// File: Address.sol
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// File: Context.sol
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// File: IAavePriceOracle.sol
interface IAavePriceOracle {
function getAssetPrice(address asset) external view returns (uint256);
}
// File: ICurvePool.sol
interface ICurvePool {
function get_dy(
int128 i,
int128 j,
uint256 dx
) external view returns (uint256);
function exchange(
int128 i,
int128 j,
uint256 dx,
uint256 min_dy,
address receiver
) external returns (uint256);
}
// File: IERC165.sol
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// File: IERC20.sol
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// File: Math.sol
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// File: draft-IERC20Permit.sol
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// File: ERC165.sol
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// File: IAavePoolAddressesProvider.sol
interface IAavePoolAddressesProvider {
function getPriceOracle() external view returns (IAavePriceOracle);
}
// File: IERC20Metadata.sol
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// File: Ownable.sol
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File: SafeERC20.sol
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// File: ChainlinkPriceFeedAggregator.sol
interface IChainlinkOracle {
function latestAnswer() external view returns (int256);
function decimals() external view returns (uint8);
}
contract ChainlinkPriceFeedAggregator is Ownable
{
mapping (address => IChainlinkOracle) public oracles;
function updateOracles(address[] memory tokens, IChainlinkOracle[] memory newOracles) external onlyOwner
{
for (uint i = 0; i < tokens.length; i++) {
oracles[tokens[i]] = newOracles[i];
}
}
function decimals() public pure returns(uint8) {
return 18;
}
function getRate(address token) external view returns (uint256)
{
IChainlinkOracle oracle = oracles[token];
return uint256(oracle.latestAnswer()) * (10 ** decimals()) / (10 ** oracle.decimals());
}
}
// File: ERC20.sol
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(
address from,
address to,
uint256 amount
) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(
address owner,
address spender,
uint256 amount
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
// File: IAavePool.sol
interface IAavePool {
struct ReserveConfigurationMap {
uint256 data;
}
struct ReserveData {
ReserveConfigurationMap configuration;
uint128 liquidityIndex;
uint128 currentLiquidityRate;
uint128 variableBorrowIndex;
uint128 currentVariableBorrowRate;
uint128 currentStableBorrowRate;
uint40 lastUpdateTimestamp;
uint16 id;
address aTokenAddress;
address stableDebtTokenAddress;
address variableDebtTokenAddress;
address interestRateStrategyAddress;
uint128 accruedToTreasury;
uint128 unbacked;
uint128 isolationModeTotalDebt;
}
function getReserveData(address asset)
external
view
returns (ReserveData memory);
function supply(
address asset,
uint256 amount,
address onBehalfOf,
uint16 referralCode
) external;
function ADDRESSES_PROVIDER()
external
view
returns (IAavePoolAddressesProvider);
function getUserAccountData(address user)
external
view
returns (
uint256 totalCollateralBase,
uint256 totalDebtBase,
uint256 availableBorrowsBase,
uint256 currentLiquidationThreshold,
uint256 ltv,
uint256 healthFactor
);
function borrow(
address asset,
uint256 amount,
uint256 interestRateMode,
uint16 referralCode,
address onBehalfOf
) external;
function repay(
address asset,
uint256 amount,
uint256 interestRateMode,
address onBehalfOf
) external returns (uint256);
function withdraw(
address asset,
uint256 amount,
address to
) external returns (uint256);
function flashLoanSimple(
address receiverAddress,
address asset,
uint256 amount,
bytes calldata params,
uint16 referralCode
) external;
}
// File: IERC4626Minimal.sol
interface IERC4626Minimal is IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(
uint256 shares,
address receiver,
address owner
) external returns (uint256 assets);
}
// File: IYearnV2Vault.sol
interface IYearnV2Vault is IERC20Metadata {
function deposit(uint256 amount) external returns (uint256);
function withdraw(
uint256 maxShares,
address receiver
) external returns (uint256);
function token() external view returns (address);
function pricePerShare() external view returns (uint256);
}
// File: SuperAdminControl.sol
contract SuperAdminControl is Ownable {
struct CallData {
address to;
bytes data;
uint256 value;
}
function call(CallData[] calldata calls) external onlyOwner {
for (uint i = 0; i < calls.length; i++) {
(bool success, ) = calls[i].to.call{value: calls[i].value}(calls[i].data);
require(success, "failed");
}
}
}
// File: Utils.sol
library Utils {
using SafeERC20 for IERC20;
function approveIfZeroAllowance(address asset, address spender) internal {
if (IERC20(asset).allowance(address(this), spender) == 0) {
IERC20(asset).safeIncreaseAllowance(spender, type(uint256).max);
}
}
}
// File: AaveLibrary.sol
library AaveLibrary {
using SafeERC20 for IERC20;
struct Data {
IAavePool aavePool;
IAavePriceOracle aavePriceOracle;
address tokenToBorrow;
address collateral;
uint256 ltv; // in 10^-6s
}
function performApprovals(Data storage self) public {
IERC20(self.tokenToBorrow).safeIncreaseAllowance(
address(self.aavePool),
type(uint256).max
);
IERC20(self.collateral).safeIncreaseAllowance(
address(self.aavePool),
type(uint256).max
);
IERC20(self.aavePool.getReserveData(self.collateral).aTokenAddress)
.safeIncreaseAllowance(address(self.aavePool), type(uint256).max);
}
function getCurrentLtv(Data storage self) public view returns (uint256) {
uint256 collateral = getCurrentCollateralSupply(self);
uint256 collateralValue = (collateral *
self.aavePriceOracle.getAssetPrice(address(self.collateral))) /
(10**IERC20Metadata(self.collateral).decimals());
if (collateralValue == 0) {
return self.ltv;
}
uint256 debt = getCurrentDebt(self);
uint256 debtValue = (debt *
self.aavePriceOracle.getAssetPrice(address(self.tokenToBorrow))) /
(10**IERC20Metadata(self.tokenToBorrow).decimals());
if (debtValue == 0) {
return self.ltv;
}
return (debtValue * 1000000) / collateralValue;
}
function getCurrentCollateralSupply(Data storage self)
public
view
returns (uint256)
{
return
IERC20(
self
.aavePool
.getReserveData(address(self.collateral))
.aTokenAddress
).balanceOf(address(this));
}
function getCurrentDebt(Data storage self) public view returns (uint256) {
return
IERC20(
self
.aavePool
.getReserveData(address(self.tokenToBorrow))
.variableDebtTokenAddress
).balanceOf(address(this));
}
function getNeededDebt(
Data storage self,
uint256 collateral,
uint256 ltv
) public view returns (uint256 neededDebt) {
uint256 collateralValue = (collateral *
self.aavePriceOracle.getAssetPrice(address(self.collateral))) /
(10**IERC20Metadata(self.collateral).decimals());
uint256 neededDebtValue = (collateralValue * ltv) / 1000000;
neededDebt =
(neededDebtValue *
10**IERC20Metadata(self.tokenToBorrow).decimals()) /
self.aavePriceOracle.getAssetPrice(address(self.tokenToBorrow));
}
function supply(Data storage self, uint256 amount) public {
if (amount > 0)
self.aavePool.supply(
address(self.collateral),
amount,
address(this),
0
);
}
function withdraw(Data storage self, uint256 amount) public {
if (amount > 0)
self.aavePool.withdraw(
address(self.collateral),
amount,
address(this)
);
}
function borrow(Data storage self, uint256 amount) public {
if (amount > 0)
self.aavePool.borrow(
address(self.tokenToBorrow),
amount,
2,
0,
address(this)
);
}
function repay(Data storage self, uint256 amount) public {
if (amount > 0)
self.aavePool.repay(
address(self.tokenToBorrow),
amount,
2,
address(this)
);
}
function repayAndWithdraw(Data storage self, uint256 debt)
public
returns (uint256 collateral)
{
uint256 totalDebt = getCurrentDebt(self);
uint256 totalCollateral = getCurrentCollateralSupply(self);
collateral = (debt * totalCollateral) / totalDebt;
repay(self, debt);
withdraw(self, collateral);
}
function flashloan(Data storage self, address asset, uint256 amount) public {
self.aavePool.flashLoanSimple(address(this), asset, amount, "", 0);
}
}
// File: ApyFlowVault.sol
abstract contract ApyFlowVault is IERC4626Minimal, ERC20, ERC165, SuperAdminControl {
using SafeERC20 for IERC20Metadata;
using Math for uint256;
IERC20Metadata internal immutable _asset;
uint8 private immutable _decimals;
uint256 public lastTotalAssets;
constructor(IERC20Metadata asset_) {
_asset = asset_;
_decimals = asset_.decimals();
}
function decimals()
public
view
override(ERC20, IERC20Metadata)
returns (uint8)
{
return _decimals;
}
function asset() public view virtual override returns (address) {
return address(_asset);
}
function _totalAssets() internal view virtual returns (uint256);
function totalAssets() public view override returns (uint256) {
return _totalAssets() + _asset.balanceOf(address(this));
}
function _convertToAssets(
uint256 shares,
uint256 totalAssets_,
uint256 totalSupply_
) internal pure returns (uint256 assets) {
return
((totalSupply_ == 0) || (totalAssets_ == 0))
? shares
: shares.mulDiv(totalAssets_, totalSupply_);
}
function convertToAssets(uint256 shares)
public
view
override
returns (uint256 assets)
{
return _convertToAssets(shares, totalAssets(), totalSupply());
}
function _convertToShares(
uint256 assets,
uint256 totalAssets_,
uint256 totalSupply_
) internal pure returns (uint256 shares) {
return
((totalSupply_ == 0) || (totalAssets_ == 0))
? assets
: assets.mulDiv(totalSupply_, totalAssets_);
}
function convertToShares(uint256 assets)
public
view
override
returns (uint256 shares)
{
return _convertToShares(assets, totalAssets(), totalSupply());
}
function pricePerToken() public view returns (uint256) {
return convertToAssets(10**decimals());
}
function _deposit(uint256 assets) internal virtual;
function deposit(uint256 assets, address receiver)
public
virtual
override
returns (uint256 shares)
{
if (assets == 0) {
return 0;
}
uint256 totalAssetsBefore = totalAssets();
_asset.safeTransferFrom(_msgSender(), address(this), assets);
_deposit(assets);
uint256 totalAssetsAfter = totalAssets();
shares = _convertToShares(
totalAssetsAfter - totalAssetsBefore,
totalAssetsBefore,
totalSupply()
);
_mint(receiver, shares);
emit Deposit(_msgSender(), receiver, assets, shares);
lastTotalAssets = totalAssetsAfter;
}
function _redeem(uint256 shares) internal virtual returns (uint256 assets);
function redeem(
uint256 shares,
address receiver,
address owner
) public virtual override returns (uint256 assets) {
if (_msgSender() != owner) {
_spendAllowance(owner, _msgSender(), shares);
}
assets = _asset.balanceOf(address(this)).mulDiv(shares, totalSupply());
assets += _redeem(shares);
_burn(_msgSender(), shares);
_asset.safeTransfer(receiver, assets);
emit Withdraw(_msgSender(), receiver, owner, assets, shares);
lastTotalAssets = totalAssets();
}
}
// File: AssetConverter.sol
interface IConverter
{
function swap(address source, address destination, uint256 value, address beneficiary) external returns (uint256);
function previewSwap(address source, address destination, uint256 value) external returns (uint256);
}
contract AssetConverter is Ownable
{
using SafeERC20 for IERC20;
ChainlinkPriceFeedAggregator public immutable pricesOracle;
uint256 private defaultMaxAllowedSlippage = 20; // in 10^-3s
constructor(ChainlinkPriceFeedAggregator _pricesOracle) {
pricesOracle = _pricesOracle;
}
struct RouteData {
IConverter converter;
uint256 maxAllowedSlippage;
}
mapping (address => mapping(address => RouteData)) public routes;
struct RouteDataUpdate {
address source;
address destination;
RouteData data;
}
function updateRoutes(RouteDataUpdate[] calldata updates) public onlyOwner {
for (uint i = 0; i < updates.length; i++) {
routes[updates[i].source][updates[i].destination] = updates[i].data;
}
}
function _checkSlippage(address source, address destination, uint256 amountIn, uint256 amountOut) internal view returns(bool) {
// If amountIn is low enough, than fee substraction may substract 1
// And in case in low amountIn this can make big difference
amountIn -= 1;
uint256 maxSlippage = routes[source][destination].maxAllowedSlippage;
if (maxSlippage == 0) {
maxSlippage = defaultMaxAllowedSlippage;
}
uint256 sourceUSDPrice;
uint256 destinationUSDPrice;
try pricesOracle.getRate(source) returns(uint256 price) {
sourceUSDPrice = price;
} catch {
return true;
}
try pricesOracle.getRate(destination) returns(uint256 price) {
destinationUSDPrice = price;
} catch {
return true;
}
uint256 sourceUSDValue = amountIn * sourceUSDPrice / (10 ** IERC20Metadata(source).decimals());
uint256 expected = sourceUSDValue * (10 ** IERC20Metadata(destination).decimals()) / destinationUSDPrice;
return (amountOut >= expected * (1000 - maxSlippage) / 1000);
}
function swap(address source, address destination, uint256 amountIn) external returns (uint256 amountOut)
{
IConverter converter = routes[source][destination].converter;
IERC20(source).safeTransferFrom(msg.sender, address(converter), amountIn);
amountOut = converter.swap(source, destination, amountIn, msg.sender);
require(_checkSlippage(source, destination, amountIn, amountOut), "AssetConverter: slippage");
}
function previewSwap(address source, address destination, uint256 value) external returns (uint256) {
return routes[source][destination].converter.previewSwap(source, destination, value);
}
}
// File: PricesLibrary.sol
library PricesLibrary {
function getUSDPrice(ChainlinkPriceFeedAggregator oracle, address asset)
internal
view
returns (uint256)
{
return oracle.getRate(asset);
}
function convertToUSD(
ChainlinkPriceFeedAggregator oracle,
address asset,
uint256 amount
) internal view returns (uint256) {
return
(amount * oracle.getRate(asset)) /
10**IERC20Metadata(asset).decimals();
}
function convertFromUSD(
ChainlinkPriceFeedAggregator oracle,
uint256 usdAmount,
address toAsset
) internal view returns (uint256) {
return
Math.mulDiv(
usdAmount,
10**IERC20Metadata(toAsset).decimals(),
oracle.getRate(toAsset),
Math.Rounding.Up
);
}
function convert(
ChainlinkPriceFeedAggregator oracle,
address from,
address to,
uint256 amount
) internal view returns (uint256) {
return convertFromUSD(oracle, convertToUSD(oracle, from, amount), to);
}
}
// File: SafeAssetConverter.sol
library SafeAssetConverter {
function safeSwap(
AssetConverter assetConverter,
address from,
address to,
uint256 amount
) internal returns (uint256) {
require(amount <= IERC20(from).balanceOf(address(this)), "SafeAssetConverter: Not enough funds for swap");
if (from == to) return amount;
if (amount == 0) return 0;
return assetConverter.swap(from, to, amount);
}
function previewSafeSwap(
AssetConverter assetConverter,
address from,
address to,
uint256 amount
) internal returns (uint256) {
if (from == to) return amount;
if (amount == 0) return 0;
return assetConverter.previewSwap(from, to, amount);
}
}
// File: WrappedERC4626YearnCRV.sol
contract WrappedERC4626YearnCRV is ApyFlowVault {
using SafeERC20 for IERC20Metadata;
using SafeAssetConverter for AssetConverter;
IERC20Metadata public immutable crv;
IERC20Metadata public immutable ycrv;
IYearnV2Vault public immutable stycrv;
AssetConverter public immutable assetConverter;
ICurvePool public immutable curveYCRVpool;
constructor(
IERC20Metadata _crv,
IERC20Metadata _ycrv,
IYearnV2Vault _stycrv,
ICurvePool _curveYCRVPool,
AssetConverter _assetConverter,
string memory name,
string memory symbol
) ApyFlowVault(_crv) ERC20(name, symbol) {
require(address(_crv) != address(0), "Zero address provided");
require(address(_ycrv) != address(0), "Zero address provided");
require(address(_stycrv) != address(0), "Zero address provided");
require(address(_curveYCRVPool) != address(0), "Zero address provided");
crv = _crv;
ycrv = _ycrv;
stycrv = _stycrv;
curveYCRVpool = _curveYCRVPool;
assetConverter = _assetConverter;
crv.safeIncreaseAllowance(address(assetConverter), type(uint256).max);
ycrv.safeIncreaseAllowance(address(assetConverter), type(uint256).max);
ycrv.safeIncreaseAllowance(address(stycrv), type(uint256).max);
}
function _totalAssets() internal view override returns (uint256) {
uint256 ycrvAmount = (stycrv.balanceOf(address(this)) *
stycrv.pricePerShare()) / (10 ** stycrv.decimals());
uint256 ycrvPrice = curveYCRVpool.get_dy(1, 0, 10 ** ycrv.decimals());
return ycrvAmount * ycrvPrice / (10 ** ycrv.decimals());
}
function _deposit(
uint256 assets
) internal override {
if (assetConverter.previewSwap(address(crv), address(ycrv), assets) == 0) {
// if we are going to get 0 ycrv, than we are not doing anything and just keep crv at balance
return;
}
uint256 ycrvAmount = assetConverter.safeSwap(address(crv), address(ycrv), assets);
stycrv.deposit(ycrvAmount);
}
function _redeem(uint256 shares) internal override returns(uint256 assets) {
uint256 stycrvShares = shares * stycrv.balanceOf(address(this)) / totalSupply();
if (stycrvShares == 0) return 0;
uint256 ycrvAmount = stycrv.withdraw(stycrvShares, address(this));
if (ycrvAmount == 0) return 0;
assets = assetConverter.safeSwap(address(ycrv), address(crv), ycrvAmount);
}
}
// File: WrappedERC4626YearnCRVAave.sol
contract WrappedERC4626YearnCRVAave is ApyFlowVault {
using SafeERC20 for IERC20Metadata;
using PricesLibrary for ChainlinkPriceFeedAggregator;
using AaveLibrary for AaveLibrary.Data;
using SafeAssetConverter for AssetConverter;
IERC20Metadata public immutable crv;
WrappedERC4626YearnCRVAave public immutable crvVault;
AaveLibrary.Data public aave;
AssetConverter public immutable assetConverter;
ChainlinkPriceFeedAggregator public immutable pricesOracle;
uint256 public immutable ltvForRebalancing;
constructor(
AaveLibrary.Data memory _aave,
IERC20Metadata asset_,
uint256 _ltvForRebalancing,
WrappedERC4626YearnCRVAave _crvVault,
ChainlinkPriceFeedAggregator _pricesOracle,
AssetConverter _assetConverter,
string memory name,
string memory symbol
) ApyFlowVault(asset_) ERC20(name, symbol) {
crvVault = _crvVault;
crv = IERC20Metadata(crvVault.asset());
aave = _aave;
ltvForRebalancing = _ltvForRebalancing;
assetConverter = _assetConverter;
pricesOracle = _pricesOracle;
require(aave.tokenToBorrow == address(crv), "Crv should be borrowed");
require(asset() == aave.collateral, "Asset should be collateral");
aave.performApprovals();
Utils.approveIfZeroAllowance(address(crv), address(crvVault));
Utils.approveIfZeroAllowance(address(crv), address(assetConverter));
Utils.approveIfZeroAllowance(asset(), address(assetConverter));
}
function _totalAssets() internal view override returns (uint256 assets) {
uint256 valueInUSD;
uint256 crvAtVault = crvVault.convertToAssets(
crvVault.balanceOf(address(this))
);
valueInUSD += pricesOracle.convertToUSD(address(crv), crvAtVault);
valueInUSD += pricesOracle.convertToUSD(
asset(),
aave.getCurrentCollateralSupply()
);
valueInUSD -= pricesOracle.convertToUSD(
address(crv),
aave.getCurrentDebt()
);
assets = pricesOracle.convertFromUSD(valueInUSD, asset());
}
function _deposit(uint256 assets) internal override {
aave.supply(assets);
uint256 neededDebt = aave.getNeededDebt(
aave.getCurrentCollateralSupply(),
aave.ltv
);
uint256 currentDebt = aave.getCurrentDebt();
if (currentDebt < neededDebt) {
uint256 amount = neededDebt - currentDebt;
aave.borrow(amount);
crvVault.deposit(amount, address(this));
}
}
function _redeem(
uint256 shares
) internal override returns (uint256 assets) {
uint256 lps = (crvVault.balanceOf(address(this)) * shares) /
totalSupply();
uint256 crvAmount = crvVault.redeem(lps, address(this), address(this));
uint256 amountToRepay = (aave.getCurrentDebt() * shares) /
totalSupply();
uint256 currentCollateral = aave.getCurrentCollateralSupply();
uint256 amountToWithdraw = (currentCollateral * shares) / totalSupply();
if (crvAmount >= amountToRepay) {
aave.repay(amountToRepay);
assets += assetConverter.safeSwap(
address(crv),
asset(),
crvAmount - amountToRepay
);
aave.withdraw(amountToWithdraw);
assets += amountToWithdraw;
} else {
aave.repay(crvAmount);
// see executeOperation() function
aave.flashloan(
asset(),
pricesOracle.convert(
address(crv),
asset(),
amountToRepay - crvAmount
)
);
uint256 neededCollateralAmount = currentCollateral -
amountToWithdraw;
// we withdraw some collateral during flashloan, so we need to update this value
currentCollateral = aave.getCurrentCollateralSupply();
if (currentCollateral > neededCollateralAmount) {
amountToWithdraw = currentCollateral - neededCollateralAmount;
}
}
aave.withdraw(amountToWithdraw);
assets += amountToWithdraw;
}
// this function is called by Aave during flashloan
function executeOperation(
address _asset,
uint256 _amount,
uint256 _premium,
address _initiator,
bytes calldata
) external returns (bool) {
require(_initiator == address(this), "invalid flashloan initiator");
require(_asset == asset(), "invalid flashloan asset");
uint256 amountToRepay = assetConverter.safeSwap(
asset(),
address(crv),
_amount
);
aave.repay(amountToRepay);
uint256 amountToWithdraw = _amount + _premium;
aave.withdraw(amountToWithdraw);
return true;
}
function getCurrentDebt() external view returns(uint256) {
return aave.getCurrentDebt();
}
function rebalance() external {
require(aave.getCurrentLtv() >= ltvForRebalancing, "LTV is OK");
uint256 collateral = aave.getCurrentCollateralSupply();
uint256 debt = aave.getCurrentDebt();
uint256 neededDebt = aave.getNeededDebt(collateral, aave.ltv);
uint256 amountToRepay = debt - neededDebt;
uint256 balanceAtVault = crvVault.balanceOf(address(this));
uint256 sharesToRedeem = (balanceAtVault * amountToRepay) /
crvVault.convertToAssets(balanceAtVault);
uint256 crvAmount = crvVault.redeem(
sharesToRedeem,
address(this),
address(this)
);
aave.repay(crvAmount);
}
}
{
"compilationTarget": {
"WrappedERC4626YearnCRVAave.sol": "WrappedERC4626YearnCRVAave"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"components":[{"internalType":"contract IAavePool","name":"aavePool","type":"address"},{"internalType":"contract IAavePriceOracle","name":"aavePriceOracle","type":"address"},{"internalType":"address","name":"tokenToBorrow","type":"address"},{"internalType":"address","name":"collateral","type":"address"},{"internalType":"uint256","name":"ltv","type":"uint256"}],"internalType":"struct AaveLibrary.Data","name":"_aave","type":"tuple"},{"internalType":"contract IERC20Metadata","name":"asset_","type":"address"},{"internalType":"uint256","name":"_ltvForRebalancing","type":"uint256"},{"internalType":"contract WrappedERC4626YearnCRVAave","name":"_crvVault","type":"address"},{"internalType":"contract ChainlinkPriceFeedAggregator","name":"_pricesOracle","type":"address"},{"internalType":"contract AssetConverter","name":"_assetConverter","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"aave","outputs":[{"internalType":"contract IAavePool","name":"aavePool","type":"address"},{"internalType":"contract IAavePriceOracle","name":"aavePriceOracle","type":"address"},{"internalType":"address","name":"tokenToBorrow","type":"address"},{"internalType":"address","name":"collateral","type":"address"},{"internalType":"uint256","name":"ltv","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"assetConverter","outputs":[{"internalType":"contract AssetConverter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"value","type":"uint256"}],"internalType":"struct SuperAdminControl.CallData[]","name":"calls","type":"tuple[]"}],"name":"call","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"convertToAssets","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"crv","outputs":[{"internalType":"contract IERC20Metadata","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"crvVault","outputs":[{"internalType":"contract WrappedERC4626YearnCRVAave","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_asset","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_premium","type":"uint256"},{"internalType":"address","name":"_initiator","type":"address"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"executeOperation","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getCurrentDebt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lastTotalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ltvForRebalancing","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pricePerToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pricesOracle","outputs":[{"internalType":"contract ChainlinkPriceFeedAggregator","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rebalance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]