// File: @openzeppelin/contracts/utils/Context.sol
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// File: @openzeppelin/contracts/access/Ownable.sol
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File: @openzeppelin/contracts/security/ReentrancyGuard.sol
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// File: @openzeppelin/contracts/security/Pausable.sol
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// File: @openzeppelin/contracts/utils/cryptography/MerkleProof.sol
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.20;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Sorts the pair (a, b) and hashes the result.
*/
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// File: contracts/LuckyElephantDAO.sol
pragma solidity ^0.8.26;
/**
* @title LuckyElephantDAO
* @dev DAO for governance where NFT holders can create and vote on proposals.
*/
interface ILuckyElephantNFT {
function balanceOf(address owner) external view returns (uint256);
}
contract LuckyElephantDAO is Ownable, Pausable, ReentrancyGuard {
ILuckyElephantNFT public luckyElephantNFT;
address public immutable communityWallet;
uint256 public proposalFee = 0.01 ether;
mapping(address => bool) public allowedCollections;
mapping(uint256 => Proposal) public proposals;
uint256 public numProposals;
event ProposalCreated(uint256 indexed proposalId, string description, ProposalType proposalType, uint256 deadline);
event ProposalExecuted(uint256 indexed proposalId, bool proposalPassed);
event VoteSubmitted(address indexed voter, uint256 indexed proposalId, uint256 numVotes, Vote voteType);
event MerkleRootSubmitted(uint256 indexed proposalId, bytes32 merkleRoot);
event SignedVoteSubmitted(address indexed voter, uint256 indexed proposalId, Vote voteType);
struct Proposal {
string description;
uint256 deadline;
uint256 yayVotes;
uint256 nayVotes;
bool executed;
bool proposalPassed;
ProposalType proposalType;
address targetNFTCollection;
bytes32 merkleRoot;
mapping(address => bool) voters;
}
enum ProposalType {
General,
Investment,
Donation,
NFTSale,
SocialFiFeature,
ClothingLine,
AddNFTCollection,
RemoveNFTCollection
}
enum Vote {
YAY,
NAY
}
modifier onlyNFTHolder() {
require(isNFTHolder(msg.sender), "NOT_A_DAO_MEMBER");
_;
}
modifier activeProposalOnly(uint256 proposalIndex) {
require(proposals[proposalIndex].deadline > block.timestamp, "PROPOSAL_DEADLINE_EXCEEDED");
_;
}
modifier inactiveProposalOnly(uint256 proposalIndex) {
require(proposals[proposalIndex].deadline <= block.timestamp, "PROPOSAL_DEADLINE_NOT_EXCEEDED");
require(!proposals[proposalIndex].executed, "PROPOSAL_ALREADY_EXECUTED");
_;
}
/**
* @dev Constructor that initializes the DAO with the NFT collection address and community wallet.
*/
constructor(address _luckyElephantNFT, address _communityWallet) Ownable(msg.sender) {
luckyElephantNFT = ILuckyElephantNFT(_luckyElephantNFT);
communityWallet = _communityWallet;
}
/**
* @dev Admin can set the proposal fee.
* @param _fee The new proposal fee.
*/
function setProposalFee(uint256 _fee) external onlyOwner {
proposalFee = _fee;
}
/**
* @dev Create a new proposal.
* @param _description The proposal description.
* @param _proposalType The type of proposal.
* @param _targetNFTCollection The NFT collection target (optional).
*/
function createProposal(
string memory _description,
ProposalType _proposalType,
address _targetNFTCollection
) external payable onlyNFTHolder whenNotPaused returns (uint256) {
require(msg.value >= proposalFee, "INSUFFICIENT_PROPOSAL_FEE");
Proposal storage proposal = proposals[numProposals];
proposal.description = _description;
proposal.deadline = block.timestamp + 5 minutes; // Customizable proposal window
proposal.proposalType = _proposalType;
proposal.targetNFTCollection = _targetNFTCollection;
emit ProposalCreated(numProposals, _description, _proposalType, proposal.deadline);
numProposals++;
return numProposals - 1;
}
/**
* @dev Admin can submit the Merkle root for off-chain votes.
*/
function submitMerkleRoot(uint256 proposalIndex, bytes32 merkleRoot) external onlyOwner activeProposalOnly(proposalIndex) {
Proposal storage proposal = proposals[proposalIndex];
proposal.merkleRoot = merkleRoot;
emit MerkleRootSubmitted(proposalIndex, merkleRoot);
}
/**
* @dev Verify an off-chain vote using a Merkle proof.
*/
function verifyMerkleVote(uint256 proposalIndex, bytes32[] calldata proof, address voter, uint256 numVotes) public view returns (bool) {
Proposal storage proposal = proposals[proposalIndex];
bytes32 leaf = keccak256(abi.encodePacked(voter, numVotes));
return MerkleProof.verify(proof, proposal.merkleRoot, leaf);
}
/**
* @dev Execute a proposal after the voting period has ended.
*/
function executeProposal(uint256 proposalIndex) external onlyOwner inactiveProposalOnly(proposalIndex) nonReentrant {
Proposal storage proposal = proposals[proposalIndex];
if (proposal.yayVotes > proposal.nayVotes) {
proposal.proposalPassed = true;
if (proposal.proposalType == ProposalType.AddNFTCollection) {
allowedCollections[proposal.targetNFTCollection] = true;
} else if (proposal.proposalType == ProposalType.RemoveNFTCollection) {
allowedCollections[proposal.targetNFTCollection] = false;
}
}
proposal.executed = true;
emit ProposalExecuted(proposalIndex, proposal.proposalPassed);
}
/**
* @dev Submit a signed vote using EIP-712 signature recovery.
*/
function submitSignedVote(
uint256 proposalIndex,
Vote voteType,
uint256 numVotes,
bytes calldata signature
) external onlyNFTHolder activeProposalOnly(proposalIndex) {
Proposal storage proposal = proposals[proposalIndex];
bytes32 messageHash = keccak256(abi.encodePacked(proposalIndex, voteType, numVotes, msg.sender));
address recoveredSigner = recoverSigner(messageHash, signature);
require(recoveredSigner == msg.sender, "Invalid signature");
if (voteType == Vote.YAY) {
proposal.yayVotes += numVotes;
} else {
proposal.nayVotes += numVotes;
}
emit SignedVoteSubmitted(msg.sender, proposalIndex, voteType);
}
/**
* @dev Recover the signer from the signature.
*/
function recoverSigner(bytes32 messageHash, bytes memory signature) public pure returns (address) {
bytes32 ethSignedMessageHash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", messageHash));
(bytes32 r, bytes32 s, uint8 v) = splitSignature(signature);
return ecrecover(ethSignedMessageHash, v, r, s);
}
function splitSignature(bytes memory sig) internal pure returns (bytes32 r, bytes32 s, uint8 v) {
require(sig.length == 65, "Invalid signature length");
assembly {
r := mload(add(sig, 32))
s := mload(add(sig, 64))
v := byte(0, mload(add(sig, 96)))
}
}
/**
* @dev Withdraw funds to the community wallet.
*/
function withdrawFunds(uint256 amount) external onlyOwner nonReentrant {
require(amount <= address(this).balance, "Insufficient balance");
(bool success, ) = payable(communityWallet).call{value: amount}("");
require(success, "Withdraw failed");
}
/**
* @dev Add NFT collection to the allowed collections.
*/
function addNFTCollection(address _nftCollection) external onlyOwner {
require(!allowedCollections[_nftCollection], "Collection already allowed");
allowedCollections[_nftCollection] = true;
}
/**
* @dev Remove NFT collection from the allowed collections.
*/
function removeNFTCollection(address _nftCollection) external onlyOwner {
require(allowedCollections[_nftCollection], "Collection not allowed");
allowedCollections[_nftCollection] = false;
}
/**
* @dev Check if the user is an NFT holder.
*/
function isNFTHolder(address user) public view returns (bool) {
return luckyElephantNFT.balanceOf(user) > 0;
}
receive() external payable {}
fallback() external payable {}
}
{
"compilationTarget": {
"LuckyElephantDAO.sol": "LuckyElephantDAO"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_luckyElephantNFT","type":"address"},{"internalType":"address","name":"_communityWallet","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"proposalId","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"name":"MerkleRootSubmitted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"proposalId","type":"uint256"},{"indexed":false,"internalType":"string","name":"description","type":"string"},{"indexed":false,"internalType":"enum LuckyElephantDAO.ProposalType","name":"proposalType","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ProposalCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"proposalId","type":"uint256"},{"indexed":false,"internalType":"bool","name":"proposalPassed","type":"bool"}],"name":"ProposalExecuted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"voter","type":"address"},{"indexed":true,"internalType":"uint256","name":"proposalId","type":"uint256"},{"indexed":false,"internalType":"enum LuckyElephantDAO.Vote","name":"voteType","type":"uint8"}],"name":"SignedVoteSubmitted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"voter","type":"address"},{"indexed":true,"internalType":"uint256","name":"proposalId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"numVotes","type":"uint256"},{"indexed":false,"internalType":"enum LuckyElephantDAO.Vote","name":"voteType","type":"uint8"}],"name":"VoteSubmitted","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[{"internalType":"address","name":"_nftCollection","type":"address"}],"name":"addNFTCollection","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"allowedCollections","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"communityWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"_description","type":"string"},{"internalType":"enum LuckyElephantDAO.ProposalType","name":"_proposalType","type":"uint8"},{"internalType":"address","name":"_targetNFTCollection","type":"address"}],"name":"createProposal","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalIndex","type":"uint256"}],"name":"executeProposal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"isNFTHolder","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"luckyElephantNFT","outputs":[{"internalType":"contract ILuckyElephantNFT","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"numProposals","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proposalFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"proposals","outputs":[{"internalType":"string","name":"description","type":"string"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"yayVotes","type":"uint256"},{"internalType":"uint256","name":"nayVotes","type":"uint256"},{"internalType":"bool","name":"executed","type":"bool"},{"internalType":"bool","name":"proposalPassed","type":"bool"},{"internalType":"enum LuckyElephantDAO.ProposalType","name":"proposalType","type":"uint8"},{"internalType":"address","name":"targetNFTCollection","type":"address"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"messageHash","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"recoverSigner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"_nftCollection","type":"address"}],"name":"removeNFTCollection","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"setProposalFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalIndex","type":"uint256"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"name":"submitMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalIndex","type":"uint256"},{"internalType":"enum LuckyElephantDAO.Vote","name":"voteType","type":"uint8"},{"internalType":"uint256","name":"numVotes","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"submitSignedVote","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalIndex","type":"uint256"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"},{"internalType":"address","name":"voter","type":"address"},{"internalType":"uint256","name":"numVotes","type":"uint256"}],"name":"verifyMerkleVote","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawFunds","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]