账户
0x2c...a479
0x2C...a479

0x2C...a479

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.21+commit.d9974bed
语言
Solidity
合同源代码
文件 1 的 3:IERC20.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

interface IERC20 {
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    function transfer(address recipient, uint256 amount) external returns (bool);
}
合同源代码
文件 2 的 3:MerkleProof.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)

pragma solidity 0.8.21;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen - 1 != totalHashes) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen - 1 != totalHashes) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}
合同源代码
文件 3 的 3:XccelerateStaking.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

import "./MerkleProof.sol";
import "./IERC20.sol";

contract XccelerateStaking {
    IERC20 public XLRT = IERC20(0x8a3C710E41cD95799C535f22DBaE371D7C858651);

    // merkle related vars
    address public owner;
    address public rootFeeder;
    bytes32 public merkleRoot;
    mapping(bytes32 => bool) private _leafClaimed;

    // staking vars
    uint256 public totalStaked;
    mapping(address => uint256) public staked;

    // all events emmited for the merkle tree
    event MerkleUpdated();
    event Staked(address staker, uint256 amount, uint256 timestamp);
    event Unstaked(address staker, uint256 amount, uint256 timestamp);
    event Claimed(address staker, uint256 amount, uint256 timestamp);

    modifier onlyOwner() {
        require(owner == msg.sender, "Only the owner can call this function.");
        _;
    }
    
    constructor() {
        owner = msg.sender;
    }

    /**
     *@dev owner can set the rootFeeder address
    */
    function setRootFeeder(address feeder) external onlyOwner {
        rootFeeder = feeder;
    }

    /**
     *@dev rootFeeder can update the root (automatic process done once every day)
    */
    function setMerkleRoot(bytes32 _merkleRoot) external payable {
        require(msg.sender == rootFeeder, "Only the rootFeeder can call this function.");
        merkleRoot = _merkleRoot;

        emit MerkleUpdated();
    }

    function getLeaf(uint256 cumulativeReward) external view returns(bytes32) {
        bytes32 leaf = keccak256(abi.encodePacked(msg.sender, cumulativeReward));
        return leaf;
    }

    function verifyMerkleProof(bytes32[] calldata proof, address elementToProve, uint256 cumulativeReward) public view returns (bool) {
        bytes32 leaf = keccak256(abi.encodePacked(elementToProve, cumulativeReward));
        bool verified = MerkleProof.verify(proof, merkleRoot, leaf);
        
        return verified;
    }

    function _claim(uint256 cumulativeReward, bytes32[] memory proof) private {
        bytes32 leaf = keccak256(abi.encodePacked(msg.sender, cumulativeReward));
        require(!_leafClaimed[leaf], "You have already claimed your rewards, wait until the next merkleRoot set.");
        require(MerkleProof.verify(proof, merkleRoot, leaf), "Invalid proof");

        _leafClaimed[leaf] = true;
        payable(msg.sender).transfer(cumulativeReward);
    }

    /**
     *@dev Adds positing to staking pool
    */
    function stake(uint256 amount) external {
        require(amount > 0, "Cannot stake 0");

        XLRT.transferFrom(msg.sender, address(this), amount);
        staked[msg.sender] += amount;
        totalStaked += amount;

        emit Staked(msg.sender, amount, block.timestamp);
    }

    /**
     *@dev Unstakes the amount wished to be unstaked along with claiming cumulative reward
    */
    function unstake(uint256 amount, uint256 cumulativeReward, bytes32[] memory proof) external {
        require(amount > 0, "Cannot unstake 0");
        require(staked[msg.sender] >= amount, "unstake amount exceeds staked balance");

        staked[msg.sender] -= amount;
        totalStaked -= amount;
        XLRT.transfer(msg.sender, amount);

        if (cumulativeReward > 0)
            _claim(cumulativeReward, proof);

        emit Unstaked(msg.sender, amount, block.timestamp);
    }

    /**
     *@dev Claiming can be done once every 24h after Merkle Root has been called
    */
    function claim(uint256 cumulativeReward, bytes32[] memory proof) external {
        _claim(cumulativeReward, proof);
        emit Claimed(msg.sender, cumulativeReward, block.timestamp);
    }

    /**
     *@dev Emergency withdraw eth in contract in case something is wrong with the contract
    */
    function emergencyWithdraw() external onlyOwner{
        payable(msg.sender).transfer(address(this).balance);
    }
}
设置
{
  "compilationTarget": {
    "XccelerateStaking.sol": "XccelerateStaking"
  },
  "evmVersion": "shanghai",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "remappings": []
}
ABI
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"staker","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[],"name":"MerkleUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"staker","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"Staked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"staker","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"Unstaked","type":"event"},{"inputs":[],"name":"XLRT","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"cumulativeReward","type":"uint256"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"emergencyWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"cumulativeReward","type":"uint256"}],"name":"getLeaf","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"merkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rootFeeder","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"}],"name":"setMerkleRoot","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"feeder","type":"address"}],"name":"setRootFeeder","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"staked","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalStaked","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"cumulativeReward","type":"uint256"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"unstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"},{"internalType":"address","name":"elementToProve","type":"address"},{"internalType":"uint256","name":"cumulativeReward","type":"uint256"}],"name":"verifyMerkleProof","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]