████ ██ ██ ██████
// a collaborative project
// to live healthier x happier
// across body, mind, environment, community, and spirit;
// and explore the xan and dao of
// physical x metaphysical ; internal x external ; real x imaginary ;
// essential x aesthetic ; familiar x fresh ; art x technology ;
// -xo
// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;
import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import "@openzeppelin/contracts/token/ERC721/extensions/ERC721Burnable.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/access/Ownable2Step.sol";
import "@openzeppelin/contracts/utils/Counters.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "./XandaoMeta.sol";
import "./XandaoTypes.sol";
contract TheXanDAO is ERC721, ERC721Burnable, ReentrancyGuard, Ownable2Step, XandaoMeta {
using Strings for uint256;
using Counters for Counters.Counter;
Counters.Counter private _xn;
mapping(string => uint256) public xnToTokenId;
mapping(uint256 => TokenInfo) public tokens;
uint256 public tokensCount;
string[] XN_VERSIONS = [
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
"k", "l", "m", "n", "o", "p", "q", "r", "s", "t",
"u", "v", "w", "x", "y", "z", "aa", "ab", "ac", "ad",
"ae", "af", "ag", "ah", "ai", "aj"
];
event TokenMinted(address indexed creator, uint256 tokenId, string xn);
event TokenUpgraded(address indexed creator, uint256 tokenId, string xn, uint256 originTokenId);
mapping(uint8 => uint64) private _tokenIdLenToMintPrice;
constructor(
string memory name,
string memory symbol
) ERC721(name, symbol) {
// token price is a geometric progression inversely related to the length of the token ID
// tokens can be upgraded by paying the difference in mint price between the current token and the new token
// token upgrades keep the original 'x/serial number' (xn-), with an appended alpha version identifier
_tokenIdLenToMintPrice[36] = 0.006 ether;
_tokenIdLenToMintPrice[35] = 0.007 ether;
_tokenIdLenToMintPrice[34] = 0.009 ether;
_tokenIdLenToMintPrice[33] = 0.011 ether;
_tokenIdLenToMintPrice[32] = 0.013 ether;
_tokenIdLenToMintPrice[31] = 0.016 ether;
_tokenIdLenToMintPrice[30] = 0.020 ether;
_tokenIdLenToMintPrice[29] = 0.024 ether;
_tokenIdLenToMintPrice[28] = 0.029 ether;
_tokenIdLenToMintPrice[27] = 0.035 ether;
_tokenIdLenToMintPrice[26] = 0.043 ether;
_tokenIdLenToMintPrice[25] = 0.053 ether;
_tokenIdLenToMintPrice[24] = 0.064 ether;
_tokenIdLenToMintPrice[23] = 0.078 ether;
_tokenIdLenToMintPrice[22] = 0.095 ether;
_tokenIdLenToMintPrice[21] = 0.116 ether;
_tokenIdLenToMintPrice[20] = 0.141 ether;
_tokenIdLenToMintPrice[19] = 0.172 ether;
_tokenIdLenToMintPrice[18] = 0.209 ether;
_tokenIdLenToMintPrice[17] = 0.255 ether;
_tokenIdLenToMintPrice[16] = 0.311 ether;
_tokenIdLenToMintPrice[15] = 0.379 ether;
_tokenIdLenToMintPrice[14] = 0.461 ether;
_tokenIdLenToMintPrice[13] = 0.562 ether;
_tokenIdLenToMintPrice[12] = 0.684 ether;
_tokenIdLenToMintPrice[11] = 0.834 ether;
_tokenIdLenToMintPrice[10] = 1.016 ether;
_tokenIdLenToMintPrice[9] = 1.237 ether;
_tokenIdLenToMintPrice[8] = 1.507 ether;
_tokenIdLenToMintPrice[7] = 1.836 ether;
_tokenIdLenToMintPrice[6] = 2.237 ether;
_tokenIdLenToMintPrice[5] = 2.725 ether;
_tokenIdLenToMintPrice[4] = 3.319 ether;
_tokenIdLenToMintPrice[3] = 4.043 ether;
_tokenIdLenToMintPrice[2] = 4.925 ether;
_tokenIdLenToMintPrice[1] = 6.000 ether;
tokensCount = 0;
}
function getXN() external view returns(uint256) {
return _xn.current();
}
function getAllTokenIds() external view returns (uint256[] memory){
uint256[] memory ret = new uint256[](tokensCount);
uint256 cur_xn = _xn.current();
uint256 i = 0;
for (uint256 xn = 0; xn < cur_xn; xn++) {
for (uint8 j = 0; i < 36; j++) {
string memory fullXn = generateFullXn(xn, XN_VERSIONS[j]);
if (xnToTokenId[fullXn] != 0) {
ret[i] = xnToTokenId[fullXn];
i++;
} else {
break;
}
}
}
return ret;
}
function getMintPrice(uint256 rawTokenId) external view returns (uint64) {
(, uint8 tokenLen) = _checkTokenId(rawTokenId);
uint64 mintPrice = _tokenIdLenToMintPrice[tokenLen];
return mintPrice;
}
function upgradeToken(
uint256 rawTokenId,
string memory description,
string memory creatorName,
uint256 rawOriginTokenId
) external payable nonReentrant {
uint256 descLen = bytes(description).length;
require(
descLen < 36 && descLen > 0,
"Description must be between 1 and 36 characters"
);
uint256 nameLen = bytes(creatorName).length;
require(
nameLen < 36 && nameLen > 0,
"Creator name must be between 1 and 36 characters"
);
(uint256 originTokenId, uint8 originTokenIdLen) = _checkTokenId(rawOriginTokenId);
(uint256 tokenId, uint8 tokenIdLen) = _checkTokenId(rawTokenId);
require(
originTokenIdLen > tokenIdLen,
"Tokens can only be upgraded to higher levels"
);
uint64 mintPrice = _tokenIdLenToMintPrice[tokenIdLen] - _tokenIdLenToMintPrice[originTokenIdLen];
require(
msg.value >= mintPrice,
"eth paid is less than the mint price"
);
require(
_exists(originTokenId),
"nonexistent original token"
);
require(
ownerOf(originTokenId) == msg.sender,
"not token owner"
);
TokenInfo memory originTokenObj = tokens[originTokenId];
// get new xerial number version
int256 idx = -1;
for (int256 i = 0; i < 36; i++) {
if (keccak256(abi.encodePacked(XN_VERSIONS[uint256(i)])) == keccak256(abi.encodePacked(originTokenObj.xnVersion))) {
idx = i;
break;
}
}
uint256 xn = originTokenObj.xn; // keep origin token xn
uint256 newIdx = uint256(idx + 1);
string memory xnVersion; // change xn version
if (newIdx == 0) { // 'a'
xnVersion = '';
} else {
xnVersion = XN_VERSIONS[newIdx];
}
string memory fullXn = generateFullXn(xn, xnVersion);
tokensCount++;
tokens[tokenId] = TokenInfo(description, msg.sender, creatorName, xn, xnVersion);
xnToTokenId[fullXn] = tokenId;
_safeMint(msg.sender, tokenId);
burn(originTokenId);
emit TokenUpgraded(msg.sender, tokenId, fullXn, originTokenId);
}
function mintToken(
uint256 rawTokenId,
string memory description,
string memory creatorName
) external payable nonReentrant {
uint256 descLen = bytes(description).length;
require(
descLen < 36 && descLen > 0,
"Description must be between 1 and 36 characters"
);
uint256 nameLen = bytes(creatorName).length;
require(
nameLen < 36 && nameLen > 0,
"Creator name must be between 1 and 36 characters"
);
(uint256 tokenId, uint8 tokenLen) = _checkTokenId(rawTokenId);
require(
msg.value >= _tokenIdLenToMintPrice[tokenLen],
"eth paid is less than the mint price"
);
//mint
uint256 xn = _xn.current();
string memory fullXn = xn.toString();
tokensCount++;
tokens[tokenId] = TokenInfo(description, msg.sender, creatorName, xn, "a");
xnToTokenId[fullXn] = tokenId;
_xn.increment();
_safeMint(msg.sender, tokenId);
emit TokenMinted(msg.sender, tokenId, fullXn);
}
function tokenURI(
uint256 tokenId
) public view override returns (string memory) {
require(
_exists(tokenId),
"ERC721Metadata: URI query for nonexistent token"
);
return generateTokenURI(tokenId, tokens[tokenId]);
}
// returns the token URI even if it was burned to maintain historical designs
function tokenURIByTokenId(uint256 tokenId) external view returns (string memory) {
require(
tokens[tokenId].creator != address(0),
"ERC721Metadata: URI query for nonexistent token"
);
return generateTokenURI(tokenId, tokens[tokenId]);
}
function tokenURIByXN(string memory xn) external view returns (string memory) {
require(
xnToTokenId[xn] != 0,
"ERC721Metadata: URI query for nonexistent token"
);
uint256 tokenId = xnToTokenId[xn];
return generateTokenURI(tokenId, tokens[tokenId]);
}
function creatorOf(uint256 tokenId) external view returns (address) {
require(
_exists(tokenId),
"ERC721Metadata: creator query for nonexistent token"
);
return tokens[tokenId].creator;
}
function isAvailable(uint256 tokenId) external view returns (bool) {
return tokens[tokenId].creator == address(0);
}
function getBalance() external view returns (uint256) {
return address(this).balance;
}
function withdraw(uint256 amount) external onlyOwner nonReentrant {
require(amount <= address(this).balance, "amount exceeds balance");
payable(msg.sender).transfer(amount);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.12;
/**
* xandao: we took this from https://github.com/partylikeits1983/num-complex-solidity/blob/1207aae64beea2b5973ecc6afe126594fbd5f26b/contracts/Trigonometry.sol
* Added
* - atan2 (from same repo as above, Complex.sol)
* - min
* - max
* - abs
*
* @notice Solidity library offering basic trigonometry functions where inputs and outputs are
* integers. Inputs are specified in radians scaled by 1e18, and similarly outputs are scaled by 1e18.
*
* This implementation is based off the Solidity trigonometry library written by Lefteris Karapetsas
* which can be found here: https://github.com/Sikorkaio/sikorka/blob/e75c91925c914beaedf4841c0336a806f2b5f66d/contracts/trigonometry.sol
*
* Compared to Lefteris' implementation, this version makes the following changes:
* - Uses a 32 bits instead of 16 bits for improved accuracy
* - Updated for Solidity 0.8.x
* - Various gas optimizations
* - Change inputs/outputs to standard trig format (scaled by 1e18) instead of requiring the
* integer format used by the algorithm
*
* Lefertis' implementation is based off Dave Dribin's trigint C library
* http://www.dribin.org/dave/trigint/
*
* Which in turn is based from a now deleted article which can be found in the Wayback Machine:
* http://web.archive.org/web/20120301144605/http://www.dattalo.com/technical/software/pic/picsine.html
*/
library Trigonometry {
// Table index into the trigonometric table
uint256 constant INDEX_WIDTH = 8;
// Interpolation between successive entries in the table
uint256 constant INTERP_WIDTH = 16;
uint256 constant INDEX_OFFSET = 28 - INDEX_WIDTH;
uint256 constant INTERP_OFFSET = INDEX_OFFSET - INTERP_WIDTH;
uint32 constant ANGLES_IN_CYCLE = 1073741824;
uint32 constant QUADRANT_HIGH_MASK = 536870912;
uint32 constant QUADRANT_LOW_MASK = 268435456;
uint256 constant SINE_TABLE_SIZE = 256;
// Pi as an 18 decimal value, which is plenty of accuracy: "For JPL's highest accuracy calculations, which are for
// interplanetary navigation, we use 3.141592653589793: https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/
uint256 constant PI = 3141592653589793238;
uint256 constant TWO_PI = 2 * PI;
uint256 constant PI_OVER_TWO = PI / 2;
// The constant sine lookup table was generated by generate_trigonometry.py. We must use a constant
// bytes array because constant arrays are not supported in Solidity. Each entry in the lookup
// table is 4 bytes. Since we're using 32-bit parameters for the lookup table, we get a table size
// of 2^(32/4) + 1 = 257, where the first and last entries are equivalent (hence the table size of
// 256 defined above)
uint8 constant ENTRY_BYTES = 4; // each entry in the lookup table is 4 bytes
uint256 constant ENTRY_MASK = ((1 << (8 * ENTRY_BYTES)) - 1); // mask used to cast bytes32 -> lookup table entry
bytes constant SIN_TABLE =
hex"00_00_00_00_00_c9_0f_88_01_92_1d_20_02_5b_26_d7_03_24_2a_bf_03_ed_26_e6_04_b6_19_5d_05_7f_00_35_06_47_d9_7c_07_10_a3_45_07_d9_5b_9e_08_a2_00_9a_09_6a_90_49_0a_33_08_bc_0a_fb_68_05_0b_c3_ac_35_0c_8b_d3_5e_0d_53_db_92_0e_1b_c2_e4_0e_e3_87_66_0f_ab_27_2b_10_72_a0_48_11_39_f0_cf_12_01_16_d5_12_c8_10_6e_13_8e_db_b1_14_55_76_b1_15_1b_df_85_15_e2_14_44_16_a8_13_05_17_6d_d9_de_18_33_66_e8_18_f8_b8_3c_19_bd_cb_f3_1a_82_a0_25_1b_47_32_ef_1c_0b_82_6a_1c_cf_8c_b3_1d_93_4f_e5_1e_56_ca_1e_1f_19_f9_7b_1f_dc_dc_1b_20_9f_70_1c_21_61_b3_9f_22_23_a4_c5_22_e5_41_af_23_a6_88_7e_24_67_77_57_25_28_0c_5d_25_e8_45_b6_26_a8_21_85_27_67_9d_f4_28_26_b9_28_28_e5_71_4a_29_a3_c4_85_2a_61_b1_01_2b_1f_34_eb_2b_dc_4e_6f_2c_98_fb_ba_2d_55_3a_fb_2e_11_0a_62_2e_cc_68_1e_2f_87_52_62_30_41_c7_60_30_fb_c5_4d_31_b5_4a_5d_32_6e_54_c7_33_26_e2_c2_33_de_f2_87_34_96_82_4f_35_4d_90_56_36_04_1a_d9_36_ba_20_13_37_6f_9e_46_38_24_93_b0_38_d8_fe_93_39_8c_dd_32_3a_40_2d_d1_3a_f2_ee_b7_3b_a5_1e_29_3c_56_ba_70_3d_07_c1_d5_3d_b8_32_a5_3e_68_0b_2c_3f_17_49_b7_3f_c5_ec_97_40_73_f2_1d_41_21_58_9a_41_ce_1e_64_42_7a_41_d0_43_25_c1_35_43_d0_9a_ec_44_7a_cd_50_45_24_56_bc_45_cd_35_8f_46_75_68_27_47_1c_ec_e6_47_c3_c2_2e_48_69_e6_64_49_0f_57_ee_49_b4_15_33_4a_58_1c_9d_4a_fb_6c_97_4b_9e_03_8f_4c_3f_df_f3_4c_e1_00_34_4d_81_62_c3_4e_21_06_17_4e_bf_e8_a4_4f_5e_08_e2_4f_fb_65_4c_50_97_fc_5e_51_33_cc_94_51_ce_d4_6e_52_69_12_6e_53_02_85_17_53_9b_2a_ef_54_33_02_7d_54_ca_0a_4a_55_60_40_e2_55_f5_a4_d2_56_8a_34_a9_57_1d_ee_f9_57_b0_d2_55_58_42_dd_54_58_d4_0e_8c_59_64_64_97_59_f3_de_12_5a_82_79_99_5b_10_35_ce_5b_9d_11_53_5c_29_0a_cc_5c_b4_20_df_5d_3e_52_36_5d_c7_9d_7b_5e_50_01_5d_5e_d7_7c_89_5f_5e_0d_b2_5f_e3_b3_8d_60_68_6c_ce_60_ec_38_2f_61_6f_14_6b_61_f1_00_3e_62_71_fa_68_62_f2_01_ac_63_71_14_cc_63_ef_32_8f_64_6c_59_bf_64_e8_89_25_65_63_bf_91_65_dd_fb_d2_66_57_3c_bb_66_cf_81_1f_67_46_c7_d7_67_bd_0f_bc_68_32_57_aa_68_a6_9e_80_69_19_e3_1f_69_8c_24_6b_69_fd_61_4a_6a_6d_98_a3_6a_dc_c9_64_6b_4a_f2_78_6b_b8_12_d0_6c_24_29_5f_6c_8f_35_1b_6c_f9_34_fb_6d_62_27_f9_6d_ca_0d_14_6e_30_e3_49_6e_96_a9_9c_6e_fb_5f_11_6f_5f_02_b1_6f_c1_93_84_70_23_10_99_70_83_78_fe_70_e2_cb_c5_71_41_08_04_71_9e_2c_d1_71_fa_39_48_72_55_2c_84_72_af_05_a6_73_07_c3_cf_73_5f_66_25_73_b5_eb_d0_74_0b_53_fa_74_5f_9d_d0_74_b2_c8_83_75_04_d3_44_75_55_bd_4b_75_a5_85_ce_75_f4_2c_0a_76_41_af_3c_76_8e_0e_a5_76_d9_49_88_77_23_5f_2c_77_6c_4e_da_77_b4_17_df_77_fa_b9_88_78_40_33_28_78_84_84_13_78_c7_ab_a1_79_09_a9_2c_79_4a_7c_11_79_8a_23_b0_79_c8_9f_6d_7a_05_ee_ac_7a_42_10_d8_7a_7d_05_5a_7a_b6_cb_a3_7a_ef_63_23_7b_26_cb_4e_7b_5d_03_9d_7b_92_0b_88_7b_c5_e2_8f_7b_f8_88_2f_7c_29_fb_ed_7c_5a_3d_4f_7c_89_4b_dd_7c_b7_27_23_7c_e3_ce_b1_7d_0f_42_17_7d_39_80_eb_7d_62_8a_c5_7d_8a_5f_3f_7d_b0_fd_f7_7d_d6_66_8e_7d_fa_98_a7_7e_1d_93_e9_7e_3f_57_fe_7e_5f_e4_92_7e_7f_39_56_7e_9d_55_fb_7e_ba_3a_38_7e_d5_e5_c5_7e_f0_58_5f_7f_09_91_c3_7f_21_91_b3_7f_38_57_f5_7f_4d_e4_50_7f_62_36_8e_7f_75_4e_7f_7f_87_2b_f2_7f_97_ce_bc_7f_a7_36_b3_7f_b5_63_b2_7f_c2_55_95_7f_ce_0c_3d_7f_d8_87_8d_7f_e1_c7_6a_7f_e9_cb_bf_7f_f0_94_77_7f_f6_21_81_7f_fa_72_d0_7f_fd_88_59_7f_ff_62_15_7f_ff_ff_ff";
/**
* @notice Return the sine of a value, specified in radians scaled by 1e18
* @dev This algorithm for converting sine only uses integer values, and it works by dividing the
* circle into 30 bit angles, i.e. there are 1,073,741,824 (2^30) angle units, instead of the
* standard 360 degrees (2pi radians). From there, we get an output in range -2,147,483,647 to
* 2,147,483,647, (which is the max value of an int32) which is then converted back to the standard
* range of -1 to 1, again scaled by 1e18
* @param _angle Angle to convert
* @return Result scaled by 1e18
*/
function sin(uint256 _angle) internal pure returns (int256) {
unchecked {
// Convert angle from from arbitrary radian value (range of 0 to 2pi) to the algorithm's range
// of 0 to 1,073,741,824
_angle = (ANGLES_IN_CYCLE * (_angle % TWO_PI)) / TWO_PI;
// Apply a mask on an integer to extract a certain number of bits, where angle is the integer
// whose bits we want to get, the width is the width of the bits (in bits) we want to extract,
// and the offset is the offset of the bits (in bits) we want to extract. The result is an
// integer containing _width bits of _value starting at the offset bit
uint256 interp = (_angle >> INTERP_OFFSET) &
((1 << INTERP_WIDTH) - 1);
uint256 index = (_angle >> INDEX_OFFSET) & ((1 << INDEX_WIDTH) - 1);
// The lookup table only contains data for one quadrant (since sin is symmetric around both
// axes), so here we figure out which quadrant we're in, then we lookup the values in the
// table then modify values accordingly
bool isOddQuadrant = (_angle & QUADRANT_LOW_MASK) == 0;
bool isNegativeQuadrant = (_angle & QUADRANT_HIGH_MASK) != 0;
if (!isOddQuadrant) {
index = SINE_TABLE_SIZE - 1 - index;
}
bytes memory table = SIN_TABLE;
// We are looking for two consecutive indices in our lookup table
// Since EVM is left aligned, to read n bytes of data from idx i, we must read from `i * data_len` + `n`
// therefore, to read two entries of size ENTRY_BYTES `index * ENTRY_BYTES` + `ENTRY_BYTES * 2`
uint256 offset1_2 = (index + 2) * ENTRY_BYTES;
// This following snippet will function for any ENTRY_BYTES <= 15
uint256 x1_2;
assembly {
// mload will grab one word worth of bytes (32), as that is the minimum size in EVM
x1_2 := mload(add(table, offset1_2))
}
// We now read the last two numbers of size ENTRY_BYTES from x1_2
// in example: ENTRY_BYTES = 4; x1_2 = 0x00...12345678abcdefgh
// therefore: ENTRY_MASK = 0xFFFFFFFF
// 0x00...12345678abcdefgh >> 8*4 = 0x00...12345678
// 0x00...12345678 & 0xFFFFFFFF = 0x12345678
uint256 x1 = (x1_2 >> (8 * ENTRY_BYTES)) & ENTRY_MASK;
// 0x00...12345678abcdefgh & 0xFFFFFFFF = 0xabcdefgh
uint256 x2 = x1_2 & ENTRY_MASK;
// Approximate angle by interpolating in the table, accounting for the quadrant
uint256 approximation = ((x2 - x1) * interp) >> INTERP_WIDTH;
int256 sine = isOddQuadrant
? int256(x1) + int256(approximation)
: int256(x2) - int256(approximation);
if (isNegativeQuadrant) {
sine *= -1;
}
// Bring result from the range of -2,147,483,647 through 2,147,483,647 to -1e18 through 1e18.
// This can never overflow because sine is bounded by the above values
return (sine * 1e18) / 2_147_483_647;
}
}
/**
* @notice Return the cosine of a value, specified in radians scaled by 1e18
* @dev This is identical to the sin() method, and just computes the value by delegating to the
* sin() method using the identity cos(x) = sin(x + pi/2)
* @dev Overflow when `angle + PI_OVER_TWO > type(uint256).max` is ok, results are still accurate
* @param _angle Angle to convert
* @return Result scaled by 1e18
*/
function cos(uint256 _angle) internal pure returns (int256) {
unchecked {
return sin(_angle + PI_OVER_TWO);
}
}
function atan2(int y, int x) internal pure returns (int T) {
int c1 = 3141592653589793300 / 4;
int c2 = 3 * c1;
int absY = abs(y) + 1e8;
if (x >= 0) {
int r = ((x - absY) * 1e18) / (x + absY);
T = (1963e14 * r ** 3) / 1e54 - (9817e14 * r) / 1e18 + c1;
} else {
int r = ((x + absY) * 1e18) / (absY - x);
T = (1963e14 * r ** 3) / 1e54 - (9817e14 * r) / 1e18 + c2;
}
if (y < 0) {
return -T;
} else {
return T;
}
}
function abs(int x) internal pure returns (int) {
return x >= 0 ? x : -x;
}
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;
import "@openzeppelin/contracts/utils/Base64.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "./XandaoTypes.sol";
import "./Trigonometry.sol";
contract XandaoMeta {
using Strings for uint256;
using Strings for uint8;
using Strings for int256;
enum Colors {
// CMYK(wt) color palette with corresponding numberical values
NONE, // colorIndex = 0
CYAN, // colorIndex = 1
MAGENTA, // colorIndex = 2
YELLOW, // colorIndex = 3
BLACK, // colorIndex = 4
WHITE, // colorIndex = 5
TRANSPARENT // colorIndex = 6
}
// spiral key to map the 36 base 6 numbers of the tokenID to the corresponding 36 cells in the grid
uint8[] SPIRAL_KEY = [21, 15, 16, 22, 28, 27, 26, 20, 14, 8, 9, 10, 11, 17, 23, 29, 35, 34, 33, 32, 31, 25, 19, 13, 7, 1, 2, 3, 4, 5, 6, 12, 18, 24, 30, 36];
string constant BASE_PART2 = "</g></svg>";
// level is the inverse of the number of digits in the tokenID, from level 1 (36 digit in tokenID), to level 36 (1 digit in tokenID)
// level can be upgraded for a given token by paying the difference in price (see constructor)
string[] LEVEL_PRICES = [
"0.000","0.006","0.007","0.009","0.011","0.013","0.016","0.020","0.024","0.029",
"0.035","0.043","0.053","0.064","0.078","0.095","0.116","0.141","0.172","0.209",
"0.255","0.311","0.379","0.461","0.562","0.684","0.834","1.016","1.237","1.507",
"1.836","2.237","2.725","3.319","4.043","4.925","6.000"
];
function _checkTokenId(uint256 rawTokenId) internal pure returns(uint256 id, uint8 len) {
// remove trailing 6's
while (rawTokenId % 10 == 6) {
rawTokenId /= 10;
}
uint256 tokenId = rawTokenId;
require(
tokenId >= 1 && tokenId < 10 ** 36,
"Invalid token length"
);
uint8 tokenIdLen = 0;
uint256 temp = tokenId;
// verify digits are between 1-6 and get the length of tokenId
while (temp > 0) {
uint256 digit = temp % 10;
require(
digit >= 1 && digit <= 6,
"Invalid token digit value"
);
temp /= 10;
tokenIdLen++;
}
return (tokenId, tokenIdLen);
}
// tokenIDs represent SVG pixel images that zoom from 1x1 to 6x6 depending on the number of digits in the tokenID
function getGridSize(uint8 tokenIdLen) public pure returns (string memory) {
string memory gridSize;
if (tokenIdLen == 1) {
gridSize = '1x1';
} else if (tokenIdLen <= 4) {
gridSize = '2x2';
} else if (tokenIdLen <= 9) {
gridSize = '3x3';
} else if (tokenIdLen <= 16) {
gridSize = '4x4';
} else if (tokenIdLen <= 25) {
gridSize = '5x5';
} else {
gridSize = '6x6';
}
return gridSize;
}
// SVG viewbox centers the imsage on the corresponding grid, with a padding of 7.5% on all sides
function getViewBox(uint8 tokenIdLen) public pure returns (string memory) {
string memory viewBox;
if (tokenIdLen == 1) {
viewBox = '2.17 2.87 1.67 1.67';
} else if (tokenIdLen <= 4) {
viewBox = '1.33 1.33 3.34 3.34';
} else if (tokenIdLen <= 9) {
viewBox = '0.53 1.23 4.95 4.95';
} else if (tokenIdLen <= 16) {
viewBox = '-0.34 -0.34 6.67 6.67';
} else if (tokenIdLen <= 25) {
viewBox = '-1.12 -0.44 8.28 8.28';
} else {
viewBox = '-1.95 -1.95 9.89 9.89';
}
return viewBox;
}
function getBackgroundColor(uint8 tokenIdLen) public pure returns (string memory) {
string memory bgColor;
if (tokenIdLen == 1) {
bgColor = 'B3E6E6';
} else if (tokenIdLen <= 4) {
bgColor = 'E6B3E6';
} else if (tokenIdLen <= 9) {
bgColor = 'E6E6B3';
} else if (tokenIdLen <= 16) {
bgColor = '4D4D4D';
} else if (tokenIdLen <= 25) {
bgColor = 'E6E6E6';
} else {
bgColor = '808080';
}
return bgColor;
}
// initiate SVG
function _basePart1(uint8 tokenIdLen) private pure returns(string memory) {
string memory viewBox = getViewBox(tokenIdLen);
string memory basePart1 = string(
abi.encodePacked(
"<svg xmlns='http://www.w3.org/2000/svg' version='1.2' viewBox='",
viewBox,
"' width='100%' height='100%' shape-rendering='crispEdges'><g transform='rotate(-45 3 3)'>"
)
);
return basePart1;
}
// create the on chain SVG image directly from tokenID
function generateSVG(uint256 rawTokenId) public view returns (string memory) {
(uint256 tokenId, uint8 tokenIdLen) = _checkTokenId(rawTokenId);
string memory svgContent = _basePart1(tokenIdLen);
uint256 paddedId = _handlePadding(tokenId);
for (uint i = 0; i < 36; i++) {
uint spiralIndex = SPIRAL_KEY[i] - 1;
uint8 colorIndex = uint8((paddedId / 10 ** (36 - i - 1)) % 10);
string memory x = (spiralIndex % 6).toString();
string memory y = (spiralIndex / 6).toString();
string memory rectangle = string(
abi.encodePacked(
"<rect id='",
(spiralIndex + 1).toString(),
"' fill='",
_getColor(colorIndex),
"' x='",
x,
"' y='",
y,
"' width='1' height='1'></rect>"
)
);
svgContent = string(abi.encodePacked(svgContent, rectangle));
}
svgContent = string(abi.encodePacked(svgContent, BASE_PART2));
return svgContent;
}
function generateFullXn(
uint256 xn,
string memory xnVersion
) public pure returns (string memory) {
string memory fullXn;
if (keccak256(abi.encodePacked(xnVersion)) == keccak256(abi.encodePacked('a'))) {
fullXn = xn.toString();
} else {
fullXn = string.concat(xn.toString(), "-", xnVersion);
}
return fullXn;
}
function _handlePadding(uint256 tokenId) private pure returns (uint256) {
// get number of digits
uint8 numDigits = 0;
uint256 temp = tokenId;
while (temp != 0) {
numDigits++;
temp /= 10;
}
// add 6's as padding for anyting less than 36 digits
uint256 paddedId = tokenId;
uint8 padding = 36 - numDigits;
for (uint8 i = 0; i < padding; i++) {
paddedId = paddedId * 10 + 6;
}
return paddedId;
}
function _getDigitCounts(
uint256 tokenPattern
) private pure returns (uint8[6] memory) {
uint8[6] memory digitCounts;
for (uint8 i = 0; i < 36; i++) {
uint256 digit = (tokenPattern / (10 ** i)) % 10;
digitCounts[digit - 1] += 1;
}
return digitCounts;
}
function _getColor(uint8 colorIndex) private pure returns (string memory) {
if (colorIndex == uint8(Colors.CYAN)) {
return "cyan";
} else if (colorIndex == uint8(Colors.MAGENTA)) {
return "magenta";
} else if (colorIndex == uint8(Colors.YELLOW)) {
return "yellow";
} else if (colorIndex == uint8(Colors.BLACK)) {
return "black";
} else if (colorIndex == uint8(Colors.WHITE)) {
return "white";
} else {
return "transparent";
}
}
function _getColorHSL(uint8 colorIndex) private pure returns (uint256 h, uint256 s, uint256 l) {
if (colorIndex == uint8(Colors.CYAN)) {
return (uint256(180), uint256(100), uint256(50));
} else if (colorIndex == uint8(Colors.MAGENTA)) {
return (uint256(300), uint256(100), uint256(50));
} else if (colorIndex == uint8(Colors.YELLOW)) {
return (uint256(60), uint256(100), uint256(50));
} else if (colorIndex == uint8(Colors.WHITE)) {
return (uint256(0), uint256(0), uint256(100));
} else {
return (uint256(0), uint256(0), uint256(0));
}
}
function _averageHSL(uint8[6] memory digitCounts) private pure returns (string memory) {
uint256 coloredCells = digitCounts[0] +
digitCounts[1] +
digitCounts[2] +
digitCounts[3] +
digitCounts[4];
uint256 totalCells = coloredCells;
uint256 valueCap = totalCells * 100;
int256 avgHueSin = 0;
int256 avgHueCos = 0;
uint256 avgSat = 0;
uint256 avgLight = 0;
for (uint8 i = 0; i < 5; i++) {
uint8 colorIndex = i + 1;
(uint256 h, uint256 s, uint256 l) = _getColorHSL(colorIndex);
int256 weight = int256(uint(digitCounts[i]));
avgHueSin += int256(
weight * Trigonometry.sin((h * 2 * Trigonometry.PI) / 360)
);
avgHueCos += int256(
weight * Trigonometry.cos((h * 2 * Trigonometry.PI) / 360)
);
avgSat += s * uint256(weight);
avgLight += l * uint256(weight);
}
uint256 avgHue;
int hueSigned = (Trigonometry.atan2(avgHueSin, avgHueCos) * 360) /
int256(2 * Trigonometry.PI);
if (hueSigned < 0) {
avgHue = uint256(360) - uint256(Trigonometry.abs(hueSigned));
} else {
avgHue = uint256(hueSigned);
}
avgHue = (avgHue + 360) % 360;
avgSat = ((avgSat) * 100) / (valueCap);
avgLight = ((avgLight) * 100) / (valueCap);
string memory hslString = string(
abi.encodePacked(
"hsl(",
avgHue.toString(),
", ",
avgSat.toString(),
"%, ",
avgLight.toString(),
"%)"
)
);
return hslString;
}
function generateTokenURI(
uint256 rawTokenId,
TokenInfo memory TokenObj
) public view returns (string memory) {
uint256 paddedId = _handlePadding(rawTokenId);
(uint256 tokenId, uint8 tokenIdLen) = _checkTokenId(rawTokenId);
uint8[6] memory digitCounts = _getDigitCounts(paddedId);
uint256 level = 37 - tokenIdLen;
string memory gridSize = getGridSize(tokenIdLen);
string memory bgColor = getBackgroundColor(tokenIdLen);
string memory fullXn = generateFullXn(TokenObj.xn, TokenObj.xnVersion);
string memory attributes = string(
abi.encodePacked(
'"attributes":[',
'{"trait_type":"level","value":"', level.toString(), '"},',
'{"trait_type":"value","value":"', LEVEL_PRICES[level], '"},',
'{"trait_type":"grid","value":"', gridSize, '"},',
'{"trait_type":"creator address","value":"', Strings.toHexString(TokenObj.creator), '"},',
'{"trait_type":"creator name","value":"', TokenObj.creatorName, '"},',
'{"trait_type":"composite color","value":"', _averageHSL(digitCounts), '"},',
'{"trait_type":"1-cyan","value":', digitCounts[0].toString(), ',"max_value":36},',
'{"trait_type":"2-magenta","value":', digitCounts[1].toString(), ',"max_value":36},',
'{"trait_type":"3-yellow","value":', digitCounts[2].toString(), ',"max_value":36},',
'{"trait_type":"4-black","value":', digitCounts[3].toString(), ',"max_value":36},',
'{"trait_type":"5-white","value":', digitCounts[4].toString(), ',"max_value":36}',
']'
)
);
bytes memory dataURI = abi.encodePacked(
'{',
'"name":"xn-', fullXn, '",',
'"description":"\\"', TokenObj.description, '\\" by ', TokenObj.creatorName, '",',
'"image":"data:image/svg+xml;utf8,', generateSVG(tokenId), '",',
'"background_color":"', bgColor, '",',
'"external_url":"https://the.xandao.com/view?id=', tokenId.toString(), '",',
attributes,
'}'
);
return
string(
abi.encodePacked(
"data:application/json;base64,",
Base64.encode(dataURI)
)
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;
struct TokenInfo {
string description; // a user entered string of 1-36 characters describing the design
address creator; // the address of the creator of the token
string creatorName; // a user entered string of 1-36 characters signifying the creator's name
uint256 xn; // xn = xerial number (serial number), global counter based on order of minting
string xnVersion; // a sequential apha code (a -> aj) appended to xn number after each token upgrade
}
{
"compilationTarget": {
"contracts/TheXanDAO.sol": "TheXanDAO"
},
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [],
"viaIR": true
}
[{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"creator","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"string","name":"xn","type":"string"}],"name":"TokenMinted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"creator","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"string","name":"xn","type":"string"},{"indexed":false,"internalType":"uint256","name":"originTokenId","type":"uint256"}],"name":"TokenUpgraded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"creatorOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"xn","type":"uint256"},{"internalType":"string","name":"xnVersion","type":"string"}],"name":"generateFullXn","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"rawTokenId","type":"uint256"}],"name":"generateSVG","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"rawTokenId","type":"uint256"},{"components":[{"internalType":"string","name":"description","type":"string"},{"internalType":"address","name":"creator","type":"address"},{"internalType":"string","name":"creatorName","type":"string"},{"internalType":"uint256","name":"xn","type":"uint256"},{"internalType":"string","name":"xnVersion","type":"string"}],"internalType":"struct TokenInfo","name":"TokenObj","type":"tuple"}],"name":"generateTokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllTokenIds","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"tokenIdLen","type":"uint8"}],"name":"getBackgroundColor","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"tokenIdLen","type":"uint8"}],"name":"getGridSize","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"rawTokenId","type":"uint256"}],"name":"getMintPrice","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"tokenIdLen","type":"uint8"}],"name":"getViewBox","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getXN","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"isAvailable","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"rawTokenId","type":"uint256"},{"internalType":"string","name":"description","type":"string"},{"internalType":"string","name":"creatorName","type":"string"}],"name":"mintToken","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURIByTokenId","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"xn","type":"string"}],"name":"tokenURIByXN","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokens","outputs":[{"internalType":"string","name":"description","type":"string"},{"internalType":"address","name":"creator","type":"address"},{"internalType":"string","name":"creatorName","type":"string"},{"internalType":"uint256","name":"xn","type":"uint256"},{"internalType":"string","name":"xnVersion","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokensCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"rawTokenId","type":"uint256"},{"internalType":"string","name":"description","type":"string"},{"internalType":"string","name":"creatorName","type":"string"},{"internalType":"uint256","name":"rawOriginTokenId","type":"uint256"}],"name":"upgradeToken","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"","type":"string"}],"name":"xnToTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]