// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
pragma solidity ^0.5.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see {ERC20Detailed}.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: @openzeppelin/contracts/GSN/Context.sol
pragma solidity ^0.5.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
contract Context {
// Empty internal constructor, to prevent people from mistakenly deploying
// an instance of this contract, which should be used via inheritance.
constructor () internal { }
// solhint-disable-previous-line no-empty-blocks
function _msgSender() internal view returns (address payable) {
return msg.sender;
}
function _msgData() internal view returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File: @openzeppelin/contracts/math/SafeMath.sol
pragma solidity ^0.5.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*
* _Available since v2.4.0._
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File: @openzeppelin/contracts/token/ERC20/ERC20.sol
pragma solidity ^0.5.0;
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20Mintable}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for `sender`'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
*
* This is internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Destroys `amount` tokens from `account`.`amount` is then deducted
* from the caller's allowance.
*
* See {_burn} and {_approve}.
*/
function _burnFrom(address account, uint256 amount) internal {
_burn(account, amount);
_approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance"));
}
}
// File: @openzeppelin/contracts/token/ERC20/ERC20Detailed.sol
pragma solidity ^0.5.0;
/**
* @dev Optional functions from the ERC20 standard.
*/
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for `name`, `symbol`, and `decimals`. All three of
* these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
}
// File: @openzeppelin/contracts/utils/ReentrancyGuard.sol
pragma solidity ^0.5.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*/
contract ReentrancyGuard {
// counter to allow mutex lock with only one SSTORE operation
uint256 private _guardCounter;
constructor () internal {
// The counter starts at one to prevent changing it from zero to a non-zero
// value, which is a more expensive operation.
_guardCounter = 1;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_guardCounter += 1;
uint256 localCounter = _guardCounter;
_;
require(localCounter == _guardCounter, "ReentrancyGuard: reentrant call");
}
}
// File: @openzeppelin/contracts/ownership/Ownable.sol
pragma solidity ^0.5.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
_owner = _msgSender();
emit OwnershipTransferred(address(0), _owner);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(isOwner(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Returns true if the caller is the current owner.
*/
function isOwner() public view returns (bool) {
return _msgSender() == _owner;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
*/
function _transferOwnership(address newOwner) internal {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// File: @openzeppelin/contracts/access/Roles.sol
pragma solidity ^0.5.0;
/**
* @title Roles
* @dev Library for managing addresses assigned to a Role.
*/
library Roles {
struct Role {
mapping (address => bool) bearer;
}
/**
* @dev Give an account access to this role.
*/
function add(Role storage role, address account) internal {
require(!has(role, account), "Roles: account already has role");
role.bearer[account] = true;
}
/**
* @dev Remove an account's access to this role.
*/
function remove(Role storage role, address account) internal {
require(has(role, account), "Roles: account does not have role");
role.bearer[account] = false;
}
/**
* @dev Check if an account has this role.
* @return bool
*/
function has(Role storage role, address account) internal view returns (bool) {
require(account != address(0), "Roles: account is the zero address");
return role.bearer[account];
}
}
// File: @openzeppelin/contracts/access/roles/PauserRole.sol
pragma solidity ^0.5.0;
contract PauserRole is Context {
using Roles for Roles.Role;
event PauserAdded(address indexed account);
event PauserRemoved(address indexed account);
Roles.Role private _pausers;
constructor () internal {
_addPauser(_msgSender());
}
modifier onlyPauser() {
require(isPauser(_msgSender()), "PauserRole: caller does not have the Pauser role");
_;
}
function isPauser(address account) public view returns (bool) {
return _pausers.has(account);
}
function addPauser(address account) public onlyPauser {
_addPauser(account);
}
function renouncePauser() public {
_removePauser(_msgSender());
}
function _addPauser(address account) internal {
_pausers.add(account);
emit PauserAdded(account);
}
function _removePauser(address account) internal {
_pausers.remove(account);
emit PauserRemoved(account);
}
}
// File: @openzeppelin/contracts/lifecycle/Pausable.sol
pragma solidity ^0.5.0;
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
contract Pausable is Context, PauserRole {
/**
* @dev Emitted when the pause is triggered by a pauser (`account`).
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by a pauser (`account`).
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state. Assigns the Pauser role
* to the deployer.
*/
constructor () internal {
_paused = false;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view returns (bool) {
return _paused;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*/
modifier whenNotPaused() {
require(!_paused, "Pausable: paused");
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*/
modifier whenPaused() {
require(_paused, "Pausable: not paused");
_;
}
/**
* @dev Called by a pauser to pause, triggers stopped state.
*/
function pause() public onlyPauser whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Called by a pauser to unpause, returns to normal state.
*/
function unpause() public onlyPauser whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// File: @openzeppelin/contracts/utils/Address.sol
pragma solidity ^0.5.5;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* This test is non-exhaustive, and there may be false-negatives: during the
* execution of a contract's constructor, its address will be reported as
* not containing a contract.
*
* IMPORTANT: It is unsafe to assume that an address for which this
* function returns false is an externally-owned account (EOA) and not a
* contract.
*/
function isContract(address account) internal view returns (bool) {
// This method relies in extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
/**
* @dev Converts an `address` into `address payable`. Note that this is
* simply a type cast: the actual underlying value is not changed.
*
* _Available since v2.4.0._
*/
function toPayable(address account) internal pure returns (address payable) {
return address(uint160(account));
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*
* _Available since v2.4.0._
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-call-value
(bool success, ) = recipient.call.value(amount)("");
require(success, "Address: unable to send value, recipient may have reverted");
}
}
// File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol
pragma solidity ^0.5.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves.
// A Solidity high level call has three parts:
// 1. The target address is checked to verify it contains contract code
// 2. The call itself is made, and success asserted
// 3. The return value is decoded, which in turn checks the size of the returned data.
// solhint-disable-next-line max-line-length
require(address(token).isContract(), "SafeERC20: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// File: contracts/interfaces/iERC20Fulcrum.sol
pragma solidity 0.5.11;
interface iERC20Fulcrum {
function mint(
address receiver,
uint256 depositAmount)
external
returns (uint256 mintAmount);
function burn(
address receiver,
uint256 burnAmount)
external
returns (uint256 loanAmountPaid);
function tokenPrice()
external
view
returns (uint256 price);
function supplyInterestRate()
external
view
returns (uint256);
function rateMultiplier()
external
view
returns (uint256);
function baseRate()
external
view
returns (uint256);
function borrowInterestRate()
external
view
returns (uint256);
function avgBorrowInterestRate()
external
view
returns (uint256);
function protocolInterestRate()
external
view
returns (uint256);
function spreadMultiplier()
external
view
returns (uint256);
function totalAssetBorrow()
external
view
returns (uint256);
function totalAssetSupply()
external
view
returns (uint256);
function nextSupplyInterestRate(uint256)
external
view
returns (uint256);
function nextBorrowInterestRate(uint256)
external
view
returns (uint256);
function nextLoanInterestRate(uint256)
external
view
returns (uint256);
function claimLoanToken()
external
returns (uint256 claimedAmount);
function dsr()
external
view
returns (uint256);
function chaiPrice()
external
view
returns (uint256);
}
// File: contracts/interfaces/ILendingProtocol.sol
pragma solidity 0.5.11;
interface ILendingProtocol {
function mint() external returns (uint256);
function redeem(address account) external returns (uint256);
function nextSupplyRate(uint256 amount) external view returns (uint256);
function nextSupplyRateWithParams(uint256[] calldata params) external view returns (uint256);
function getAPR() external view returns (uint256);
function getPriceInToken() external view returns (uint256);
function token() external view returns (address);
function underlying() external view returns (address);
}
// File: contracts/interfaces/IIdleToken.sol
/**
* @title: Idle Token interface
* @author: William Bergamo, idle.finance
*/
pragma solidity 0.5.11;
interface IIdleToken {
// view
/**
* IdleToken price calculation, in underlying
*
* @return : price in underlying token
*/
function tokenPrice() external view returns (uint256 price);
/**
* underlying token decimals
*
* @return : decimals of underlying token
*/
function tokenDecimals() external view returns (uint256 decimals);
/**
* Get APR of every ILendingProtocol
*
* @return addresses: array of token addresses
* @return aprs: array of aprs (ordered in respect to the `addresses` array)
*/
function getAPRs() external view returns (address[] memory addresses, uint256[] memory aprs);
// external
// We should save the amount one has deposited to calc interests
/**
* Used to mint IdleTokens, given an underlying amount (eg. DAI).
* This method triggers a rebalance of the pools if needed
* NOTE: User should 'approve' _amount of tokens before calling mintIdleToken
* NOTE 2: this method can be paused
*
* @param _amount : amount of underlying token to be lended
* @param _clientProtocolAmounts : client side calculated amounts to put on each lending protocol
* @return mintedTokens : amount of IdleTokens minted
*/
function mintIdleToken(uint256 _amount, uint256[] calldata _clientProtocolAmounts) external returns (uint256 mintedTokens);
/**
* @param _amount : amount of underlying token to be lended
* @return : address[] array with all token addresses used,
* eg [cTokenAddress, iTokenAddress]
* @return : uint256[] array with all amounts for each protocol in order,
* eg [amountCompound, amountFulcrum]
*/
function getParamsForMintIdleToken(uint256 _amount) external returns (address[] memory, uint256[] memory);
/**
* Here we calc the pool share one can withdraw given the amount of IdleToken they want to burn
* This method triggers a rebalance of the pools if needed
* NOTE: If the contract is paused or iToken price has decreased one can still redeem but no rebalance happens.
* NOTE 2: If iToken price has decresed one should not redeem (but can do it) otherwise he would capitalize the loss.
* Ideally one should wait until the black swan event is terminated
*
* @param _amount : amount of IdleTokens to be burned
* @param _clientProtocolAmounts : client side calculated amounts to put on each lending protocol
* @return redeemedTokens : amount of underlying tokens redeemed
*/
function redeemIdleToken(uint256 _amount, bool _skipRebalance, uint256[] calldata _clientProtocolAmounts)
external returns (uint256 redeemedTokens);
/**
* @param _amount : amount of IdleTokens to be burned
* @param _skipRebalance : whether to skip the rebalance process or not
* @return : address[] array with all token addresses used,
* eg [cTokenAddress, iTokenAddress]
* @return : uint256[] array with all amounts for each protocol in order,
* eg [amountCompound, amountFulcrum]
*/
function getParamsForRedeemIdleToken(uint256 _amount, bool _skipRebalance)
external returns (address[] memory, uint256[] memory);
/**
* Here we calc the pool share one can withdraw given the amount of IdleToken they want to burn
* and send interest-bearing tokens (eg. cDAI/iDAI) directly to the user.
* Underlying (eg. DAI) is not redeemed here.
*
* @param _amount : amount of IdleTokens to be burned
*/
function redeemInterestBearingTokens(uint256 _amount) external;
/**
* @param _clientProtocolAmounts : client side calculated amounts to put on each lending protocol
* @return claimedTokens : amount of underlying tokens claimed
*/
function claimITokens(uint256[] calldata _clientProtocolAmounts) external returns (uint256 claimedTokens);
/**
* @param _newAmount : amount of underlying tokens that needs to be minted with this rebalance
* @param _clientProtocolAmounts : client side calculated amounts to put on each lending protocol
* @return : whether has rebalanced or not
*/
function rebalance(uint256 _newAmount, uint256[] calldata _clientProtocolAmounts) external returns (bool);
/**
* @param _newAmount : amount of underlying tokens that needs to be minted with this rebalance
* @return : address[] array with all token addresses used,
* eg [cTokenAddress, iTokenAddress]
* @return : uint256[] array with all amounts for each protocol in order,
* eg [amountCompound, amountFulcrum]
*/
function getParamsForRebalance(uint256 _newAmount) external returns (address[] memory, uint256[] memory);
}
// File: contracts/interfaces/CERC20.sol
pragma solidity 0.5.11;
interface CERC20 {
function mint(uint256 mintAmount) external returns (uint256);
function redeem(uint256 redeemTokens) external returns (uint256);
function exchangeRateStored() external view returns (uint256);
function supplyRatePerBlock() external view returns (uint256);
function borrowRatePerBlock() external view returns (uint256);
function totalReserves() external view returns (uint256);
function getCash() external view returns (uint256);
function totalBorrows() external view returns (uint256);
function reserveFactorMantissa() external view returns (uint256);
function interestRateModel() external view returns (address);
}
// File: contracts/interfaces/WhitePaperInterestRateModel.sol
pragma solidity 0.5.11;
interface WhitePaperInterestRateModel {
function getBorrowRate(uint256 cash, uint256 borrows, uint256 _reserves) external view returns (uint256, uint256);
function getSupplyRate(uint256 cash, uint256 borrows, uint256 reserves, uint256 reserveFactorMantissa) external view returns (uint256);
function multiplier() external view returns (uint256);
function baseRate() external view returns (uint256);
function blocksPerYear() external view returns (uint256);
function dsrPerBlock() external view returns (uint256);
}
// File: contracts/IdleRebalancer.sol
/**
* @title: Idle Rebalancer contract
* @summary: Used for calculating amounts to lend on each implemented protocol.
* This implementation works with Compound and Fulcrum only,
* when a new protocol will be added this should be replaced
* @author: William Bergamo, idle.finance
*/
pragma solidity 0.5.11;
contract IdleRebalancer is Ownable {
using SafeMath for uint256;
// IdleToken address
address public idleToken;
// protocol token (cToken) address
address public cToken;
// protocol token (iToken) address
address public iToken;
// cToken protocol wrapper IdleCompound
address public cWrapper;
// iToken protocol wrapper IdleFulcrum
address public iWrapper;
// max % difference between next supply rate of Fulcrum and Compound
uint256 public maxRateDifference; // 10**17 -> 0.1 %
// max % difference between off-chain user supplied params for rebalance and actual amount to be rebalanced
uint256 public maxSupplyedParamsDifference; // 100000 -> 0.001%
// max number of recursive calls for bisection algorithm
uint256 public maxIterations;
/**
* @param _cToken : cToken address
* @param _iToken : iToken address
* @param _cWrapper : cWrapper address
* @param _iWrapper : iWrapper address
*/
constructor(address _cToken, address _iToken, address _cWrapper, address _iWrapper) public {
require(_cToken != address(0) && _iToken != address(0) && _cWrapper != address(0) && _iWrapper != address(0), 'some addr is 0');
cToken = _cToken;
iToken = _iToken;
cWrapper = _cWrapper;
iWrapper = _iWrapper;
maxRateDifference = 10**17; // 0.1%
maxSupplyedParamsDifference = 100000; // 0.001%
maxIterations = 30;
}
/**
* Throws if called by any account other than IdleToken contract.
*/
modifier onlyIdle() {
require(msg.sender == idleToken, "Ownable: caller is not IdleToken contract");
_;
}
// onlyOwner
/**
* sets idleToken address
* NOTE: can be called only once. It's not on the constructor because we are deploying this contract
* after the IdleToken contract
* @param _idleToken : idleToken address
*/
function setIdleToken(address _idleToken)
external onlyOwner {
require(idleToken == address(0), "idleToken addr already set");
require(_idleToken != address(0), "_idleToken addr is 0");
idleToken = _idleToken;
}
/**
* sets maxIterations for bisection recursive calls
* @param _maxIterations : max number of iterations for the bisection algorithm
*/
function setMaxIterations(uint256 _maxIterations)
external onlyOwner {
maxIterations = _maxIterations;
}
/**
* sets maxRateDifference
* @param _maxDifference : max rate difference in percentage scaled by 10**18
*/
function setMaxRateDifference(uint256 _maxDifference)
external onlyOwner {
maxRateDifference = _maxDifference;
}
/**
* sets maxSupplyedParamsDifference
* @param _maxSupplyedParamsDifference : max slippage between the rebalance params given from the client
* and actual amount to be rebalanced
*/
function setMaxSupplyedParamsDifference(uint256 _maxSupplyedParamsDifference)
external onlyOwner {
maxSupplyedParamsDifference = _maxSupplyedParamsDifference;
}
// end onlyOwner
/**
* Used by IdleToken contract to calculate the amount to be lended
* on each protocol in order to get the best available rate for all funds.
*
* @param _rebalanceParams : first param is the total amount to be rebalanced,
* all other elements are client side calculated amounts to put on each lending protocol
* @return tokenAddresses : array with all token addresses used,
* currently [cTokenAddress, iTokenAddress]
* @return amounts : array with all amounts for each protocol in order,
* currently [amountCompound, amountFulcrum]
*/
function calcRebalanceAmounts(uint256[] calldata _rebalanceParams)
external view onlyIdle
returns (address[] memory tokenAddresses, uint256[] memory amounts)
{
// Get all params for calculating Compound nextSupplyRateWithParams
CERC20 _cToken = CERC20(cToken);
WhitePaperInterestRateModel white = WhitePaperInterestRateModel(_cToken.interestRateModel());
uint256[] memory paramsCompound = new uint256[](10);
paramsCompound[0] = 10**18; // j
paramsCompound[1] = white.baseRate(); // a
paramsCompound[2] = _cToken.totalBorrows(); // b
paramsCompound[3] = white.multiplier(); // c
paramsCompound[4] = _cToken.totalReserves(); // d
paramsCompound[5] = paramsCompound[0].sub(_cToken.reserveFactorMantissa()); // e
paramsCompound[6] = _cToken.getCash(); // s
paramsCompound[7] = white.blocksPerYear(); // k
paramsCompound[8] = 100; // f
// Get all params for calculating Fulcrum nextSupplyRateWithParams
iERC20Fulcrum _iToken = iERC20Fulcrum(iToken);
uint256[] memory paramsFulcrum = new uint256[](4);
paramsFulcrum[0] = _iToken.protocolInterestRate(); // a1
paramsFulcrum[1] = _iToken.totalAssetBorrow(); // b1
paramsFulcrum[2] = _iToken.totalAssetSupply(); // s1
tokenAddresses = new address[](2);
tokenAddresses[0] = cToken;
tokenAddresses[1] = iToken;
// _rebalanceParams should be [totAmountToRebalance, amountCompound, amountFulcrum];
if (_rebalanceParams.length == 3) {
(bool amountsAreCorrect, uint256[] memory checkedAmounts) = checkRebalanceAmounts(_rebalanceParams, paramsCompound, paramsFulcrum);
if (amountsAreCorrect) {
return (tokenAddresses, checkedAmounts);
}
}
// Initial guess for shrinking initial bisection interval
/*
Compound: (getCash returns the available supply only, not the borrowed one)
getCash + totalBorrows = totalSuppliedCompound
Fulcrum:
totalSupply = totalSuppliedFulcrum
we try to correlate borrow and supply on both markets
totC = totalSuppliedCompound + totalBorrowsCompound
totF = totalSuppliedFulcrum + totalBorrowsFulcrum
n : (totC + totF) = x : totF
x = n * totF / (totC + totF)
*/
uint256 amountFulcrum = _rebalanceParams[0].mul(paramsFulcrum[2].add(paramsFulcrum[1])).div(
paramsFulcrum[2].add(paramsFulcrum[1]).add(paramsCompound[6].add(paramsCompound[2]).add(paramsCompound[2]))
);
// Recursive bisection algorithm
amounts = bisectionRec(
_rebalanceParams[0].sub(amountFulcrum), // amountCompound
amountFulcrum,
maxRateDifference, // 0.1% of rate difference,
0, // currIter
maxIterations, // maxIter
_rebalanceParams[0],
paramsCompound,
paramsFulcrum
); // returns [amountCompound, amountFulcrum]
return (tokenAddresses, amounts);
}
/**
* Used by IdleToken contract to check if provided amounts
* causes the rates of Fulcrum and Compound to be balanced
* (counting a tolerance)
*
* @param rebalanceParams : first element is the total amount to be rebalanced,
* the rest is an array with all amounts for each protocol in order,
* currently [amountCompound, amountFulcrum]
* @param paramsCompound : array with all params (except for the newDAIAmount)
* for calculating next supply rate of Compound
* @param paramsFulcrum : array with all params (except for the newDAIAmount)
* for calculating next supply rate of Fulcrum
* @return bool : if provided amount correctly rebalances the pool
*/
function checkRebalanceAmounts(
uint256[] memory rebalanceParams,
uint256[] memory paramsCompound,
uint256[] memory paramsFulcrum
)
internal view
returns (bool, uint256[] memory checkedAmounts)
{
// This is the amount that should be rebalanced no more no less
uint256 actualAmountToBeRebalanced = rebalanceParams[0]; // n
// interest is earned between when tx was submitted and when it is mined so params sent by users
// should always be slightly less than what should be rebalanced
uint256 totAmountSentByUser;
for (uint8 i = 1; i < rebalanceParams.length; i++) {
totAmountSentByUser = totAmountSentByUser.add(rebalanceParams[i]);
}
// check if amounts sent from user are less than actualAmountToBeRebalanced and
// at most `actualAmountToBeRebalanced - 0.001% of (actualAmountToBeRebalanced)`
if (totAmountSentByUser > actualAmountToBeRebalanced ||
totAmountSentByUser.add(totAmountSentByUser.div(maxSupplyedParamsDifference)) < actualAmountToBeRebalanced) {
return (false, new uint256[](2));
}
uint256 interestToBeSplitted = actualAmountToBeRebalanced.sub(totAmountSentByUser);
// sets newDAIAmount for each protocol
paramsCompound[9] = rebalanceParams[1].add(interestToBeSplitted.div(2));
paramsFulcrum[3] = rebalanceParams[2].add(interestToBeSplitted.sub(interestToBeSplitted.div(2)));
// calculate next rates with amountCompound and amountFulcrum
// For Fulcrum see https://github.com/bZxNetwork/bZx-monorepo/blob/development/packages/contracts/extensions/loanTokenization/contracts/LoanToken/LoanTokenLogicV3.sol#L1418
// fulcrumUtilRate = fulcrumBorrow.mul(10**20).div(assetSupply);
uint256 currFulcRate = (paramsFulcrum[1].mul(10**20).div(paramsFulcrum[2])) > 90 ether ?
ILendingProtocol(iWrapper).nextSupplyRate(paramsFulcrum[3]) :
ILendingProtocol(iWrapper).nextSupplyRateWithParams(paramsFulcrum);
uint256 currCompRate = ILendingProtocol(cWrapper).nextSupplyRateWithParams(paramsCompound);
bool isCompoundBest = currCompRate > currFulcRate;
// |fulcrumRate - compoundRate| <= tolerance
bool areParamsOk = (currFulcRate.add(maxRateDifference) >= currCompRate && isCompoundBest) ||
(currCompRate.add(maxRateDifference) >= currFulcRate && !isCompoundBest);
uint256[] memory actualParams = new uint256[](2);
actualParams[0] = paramsCompound[9];
actualParams[1] = paramsFulcrum[3];
return (areParamsOk, actualParams);
}
/**
* Internal implementation of our bisection algorithm
*
* @param amountCompound : amount to be lended in compound in current iteration
* @param amountFulcrum : amount to be lended in Fulcrum in current iteration
* @param tolerance : max % difference between next supply rate of Fulcrum and Compound
* @param currIter : current iteration
* @param maxIter : max number of iterations
* @param n : amount of underlying tokens (eg. DAI) to rebalance
* @param paramsCompound : array with all params (except for the newDAIAmount)
* for calculating next supply rate of Compound
* @param paramsFulcrum : array with all params (except for the newDAIAmount)
* for calculating next supply rate of Fulcrum
* @return amounts : array with all amounts for each protocol in order,
* currently [amountCompound, amountFulcrum]
*/
function bisectionRec(
uint256 amountCompound, uint256 amountFulcrum,
uint256 tolerance, uint256 currIter, uint256 maxIter, uint256 n,
uint256[] memory paramsCompound,
uint256[] memory paramsFulcrum
)
internal view
returns (uint256[] memory amounts) {
// sets newDAIAmount for each protocol
paramsCompound[9] = amountCompound;
paramsFulcrum[3] = amountFulcrum;
// calculate next rates with amountCompound and amountFulcrum
// For Fulcrum see https://github.com/bZxNetwork/bZx-monorepo/blob/development/packages/contracts/extensions/loanTokenization/contracts/LoanToken/LoanTokenLogicV3.sol#L1418
// fulcrumUtilRate = fulcrumBorrow.mul(10**20).div(assetSupply);
uint256 currFulcRate = (paramsFulcrum[1].mul(10**20).div(paramsFulcrum[2])) > 90 ether ?
ILendingProtocol(iWrapper).nextSupplyRate(amountFulcrum) :
ILendingProtocol(iWrapper).nextSupplyRateWithParams(paramsFulcrum);
uint256 currCompRate = ILendingProtocol(cWrapper).nextSupplyRateWithParams(paramsCompound);
bool isCompoundBest = currCompRate > currFulcRate;
// bisection interval update, we choose to halve the smaller amount
uint256 step = amountCompound < amountFulcrum ? amountCompound.div(2) : amountFulcrum.div(2);
// base case
// |fulcrumRate - compoundRate| <= tolerance
if (
((currFulcRate.add(tolerance) >= currCompRate && isCompoundBest) ||
(currCompRate.add(tolerance) >= currFulcRate && !isCompoundBest)) ||
currIter >= maxIter
) {
amounts = new uint256[](2);
amounts[0] = amountCompound;
amounts[1] = amountFulcrum;
return amounts;
}
return bisectionRec(
isCompoundBest ? amountCompound.add(step) : amountCompound.sub(step),
isCompoundBest ? amountFulcrum.sub(step) : amountFulcrum.add(step),
tolerance, currIter + 1, maxIter, n,
paramsCompound, // paramsCompound[9] would be overwritten on next iteration
paramsFulcrum // paramsFulcrum[3] would be overwritten on next iteration
);
}
}
// File: contracts/IdlePriceCalculator.sol
/**
* @title: Idle Price Calculator contract
* @summary: Used for calculating the current IdleToken price in underlying (eg. DAI)
* price is: Net Asset Value / totalSupply
* @author: William Bergamo, idle.finance
*/
pragma solidity 0.5.11;
contract IdlePriceCalculator {
using SafeMath for uint256;
/**
* IdleToken price calculation, in underlying (eg. DAI)
*
* @return : price in underlying token
*/
function tokenPrice(
uint256 totalSupply,
address idleToken,
address[] calldata currentTokensUsed,
address[] calldata protocolWrappersAddresses
)
external view
returns (uint256 price) {
require(currentTokensUsed.length == protocolWrappersAddresses.length, "Different Length");
if (totalSupply == 0) {
return 10**(IIdleToken(idleToken).tokenDecimals());
}
uint256 currPrice;
uint256 currNav;
uint256 totNav;
for (uint8 i = 0; i < currentTokensUsed.length; i++) {
currPrice = ILendingProtocol(protocolWrappersAddresses[i]).getPriceInToken();
// NAV = price * poolSupply
currNav = currPrice.mul(IERC20(currentTokensUsed[i]).balanceOf(idleToken));
totNav = totNav.add(currNav);
}
price = totNav.div(totalSupply); // idleToken price in token wei
}
}
// File: contracts/IdleToken.sol
/**
* @title: Idle Token main contract
* @summary: ERC20 that holds pooled user funds together
* Each token rapresent a share of the underlying pools
* and with each token user have the right to redeem a portion of these pools
* @author: William Bergamo, idle.finance
*/
pragma solidity 0.5.11;
contract IdleToken is ERC20, ERC20Detailed, ReentrancyGuard, Ownable, Pausable, IIdleToken {
using SafeERC20 for IERC20;
using SafeMath for uint256;
// protocolWrappers may be changed/updated/removed do not rely on their
// addresses to determine where funds are allocated
// eg. cTokenAddress => IdleCompoundAddress
mapping(address => address) public protocolWrappers;
// eg. DAI address
address public token;
// eg. 18 for DAI
uint256 public tokenDecimals;
// eg. iDAI address
address public iToken; // used for claimITokens and userClaimITokens
// Min thresold of APR difference between protocols to trigger a rebalance
uint256 public minRateDifference;
// Idle rebalancer current implementation address
address public rebalancer;
// Idle rebalancer current implementation address
address public priceCalculator;
// Last iToken price, used to pause contract in case of a black swan event
uint256 public lastITokenPrice;
// Manual trigger for unpausing contract in case of a black swan event that caused the iToken price to not
// return to the normal level
bool public manualPlay = false;
bool private _notLocalEntered;
// no one can directly change this
// Idle pool current investments eg. [cTokenAddress, iTokenAddress]
address[] public currentTokensUsed;
// eg. [cTokenAddress, iTokenAddress, ...]
address[] public allAvailableTokens;
struct TokenProtocol {
address tokenAddr;
address protocolAddr;
}
event Rebalance(uint256 amount);
/**
* @dev constructor, initialize some variables, mainly addresses of other contracts
*
* @param _name : IdleToken name
* @param _symbol : IdleToken symbol
* @param _decimals : IdleToken decimals
* @param _token : underlying token address
* @param _cToken : cToken address
* @param _iToken : iToken address
* @param _rebalancer : Idle Rebalancer address
* @param _idleCompound : Idle Compound address
* @param _idleFulcrum : Idle Fulcrum address
*/
constructor(
string memory _name, // eg. IdleDAI
string memory _symbol, // eg. IDLEDAI
uint8 _decimals, // eg. 18
address _token,
address _cToken,
address _iToken,
address _rebalancer,
address _priceCalculator,
address _idleCompound,
address _idleFulcrum)
public
ERC20Detailed(_name, _symbol, _decimals) {
token = _token;
tokenDecimals = ERC20Detailed(_token).decimals();
iToken = _iToken; // used for claimITokens and userClaimITokens methods
rebalancer = _rebalancer;
priceCalculator = _priceCalculator;
protocolWrappers[_cToken] = _idleCompound;
protocolWrappers[_iToken] = _idleFulcrum;
allAvailableTokens = [_cToken, _iToken];
minRateDifference = 100000000000000000; // 0.1% min
_notLocalEntered = true;
}
modifier whenITokenPriceHasNotDecreased() {
uint256 iTokenPrice = iERC20Fulcrum(iToken).tokenPrice();
require(
iTokenPrice >= lastITokenPrice || manualPlay,
"Paused: iToken price decreased"
);
_;
if (iTokenPrice > lastITokenPrice) {
lastITokenPrice = iTokenPrice;
}
}
modifier nonLocallyReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_notLocalEntered, "LocalReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_notLocalEntered = false;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_notLocalEntered = true;
}
// onlyOwner
/**
* It allows owner to set the iToken (Fulcrum) address
*
* @param _iToken : iToken address
*/
function setIToken(address _iToken)
external onlyOwner {
iToken = _iToken;
}
/**
* It allows owner to set the IdleRebalancer address
*
* @param _rebalancer : new IdleRebalancer address
*/
function setRebalancer(address _rebalancer)
external onlyOwner {
rebalancer = _rebalancer;
}
/**
* It allows owner to set the IdlePriceCalculator address
*
* @param _priceCalculator : new IdlePriceCalculator address
*/
function setPriceCalculator(address _priceCalculator)
external onlyOwner {
priceCalculator = _priceCalculator;
}
/**
* It allows owner to set a protocol wrapper address
*
* @param _token : underlying token address (eg. DAI)
* @param _wrapper : Idle protocol wrapper address
*/
function setProtocolWrapper(address _token, address _wrapper)
external onlyOwner {
require(_token != address(0) && _wrapper != address(0), 'some addr is 0');
// update allAvailableTokens if needed
if (protocolWrappers[_token] == address(0)) {
allAvailableTokens.push(_token);
}
protocolWrappers[_token] = _wrapper;
}
function setMinRateDifference(uint256 _rate)
external onlyOwner {
minRateDifference = _rate;
}
/**
* It allows owner to unpause the contract when iToken price decreased and didn't return to the expected level
*
* @param _manualPlay : new IdleRebalancer address
*/
function setManualPlay(bool _manualPlay)
external onlyOwner {
manualPlay = _manualPlay;
}
// view
/**
* IdleToken price calculation, in underlying
*
* @return : price in underlying token
*/
function tokenPrice()
public view
returns (uint256 price) {
address[] memory protocolWrappersAddresses = new address[](currentTokensUsed.length);
for (uint8 i = 0; i < currentTokensUsed.length; i++) {
protocolWrappersAddresses[i] = protocolWrappers[currentTokensUsed[i]];
}
price = IdlePriceCalculator(priceCalculator).tokenPrice(
this.totalSupply(), address(this), currentTokensUsed, protocolWrappersAddresses
);
}
/**
* Get APR of every ILendingProtocol
*
* @return addresses: array of token addresses
* @return aprs: array of aprs (ordered in respect to the `addresses` array)
*/
function getAPRs()
public view
returns (address[] memory addresses, uint256[] memory aprs) {
address currToken;
addresses = new address[](allAvailableTokens.length);
aprs = new uint256[](allAvailableTokens.length);
for (uint8 i = 0; i < allAvailableTokens.length; i++) {
currToken = allAvailableTokens[i];
addresses[i] = currToken;
aprs[i] = ILendingProtocol(protocolWrappers[currToken]).getAPR();
}
}
// external
/**
* Used to mint IdleTokens, given an underlying amount (eg. DAI).
* This method triggers a rebalance of the pools if needed
* NOTE: User should 'approve' _amount of tokens before calling mintIdleToken
* NOTE 2: this method can be paused
*
* @param _amount : amount of underlying token to be lended
* @param _clientProtocolAmounts : client side calculated amounts to put on each lending protocol
* @return mintedTokens : amount of IdleTokens minted
*/
function mintIdleToken(uint256 _amount, uint256[] memory _clientProtocolAmounts)
public nonReentrant whenNotPaused whenITokenPriceHasNotDecreased
returns (uint256 mintedTokens) {
// Get current IdleToken price
uint256 idlePrice = tokenPrice();
// transfer tokens to this contract
IERC20(token).safeTransferFrom(msg.sender, address(this), _amount);
// Rebalance the current pool if needed and mint new supplyied amount
rebalance(_amount, _clientProtocolAmounts);
mintedTokens = _amount.mul(10**18).div(idlePrice);
_mint(msg.sender, mintedTokens);
}
/**
* Used to get `_clientProtocolAmounts` for `mintIdleToken` method, given an underlying amount (eg. DAI).
* This should be used only for a call not an actual tx
* NOTE: User should 'approve' _amount of tokens before calling this method
* NOTE 2: this method can be paused
*
* @param _amount : amount of underlying token to be lended
* @return : address[] array with all token addresses used,
* eg [cTokenAddress, iTokenAddress]
* @return : uint256[] array with all amounts for each protocol in order,
* eg [amountCompoundInUnderlying, amountFulcrumInUnderlying]
*/
function getParamsForMintIdleToken(uint256 _amount)
external nonLocallyReentrant whenNotPaused whenITokenPriceHasNotDecreased
returns (address[] memory, uint256[] memory) {
mintIdleToken(_amount, new uint256[](0));
return _getCurrentAllocations();
}
/**
* Here we calc the pool share one can withdraw given the amount of IdleToken they want to burn
* This method triggers a rebalance of the pools if needed
* NOTE: If the contract is paused or iToken price has decreased one can still redeem but no rebalance happens.
* NOTE 2: If iToken price has decresed one should not redeem (but can do it) otherwise he would capitalize the loss.
* Ideally one should wait until the black swan event is terminated
*
* @param _amount : amount of IdleTokens to be burned
* @param _skipRebalance : whether to skip the rebalance process or not
* @param _clientProtocolAmounts : client side calculated amounts to put on each lending protocol
* @return redeemedTokens : amount of underlying tokens redeemed
*/
function redeemIdleToken(uint256 _amount, bool _skipRebalance, uint256[] memory _clientProtocolAmounts)
public nonReentrant
returns (uint256 redeemedTokens) {
address currentToken;
for (uint8 i = 0; i < currentTokensUsed.length; i++) {
currentToken = currentTokensUsed[i];
redeemedTokens = redeemedTokens.add(
_redeemProtocolTokens(
protocolWrappers[currentToken],
currentToken,
// _amount * protocolPoolBalance / idleSupply
_amount.mul(IERC20(currentToken).balanceOf(address(this))).div(this.totalSupply()), // amount to redeem
msg.sender
)
);
}
_burn(msg.sender, _amount);
// Do not rebalance if contract is paused or iToken price has decreased
if (this.paused() || iERC20Fulcrum(iToken).tokenPrice() < lastITokenPrice || _skipRebalance) {
return redeemedTokens;
}
rebalance(0, _clientProtocolAmounts);
}
/**
* Used to get `_clientProtocolAmounts` for `redeemIdleToken` method
* This should be used only for a call not an actual tx
* NOTE: If the contract is paused or iToken price has decreased one can still redeem but no rebalance happens.
* NOTE 2: If iToken price has decresed one should not redeem (but can do it) otherwise he would capitalize the loss.
* Ideally one should wait until the black swan event is terminated
*
* @param _amount : amount of IdleTokens to be burned
* @param _skipRebalance : whether to skip the rebalance process or not
* @return : address[] array with all token addresses used,
* eg [cTokenAddress, iTokenAddress]
* @return : uint256[] array with all amounts for each protocol in order,
* eg [amountCompoundInUnderlying, amountFulcrumInUnderlying]
*/
function getParamsForRedeemIdleToken(uint256 _amount, bool _skipRebalance)
external nonLocallyReentrant
returns (address[] memory, uint256[] memory) {
redeemIdleToken(_amount, _skipRebalance, new uint256[](0));
return _getCurrentAllocations();
}
/**
* Here we calc the pool share one can withdraw given the amount of IdleToken they want to burn
* and send interest-bearing tokens (eg. cDAI/iDAI) directly to the user.
* Underlying (eg. DAI) is not redeemed here.
*
* @param _amount : amount of IdleTokens to be burned
*/
function redeemInterestBearingTokens(uint256 _amount)
external nonReentrant {
uint256 idleSupply = this.totalSupply();
address currentToken;
for (uint8 i = 0; i < currentTokensUsed.length; i++) {
currentToken = currentTokensUsed[i];
IERC20(currentToken).safeTransfer(
msg.sender,
_amount.mul(IERC20(currentToken).balanceOf(address(this))).div(idleSupply) // amount to redeem
);
}
_burn(msg.sender, _amount);
}
/**
* Here we are redeeming unclaimed token from iToken contract to this contracts
* then allocating claimedTokens with rebalancing
* Everyone should be incentivized in calling this method
* NOTE: this method can be paused
*
* @param _clientProtocolAmounts : client side calculated amounts to put on each lending protocol
* @return claimedTokens : amount of underlying tokens claimed
*/
function claimITokens(uint256[] calldata _clientProtocolAmounts)
external whenNotPaused whenITokenPriceHasNotDecreased
returns (uint256 claimedTokens) {
claimedTokens = iERC20Fulcrum(iToken).claimLoanToken();
rebalance(claimedTokens, _clientProtocolAmounts);
}
/**
* Dynamic allocate all the pool across different lending protocols if needed
* Everyone should be incentivized in calling this method
*
* If _newAmount == 0 then simple rebalance
* else rebalance (if needed) and mint (always)
* NOTE: this method can be paused
*
* @param _newAmount : amount of underlying tokens that needs to be minted with this rebalance
* @param _clientProtocolAmounts : client side calculated amounts to put on each lending protocol
* @return : whether has rebalanced or not
*/
function rebalance(uint256 _newAmount, uint256[] memory _clientProtocolAmounts)
public whenNotPaused whenITokenPriceHasNotDecreased
returns (bool) {
// If we are using only one protocol we check if that protocol has still the best apr
// if yes we check if it can support all `_newAmount` provided and still has the best apr
bool shouldRebalance;
address bestToken;
if (currentTokensUsed.length == 1 && _newAmount > 0) {
(shouldRebalance, bestToken) = _rebalanceCheck(_newAmount, currentTokensUsed[0]);
if (!shouldRebalance) {
// only one protocol is currently used and can support all the new liquidity
_mintProtocolTokens(protocolWrappers[currentTokensUsed[0]], _newAmount);
return false; // hasNotRebalanced
}
}
// otherwise we redeem everything from every protocol and check if the protocol with the
// best apr can support all the liquidity that we redeemed
// - get current protocol used
TokenProtocol[] memory tokenProtocols = _getCurrentProtocols();
// - redeem everything from each protocol
for (uint8 i = 0; i < tokenProtocols.length; i++) {
_redeemProtocolTokens(
tokenProtocols[i].protocolAddr,
tokenProtocols[i].tokenAddr,
IERC20(tokenProtocols[i].tokenAddr).balanceOf(address(this)),
address(this) // tokens are now in this contract
);
}
// remove all elements from `currentTokensUsed`
delete currentTokensUsed;
// tokenBalance here has already _newAmount counted
uint256 tokenBalance = IERC20(token).balanceOf(address(this));
if (tokenBalance == 0) {
return false;
}
// (we are re-fetching aprs because after redeeming they changed)
(shouldRebalance, bestToken) = _rebalanceCheck(tokenBalance, address(0));
if (!shouldRebalance) {
// only one protocol is currently used and can support all the new liquidity
_mintProtocolTokens(protocolWrappers[bestToken], tokenBalance);
// update current tokens used in IdleToken storage
currentTokensUsed.push(bestToken);
return false; // hasNotRebalanced
}
// if it's not the case we calculate the dynamic allocation for every protocol
(address[] memory tokenAddresses, uint256[] memory protocolAmounts) = _calcAmounts(tokenBalance, _clientProtocolAmounts);
// mint for each protocol and update currentTokensUsed
uint256 currAmount;
address currAddr;
for (uint8 i = 0; i < protocolAmounts.length; i++) {
currAmount = protocolAmounts[i];
if (currAmount == 0) {
continue;
}
currAddr = tokenAddresses[i];
_mintProtocolTokens(protocolWrappers[currAddr], currAmount);
// update current tokens used in IdleToken storage
currentTokensUsed.push(currAddr);
}
emit Rebalance(tokenBalance);
return true; // hasRebalanced
}
/**
* Used to get `_clientProtocolAmounts` for `rebalance` method
* This should be used only for a call not an actual tx
* NOTE: this method can be paused
*
* @param _newAmount : amount of underlying tokens that needs to be minted with this rebalance
* @return : address[] array with all token addresses used,
* eg [cTokenAddress, iTokenAddress]
* @return : uint256[] array with all amounts for each protocol in order,
* eg [amountCompoundInUnderlying, amountFulcrumInUnderlying]
*/
function getParamsForRebalance(uint256 _newAmount)
external whenNotPaused whenITokenPriceHasNotDecreased
returns (address[] memory, uint256[] memory) {
rebalance(_newAmount, new uint256[](0));
return _getCurrentAllocations();
}
// internal
/**
* Check if a rebalance is needed
* if there is only one protocol and has the best rate then check the nextRateWithAmount()
* if rate is still the highest then put everything there
* otherwise rebalance with all amount
*
* @param _amount : amount of underlying tokens that needs to be added to the current pools NAV
* @return : whether should rebalanced or not
*/
function _rebalanceCheck(uint256 _amount, address currentToken)
internal view
returns (bool, address) {
(address[] memory addresses, uint256[] memory aprs) = getAPRs();
if (aprs.length == 0) {
return (false, address(0));
}
// we are trying to find if the protocol with the highest APR can support all the liquidity
// we intend to provide
uint256 maxRate;
address maxAddress;
uint256 secondBestRate;
uint256 currApr;
address currAddr;
// find best rate and secondBestRate
for (uint8 i = 0; i < aprs.length; i++) {
currApr = aprs[i];
currAddr = addresses[i];
if (currApr > maxRate) {
secondBestRate = maxRate;
maxRate = currApr;
maxAddress = currAddr;
} else if (currApr <= maxRate && currApr >= secondBestRate) {
secondBestRate = currApr;
}
}
if (currentToken != address(0) && currentToken != maxAddress) {
return (true, maxAddress);
} else {
uint256 nextRate = _getProtocolNextRate(protocolWrappers[maxAddress], _amount);
if (nextRate.add(minRateDifference) < secondBestRate) {
return (true, maxAddress);
}
}
return (false, maxAddress);
}
/**
* Calls IdleRebalancer `calcRebalanceAmounts` method
*
* @param _amount : amount of underlying tokens that needs to be allocated on lending protocols
* @return tokenAddresses : array with all token addresses used,
* @return amounts : array with all amounts for each protocol in order,
*/
function _calcAmounts(uint256 _amount, uint256[] memory _clientProtocolAmounts)
internal view
returns (address[] memory, uint256[] memory) {
uint256[] memory paramsRebalance = new uint256[](_clientProtocolAmounts.length + 1);
paramsRebalance[0] = _amount;
for (uint8 i = 1; i <= _clientProtocolAmounts.length; i++) {
paramsRebalance[i] = _clientProtocolAmounts[i-1];
}
return IdleRebalancer(rebalancer).calcRebalanceAmounts(paramsRebalance);
}
/**
* Get addresses of current tokens and protocol wrappers used
*
* @return currentProtocolsUsed : array of `TokenProtocol` (currentToken address, protocolWrapper address)
*/
function _getCurrentProtocols()
internal view
returns (TokenProtocol[] memory currentProtocolsUsed) {
currentProtocolsUsed = new TokenProtocol[](currentTokensUsed.length);
for (uint8 i = 0; i < currentTokensUsed.length; i++) {
currentProtocolsUsed[i] = TokenProtocol(
currentTokensUsed[i],
protocolWrappers[currentTokensUsed[i]]
);
}
}
/**
* Get the contract balance of every protocol currently used
*
* @return tokenAddresses : array with all token addresses used,
* eg [cTokenAddress, iTokenAddress]
* @return amounts : array with all amounts for each protocol in order,
* eg [amountCompoundInUnderlying, amountFulcrumInUnderlying]
*/
function _getCurrentAllocations() internal view
returns (address[] memory tokenAddresses, uint256[] memory amounts) {
// Get balance of every protocol implemented
tokenAddresses = new address[](allAvailableTokens.length);
amounts = new uint256[](allAvailableTokens.length);
address currentToken;
uint256 currTokenPrice;
for (uint8 i = 0; i < allAvailableTokens.length; i++) {
currentToken = allAvailableTokens[i];
tokenAddresses[i] = currentToken;
currTokenPrice = ILendingProtocol(protocolWrappers[currentToken]).getPriceInToken();
amounts[i] = currTokenPrice.mul(
IERC20(currentToken).balanceOf(address(this))
).div(10**18);
}
// return addresses and respective amounts in underlying
return (tokenAddresses, amounts);
}
// ILendingProtocols calls
/**
* Get next rate of a lending protocol given an amount to be lended
*
* @param _wrapperAddr : address of protocol wrapper
* @param _amount : amount of underlying to be lended
* @return apr : new apr one will get after lending `_amount`
*/
function _getProtocolNextRate(address _wrapperAddr, uint256 _amount)
internal view
returns (uint256 apr) {
ILendingProtocol _wrapper = ILendingProtocol(_wrapperAddr);
apr = _wrapper.nextSupplyRate(_amount);
}
/**
* Mint protocol tokens through protocol wrapper
*
* @param _wrapperAddr : address of protocol wrapper
* @param _amount : amount of underlying to be lended
* @return tokens : new tokens minted
*/
function _mintProtocolTokens(address _wrapperAddr, uint256 _amount)
internal
returns (uint256 tokens) {
if (_amount == 0) {
return tokens;
}
ILendingProtocol _wrapper = ILendingProtocol(_wrapperAddr);
// Transfer _amount underlying token (eg. DAI) to _wrapperAddr
IERC20(token).safeTransfer(_wrapperAddr, _amount);
tokens = _wrapper.mint();
}
/**
* Redeem underlying tokens through protocol wrapper
*
* @param _wrapperAddr : address of protocol wrapper
* @param _amount : amount of `_token` to redeem
* @param _token : protocol token address
* @param _account : should be msg.sender when rebalancing and final user when redeeming
* @return tokens : new tokens minted
*/
function _redeemProtocolTokens(address _wrapperAddr, address _token, uint256 _amount, address _account)
internal
returns (uint256 tokens) {
if (_amount == 0) {
return tokens;
}
ILendingProtocol _wrapper = ILendingProtocol(_wrapperAddr);
// Transfer _amount of _protocolToken (eg. cDAI) to _wrapperAddr
IERC20(_token).safeTransfer(_wrapperAddr, _amount);
tokens = _wrapper.redeem(_account);
}
}
{
"compilationTarget": {
"IdleToken.sol": "IdleToken"
},
"evmVersion": "petersburg",
"libraries": {},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"constant":true,"inputs":[],"name":"rebalancer","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"redeemInterestBearingTokens","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bool","name":"_skipRebalance","type":"bool"}],"name":"getParamsForRedeemIdleToken","outputs":[{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"_rate","type":"uint256"}],"name":"setMinRateDifference","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"minRateDifference","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"allAvailableTokens","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"tokenDecimals","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256[]","name":"_clientProtocolAmounts","type":"uint256[]"}],"name":"mintIdleToken","outputs":[{"internalType":"uint256","name":"mintedTokens","type":"uint256"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"unpause","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"iToken","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"protocolWrappers","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isPauser","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"getParamsForMintIdleToken","outputs":[{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256[]","name":"_clientProtocolAmounts","type":"uint256[]"}],"name":"claimITokens","outputs":[{"internalType":"uint256","name":"claimedTokens","type":"uint256"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"_priceCalculator","type":"address"}],"name":"setPriceCalculator","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"_newAmount","type":"uint256"},{"internalType":"uint256[]","name":"_clientProtocolAmounts","type":"uint256[]"}],"name":"rebalance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"_rebalancer","type":"address"}],"name":"setRebalancer","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"renouncePauser","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"renounceOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"_iToken","type":"address"}],"name":"setIToken","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"tokenPrice","outputs":[{"internalType":"uint256","name":"price","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"bool","name":"_manualPlay","type":"bool"}],"name":"setManualPlay","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"addPauser","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"pause","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"priceCalculator","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"isOwner","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"manualPlay","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"getAPRs","outputs":[{"internalType":"address[]","name":"addresses","type":"address[]"},{"internalType":"uint256[]","name":"aprs","type":"uint256[]"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"currentTokensUsed","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"_newAmount","type":"uint256"}],"name":"getParamsForRebalance","outputs":[{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bool","name":"_skipRebalance","type":"bool"},{"internalType":"uint256[]","name":"_clientProtocolAmounts","type":"uint256[]"}],"name":"redeemIdleToken","outputs":[{"internalType":"uint256","name":"redeemedTokens","type":"uint256"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_wrapper","type":"address"}],"name":"setProtocolWrapper","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"lastITokenPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"token","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"uint8","name":"_decimals","type":"uint8"},{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_cToken","type":"address"},{"internalType":"address","name":"_iToken","type":"address"},{"internalType":"address","name":"_rebalancer","type":"address"},{"internalType":"address","name":"_priceCalculator","type":"address"},{"internalType":"address","name":"_idleCompound","type":"address"},{"internalType":"address","name":"_idleFulcrum","type":"address"}],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Rebalance","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"PauserAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"PauserRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"}]