// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: @openzeppelin/contracts/math/SafeMath.sol
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}
// File: @openzeppelin/contracts/utils/Address.sol
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol
pragma solidity >=0.6.0 <0.8.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// File: rainbow-bridge/contracts/eth/nearbridge/contracts/AdminControlled.sol
pragma solidity ^0.6;
contract AdminControlled {
address public admin;
uint public paused;
constructor(address _admin, uint flags) public {
admin = _admin;
// Add the possibility to set pause flags on the initialization
paused = flags;
}
modifier onlyAdmin {
require(msg.sender == admin);
_;
}
modifier pausable(uint flag) {
require((paused & flag) == 0 || msg.sender == admin);
_;
}
function adminPause(uint flags) public onlyAdmin {
paused = flags;
}
function adminSstore(uint key, uint value) public onlyAdmin {
assembly {
sstore(key, value)
}
}
function adminSendEth(address payable destination, uint amount) public onlyAdmin {
destination.transfer(amount);
}
function adminReceiveEth() public payable onlyAdmin {}
function adminDelegatecall(address target, bytes memory data) public payable onlyAdmin returns (bytes memory) {
(bool success, bytes memory rdata) = target.delegatecall(data);
require(success);
return rdata;
}
}
// File: rainbow-bridge/contracts/eth/nearbridge/contracts/Borsh.sol
pragma solidity ^0.6;
library Borsh {
using SafeMath for uint256;
struct Data {
uint256 offset;
bytes raw;
}
function from(bytes memory data) internal pure returns (Data memory) {
return Data({offset: 0, raw: data});
}
modifier shift(Data memory data, uint256 size) {
require(data.raw.length >= data.offset + size, "Borsh: Out of range");
_;
data.offset += size;
}
function finished(Data memory data) internal pure returns (bool) {
return data.offset == data.raw.length;
}
function peekKeccak256(Data memory data, uint256 length) internal pure returns (bytes32 res) {
return bytesKeccak256(data.raw, data.offset, length);
}
function bytesKeccak256(
bytes memory ptr,
uint256 offset,
uint256 length
) internal pure returns (bytes32 res) {
// solium-disable-next-line security/no-inline-assembly
assembly {
res := keccak256(add(add(ptr, 32), offset), length)
}
}
function peekSha256(Data memory data, uint256 length) internal view returns (bytes32) {
return bytesSha256(data.raw, data.offset, length);
}
function bytesSha256(
bytes memory ptr,
uint256 offset,
uint256 length
) internal view returns (bytes32) {
bytes32[1] memory result;
// solium-disable-next-line security/no-inline-assembly
assembly {
pop(staticcall(gas(), 0x02, add(add(ptr, 32), offset), length, result, 32))
}
return result[0];
}
function decodeU8(Data memory data) internal pure shift(data, 1) returns (uint8 value) {
value = uint8(data.raw[data.offset]);
}
function decodeI8(Data memory data) internal pure shift(data, 1) returns (int8 value) {
value = int8(data.raw[data.offset]);
}
function decodeU16(Data memory data) internal pure returns (uint16 value) {
value = uint16(decodeU8(data));
value |= (uint16(decodeU8(data)) << 8);
}
function decodeI16(Data memory data) internal pure returns (int16 value) {
value = int16(decodeI8(data));
value |= (int16(decodeI8(data)) << 8);
}
function decodeU32(Data memory data) internal pure returns (uint32 value) {
value = uint32(decodeU16(data));
value |= (uint32(decodeU16(data)) << 16);
}
function decodeI32(Data memory data) internal pure returns (int32 value) {
value = int32(decodeI16(data));
value |= (int32(decodeI16(data)) << 16);
}
function decodeU64(Data memory data) internal pure returns (uint64 value) {
value = uint64(decodeU32(data));
value |= (uint64(decodeU32(data)) << 32);
}
function decodeI64(Data memory data) internal pure returns (int64 value) {
value = int64(decodeI32(data));
value |= (int64(decodeI32(data)) << 32);
}
function decodeU128(Data memory data) internal pure returns (uint128 value) {
value = uint128(decodeU64(data));
value |= (uint128(decodeU64(data)) << 64);
}
function decodeI128(Data memory data) internal pure returns (int128 value) {
value = int128(decodeI64(data));
value |= (int128(decodeI64(data)) << 64);
}
function decodeU256(Data memory data) internal pure returns (uint256 value) {
value = uint256(decodeU128(data));
value |= (uint256(decodeU128(data)) << 128);
}
function decodeI256(Data memory data) internal pure returns (int256 value) {
value = int256(decodeI128(data));
value |= (int256(decodeI128(data)) << 128);
}
function decodeBool(Data memory data) internal pure returns (bool value) {
value = (decodeU8(data) != 0);
}
function decodeBytes(Data memory data) internal pure returns (bytes memory value) {
value = new bytes(decodeU32(data));
for (uint i = 0; i < value.length; i++) {
value[i] = byte(decodeU8(data));
}
}
function decodeBytes32(Data memory data) internal pure shift(data, 32) returns (bytes32 value) {
bytes memory raw = data.raw;
uint256 offset = data.offset;
// solium-disable-next-line security/no-inline-assembly
assembly {
value := mload(add(add(raw, 32), offset))
}
}
function decodeBytes20(Data memory data) internal pure returns (bytes20 value) {
for (uint i = 0; i < 20; i++) {
value |= bytes20(byte(decodeU8(data)) & 0xFF) >> (i * 8);
}
}
// Public key
struct SECP256K1PublicKey {
uint256 x;
uint256 y;
}
function decodeSECP256K1PublicKey(Borsh.Data memory data) internal pure returns (SECP256K1PublicKey memory key) {
key.x = decodeU256(data);
key.y = decodeU256(data);
}
struct ED25519PublicKey {
bytes32 xy;
}
function decodeED25519PublicKey(Borsh.Data memory data) internal pure returns (ED25519PublicKey memory key) {
key.xy = decodeBytes32(data);
}
// Signature
struct SECP256K1Signature {
bytes32 r;
bytes32 s;
uint8 v;
}
function decodeSECP256K1Signature(Borsh.Data memory data) internal pure returns (SECP256K1Signature memory sig) {
sig.r = decodeBytes32(data);
sig.s = decodeBytes32(data);
sig.v = decodeU8(data);
}
struct ED25519Signature {
bytes32[2] rs;
}
function decodeED25519Signature(Borsh.Data memory data) internal pure returns (ED25519Signature memory sig) {
sig.rs[0] = decodeBytes32(data);
sig.rs[1] = decodeBytes32(data);
}
}
// File: rainbow-bridge/contracts/eth/nearbridge/contracts/NearDecoder.sol
pragma solidity ^0.6;
library NearDecoder {
using Borsh for Borsh.Data;
using NearDecoder for Borsh.Data;
struct PublicKey {
uint8 enumIndex;
Borsh.ED25519PublicKey ed25519;
Borsh.SECP256K1PublicKey secp256k1;
}
function decodePublicKey(Borsh.Data memory data) internal pure returns (PublicKey memory key) {
key.enumIndex = data.decodeU8();
if (key.enumIndex == 0) {
key.ed25519 = data.decodeED25519PublicKey();
} else if (key.enumIndex == 1) {
key.secp256k1 = data.decodeSECP256K1PublicKey();
} else {
revert("NearBridge: Only ED25519 and SECP256K1 public keys are supported");
}
}
struct ValidatorStake {
string account_id;
PublicKey public_key;
uint128 stake;
}
function decodeValidatorStake(Borsh.Data memory data) internal pure returns (ValidatorStake memory validatorStake) {
validatorStake.account_id = string(data.decodeBytes());
validatorStake.public_key = data.decodePublicKey();
validatorStake.stake = data.decodeU128();
}
struct OptionalValidatorStakes {
bool none;
ValidatorStake[] validatorStakes;
bytes32 hash; // Additional computable element
}
function decodeOptionalValidatorStakes(Borsh.Data memory data)
internal
view
returns (OptionalValidatorStakes memory stakes)
{
stakes.none = (data.decodeU8() == 0);
if (!stakes.none) {
uint256 start = data.offset;
stakes.validatorStakes = new ValidatorStake[](data.decodeU32());
for (uint i = 0; i < stakes.validatorStakes.length; i++) {
stakes.validatorStakes[i] = data.decodeValidatorStake();
}
uint256 stop = data.offset;
data.offset = start;
stakes.hash = data.peekSha256(stop - start);
data.offset = stop;
}
}
struct Signature {
uint8 enumIndex;
Borsh.ED25519Signature ed25519;
Borsh.SECP256K1Signature secp256k1;
}
function decodeSignature(Borsh.Data memory data) internal pure returns (Signature memory sig) {
sig.enumIndex = data.decodeU8();
if (sig.enumIndex == 0) {
sig.ed25519 = data.decodeED25519Signature();
} else if (sig.enumIndex == 1) {
sig.secp256k1 = data.decodeSECP256K1Signature();
} else {
revert("NearBridge: Only ED25519 and SECP256K1 signatures are supported");
}
}
struct OptionalSignature {
bool none;
Signature signature;
}
function decodeOptionalSignature(Borsh.Data memory data) internal pure returns (OptionalSignature memory sig) {
sig.none = (data.decodeU8() == 0);
if (!sig.none) {
sig.signature = data.decodeSignature();
}
}
struct LightClientBlock {
bytes32 prev_block_hash;
bytes32 next_block_inner_hash;
BlockHeaderInnerLite inner_lite;
bytes32 inner_rest_hash;
OptionalValidatorStakes next_bps;
OptionalSignature[] approvals_after_next;
bytes32 hash;
bytes32 next_hash;
}
struct InitialValidators {
ValidatorStake[] validator_stakes;
}
function decodeInitialValidators(Borsh.Data memory data)
internal
view
returns (InitialValidators memory validators)
{
validators.validator_stakes = new ValidatorStake[](data.decodeU32());
for (uint i = 0; i < validators.validator_stakes.length; i++) {
validators.validator_stakes[i] = data.decodeValidatorStake();
}
}
function decodeLightClientBlock(Borsh.Data memory data) internal view returns (LightClientBlock memory header) {
header.prev_block_hash = data.decodeBytes32();
header.next_block_inner_hash = data.decodeBytes32();
header.inner_lite = data.decodeBlockHeaderInnerLite();
header.inner_rest_hash = data.decodeBytes32();
header.next_bps = data.decodeOptionalValidatorStakes();
header.approvals_after_next = new OptionalSignature[](data.decodeU32());
for (uint i = 0; i < header.approvals_after_next.length; i++) {
header.approvals_after_next[i] = data.decodeOptionalSignature();
}
header.hash = sha256(
abi.encodePacked(
sha256(abi.encodePacked(header.inner_lite.hash, header.inner_rest_hash)),
header.prev_block_hash
)
);
header.next_hash = sha256(abi.encodePacked(header.next_block_inner_hash, header.hash));
}
struct BlockHeaderInnerLite {
uint64 height; /// Height of this block since the genesis block (height 0).
bytes32 epoch_id; /// Epoch start hash of this block's epoch. Used for retrieving validator information
bytes32 next_epoch_id;
bytes32 prev_state_root; /// Root hash of the state at the previous block.
bytes32 outcome_root; /// Root of the outcomes of transactions and receipts.
uint64 timestamp; /// Timestamp at which the block was built.
bytes32 next_bp_hash; /// Hash of the next epoch block producers set
bytes32 block_merkle_root;
bytes32 hash; // Additional computable element
}
function decodeBlockHeaderInnerLite(Borsh.Data memory data)
internal
view
returns (BlockHeaderInnerLite memory header)
{
header.hash = data.peekSha256(208);
header.height = data.decodeU64();
header.epoch_id = data.decodeBytes32();
header.next_epoch_id = data.decodeBytes32();
header.prev_state_root = data.decodeBytes32();
header.outcome_root = data.decodeBytes32();
header.timestamp = data.decodeU64();
header.next_bp_hash = data.decodeBytes32();
header.block_merkle_root = data.decodeBytes32();
}
}
// File: rainbow-bridge/contracts/eth/nearprover/contracts/ProofDecoder.sol
pragma solidity ^0.6;
library ProofDecoder {
using Borsh for Borsh.Data;
using ProofDecoder for Borsh.Data;
using NearDecoder for Borsh.Data;
struct FullOutcomeProof {
ExecutionOutcomeWithIdAndProof outcome_proof;
MerklePath outcome_root_proof; // TODO: now empty array
BlockHeaderLight block_header_lite;
MerklePath block_proof;
}
function decodeFullOutcomeProof(Borsh.Data memory data) internal view returns (FullOutcomeProof memory proof) {
proof.outcome_proof = data.decodeExecutionOutcomeWithIdAndProof();
proof.outcome_root_proof = data.decodeMerklePath();
proof.block_header_lite = data.decodeBlockHeaderLight();
proof.block_proof = data.decodeMerklePath();
}
struct BlockHeaderLight {
bytes32 prev_block_hash;
bytes32 inner_rest_hash;
NearDecoder.BlockHeaderInnerLite inner_lite;
bytes32 hash; // Computable
}
function decodeBlockHeaderLight(Borsh.Data memory data) internal view returns (BlockHeaderLight memory header) {
header.prev_block_hash = data.decodeBytes32();
header.inner_rest_hash = data.decodeBytes32();
header.inner_lite = data.decodeBlockHeaderInnerLite();
header.hash = sha256(
abi.encodePacked(
sha256(abi.encodePacked(header.inner_lite.hash, header.inner_rest_hash)),
header.prev_block_hash
)
);
}
struct ExecutionStatus {
uint8 enumIndex;
bool unknown;
bool failed;
bytes successValue; /// The final action succeeded and returned some value or an empty vec.
bytes32 successReceiptId; /// The final action of the receipt returned a promise or the signed
/// transaction was converted to a receipt. Contains the receipt_id of the generated receipt.
}
function decodeExecutionStatus(Borsh.Data memory data)
internal
pure
returns (ExecutionStatus memory executionStatus)
{
executionStatus.enumIndex = data.decodeU8();
if (executionStatus.enumIndex == 0) {
executionStatus.unknown = true;
} else if (executionStatus.enumIndex == 1) {
//revert("NearDecoder: decodeExecutionStatus failure case not implemented yet");
// Can avoid revert since ExecutionStatus is latest field in all parent structures
executionStatus.failed = true;
} else if (executionStatus.enumIndex == 2) {
executionStatus.successValue = data.decodeBytes();
} else if (executionStatus.enumIndex == 3) {
executionStatus.successReceiptId = data.decodeBytes32();
} else {
revert("NearDecoder: decodeExecutionStatus index out of range");
}
}
struct ExecutionOutcome {
bytes[] logs; /// Logs from this transaction or receipt.
bytes32[] receipt_ids; /// Receipt IDs generated by this transaction or receipt.
uint64 gas_burnt; /// The amount of the gas burnt by the given transaction or receipt.
uint128 tokens_burnt; /// The total number of the tokens burnt by the given transaction or receipt.
bytes executor_id; /// Hash of the transaction or receipt id that produced this outcome.
ExecutionStatus status; /// Execution status. Contains the result in case of successful execution.
bytes32[] merkelization_hashes;
}
function decodeExecutionOutcome(Borsh.Data memory data) internal view returns (ExecutionOutcome memory outcome) {
outcome.logs = new bytes[](data.decodeU32());
for (uint i = 0; i < outcome.logs.length; i++) {
outcome.logs[i] = data.decodeBytes();
}
uint256 start = data.offset;
outcome.receipt_ids = new bytes32[](data.decodeU32());
for (uint i = 0; i < outcome.receipt_ids.length; i++) {
outcome.receipt_ids[i] = data.decodeBytes32();
}
outcome.gas_burnt = data.decodeU64();
outcome.tokens_burnt = data.decodeU128();
outcome.executor_id = data.decodeBytes();
outcome.status = data.decodeExecutionStatus();
uint256 stop = data.offset;
outcome.merkelization_hashes = new bytes32[](1 + outcome.logs.length);
data.offset = start;
outcome.merkelization_hashes[0] = data.peekSha256(stop - start);
data.offset = stop;
for (uint i = 0; i < outcome.logs.length; i++) {
outcome.merkelization_hashes[i + 1] = sha256(outcome.logs[i]);
}
}
struct ExecutionOutcomeWithId {
bytes32 id; /// The transaction hash or the receipt ID.
ExecutionOutcome outcome;
bytes32 hash;
}
function decodeExecutionOutcomeWithId(Borsh.Data memory data)
internal
view
returns (ExecutionOutcomeWithId memory outcome)
{
outcome.id = data.decodeBytes32();
outcome.outcome = data.decodeExecutionOutcome();
uint256 len = 1 + outcome.outcome.merkelization_hashes.length;
outcome.hash = sha256(
abi.encodePacked(
uint8((len >> 0) & 0xFF),
uint8((len >> 8) & 0xFF),
uint8((len >> 16) & 0xFF),
uint8((len >> 24) & 0xFF),
outcome.id,
outcome.outcome.merkelization_hashes
)
);
}
struct MerklePathItem {
bytes32 hash;
uint8 direction; // 0 = left, 1 = right
}
function decodeMerklePathItem(Borsh.Data memory data) internal pure returns (MerklePathItem memory item) {
item.hash = data.decodeBytes32();
item.direction = data.decodeU8();
require(item.direction < 2, "ProofDecoder: MerklePathItem direction should be 0 or 1");
}
struct MerklePath {
MerklePathItem[] items;
}
function decodeMerklePath(Borsh.Data memory data) internal pure returns (MerklePath memory path) {
path.items = new MerklePathItem[](data.decodeU32());
for (uint i = 0; i < path.items.length; i++) {
path.items[i] = data.decodeMerklePathItem();
}
}
struct ExecutionOutcomeWithIdAndProof {
MerklePath proof;
bytes32 block_hash;
ExecutionOutcomeWithId outcome_with_id;
}
function decodeExecutionOutcomeWithIdAndProof(Borsh.Data memory data)
internal
view
returns (ExecutionOutcomeWithIdAndProof memory outcome)
{
outcome.proof = data.decodeMerklePath();
outcome.block_hash = data.decodeBytes32();
outcome.outcome_with_id = data.decodeExecutionOutcomeWithId();
}
}
// File: rainbow-bridge/contracts/eth/nearprover/contracts/INearProver.sol
pragma solidity ^0.6;
interface INearProver {
function proveOutcome(bytes calldata proofData, uint64 blockHeight) external view returns (bool);
}
// File: contracts/Locker.sol
pragma solidity ^0.6.12;
contract Locker {
using Borsh for Borsh.Data;
using ProofDecoder for Borsh.Data;
INearProver public prover_;
bytes public nearTokenFactory_;
/// Proofs from blocks that are below the acceptance height will be rejected.
// If `minBlockAcceptanceHeight_` value is zero - proofs from block with any height are accepted.
uint64 public minBlockAcceptanceHeight_;
// OutcomeReciptId -> Used
mapping(bytes32 => bool) public usedProofs_;
constructor(bytes memory nearTokenFactory, INearProver prover, uint64 minBlockAcceptanceHeight) public {
require(nearTokenFactory.length > 0, "Invalid Near Token Factory address");
require(address(prover) != address(0), "Invalid Near prover address");
nearTokenFactory_ = nearTokenFactory;
prover_ = prover;
minBlockAcceptanceHeight_ = minBlockAcceptanceHeight;
}
/// Parses the provided proof and consumes it if it's not already used.
/// The consumed event cannot be reused for future calls.
function _parseAndConsumeProof(bytes memory proofData, uint64 proofBlockHeight)
internal
returns (ProofDecoder.ExecutionStatus memory result)
{
require(proofBlockHeight >= minBlockAcceptanceHeight_, "Proof is from the ancient block");
require(prover_.proveOutcome(proofData, proofBlockHeight), "Proof should be valid");
// Unpack the proof and extract the execution outcome.
Borsh.Data memory borshData = Borsh.from(proofData);
ProofDecoder.FullOutcomeProof memory fullOutcomeProof = borshData.decodeFullOutcomeProof();
require(borshData.finished(), "Argument should be exact borsh serialization");
bytes32 receiptId = fullOutcomeProof.outcome_proof.outcome_with_id.outcome.receipt_ids[0];
require(!usedProofs_[receiptId], "The burn event proof cannot be reused");
usedProofs_[receiptId] = true;
require(keccak256(fullOutcomeProof.outcome_proof.outcome_with_id.outcome.executor_id)
== keccak256(nearTokenFactory_),
"Can only unlock tokens from the linked proof producer on Near blockchain");
result = fullOutcomeProof.outcome_proof.outcome_with_id.outcome.status;
require(!result.failed, "Cannot use failed execution outcome for unlocking the tokens");
require(!result.unknown, "Cannot use unknown execution outcome for unlocking the tokens");
}
}
// File: contracts/ERC20Locker.sol
pragma solidity ^0.6.12;
contract ERC20Locker is Locker, AdminControlled {
using SafeMath for uint256;
using SafeERC20 for IERC20;
event Locked (
address indexed token,
address indexed sender,
uint256 amount,
string accountId
);
event Unlocked (
uint128 amount,
address recipient
);
// Function output from burning fungible token on Near side.
struct BurnResult {
uint128 amount;
address token;
address recipient;
}
uint constant UNPAUSED_ALL = 0;
uint constant PAUSED_LOCK = 1 << 0;
uint constant PAUSED_UNLOCK = 1 << 1;
// ERC20Locker is linked to the bridge token factory on NEAR side.
// It also links to the prover that it uses to unlock the tokens.
constructor(bytes memory nearTokenFactory,
INearProver prover,
uint64 minBlockAcceptanceHeight,
address _admin,
uint pausedFlags)
AdminControlled(_admin, pausedFlags)
Locker(nearTokenFactory, prover, minBlockAcceptanceHeight)
public
{
}
function lockToken(address ethToken, uint256 amount, string memory accountId)
public
pausable (PAUSED_LOCK)
{
require(IERC20(ethToken).balanceOf(address(this)).add(amount) <= ((uint256(1) << 128) - 1), "Maximum tokens locked exceeded (< 2^128 - 1)");
IERC20(ethToken).safeTransferFrom(msg.sender, address(this), amount);
emit Locked(address(ethToken), msg.sender, amount, accountId);
}
function unlockToken(bytes memory proofData, uint64 proofBlockHeight)
public
pausable (PAUSED_UNLOCK)
{
ProofDecoder.ExecutionStatus memory status = _parseAndConsumeProof(proofData, proofBlockHeight);
BurnResult memory result = _decodeBurnResult(status.successValue);
IERC20(result.token).safeTransfer(result.recipient, result.amount);
emit Unlocked(result.amount, result.recipient);
}
function _decodeBurnResult(bytes memory data) internal pure returns(BurnResult memory result) {
Borsh.Data memory borshData = Borsh.from(data);
uint8 flag = borshData.decodeU8();
require(flag == 0, "ERR_NOT_WITHDRAW_RESULT");
result.amount = borshData.decodeU128();
bytes20 token = borshData.decodeBytes20();
result.token = address(uint160(token));
bytes20 recipient = borshData.decodeBytes20();
result.recipient = address(uint160(recipient));
}
// tokenFallback implements the ContractReceiver interface from ERC223-token-standard.
// This allows to support ERC223 tokens with no extra cost.
// The function always passes: we don't need to make any decision and the contract always
// accept token transfers transfer.
function tokenFallback(address _from, uint _value, bytes memory _data) public pure {}
function adminTransfer(IERC20 token, address destination, uint amount)
public
onlyAdmin
{
token.safeTransfer(destination, amount);
}
}
{
"compilationTarget": {
"ERC20Locker.sol": "ERC20Locker"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"bytes","name":"nearTokenFactory","type":"bytes"},{"internalType":"contract INearProver","name":"prover","type":"address"},{"internalType":"uint64","name":"minBlockAcceptanceHeight","type":"uint64"},{"internalType":"address","name":"_admin","type":"address"},{"internalType":"uint256","name":"pausedFlags","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"string","name":"accountId","type":"string"}],"name":"Locked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"}],"name":"Unlocked","type":"event"},{"inputs":[],"name":"admin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"adminDelegatecall","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"flags","type":"uint256"}],"name":"adminPause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"adminReceiveEth","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address payable","name":"destination","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"adminSendEth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"key","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"adminSstore","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"address","name":"destination","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"adminTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"ethToken","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"string","name":"accountId","type":"string"}],"name":"lockToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"minBlockAcceptanceHeight_","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nearTokenFactory_","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"prover_","outputs":[{"internalType":"contract INearProver","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"uint256","name":"_value","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"tokenFallback","outputs":[],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes","name":"proofData","type":"bytes"},{"internalType":"uint64","name":"proofBlockHeight","type":"uint64"}],"name":"unlockToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"usedProofs_","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]