账户
0x0a...ac38
0x0a...AC38

0x0a...AC38

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.20+commit.a1b79de6
语言
Solidity
合同源代码
文件 1 的 18:AccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}
合同源代码
文件 2 的 18:BoringBatchable.sol
// File @boringcrypto/boring-solidity/contracts/BoringBatchable.sol@v1.0.4

// Audit on 5-Jan-2021 by Keno and BoringCrypto

// P1 - P3: OK
pragma solidity 0.8.20;
// solhint-disable avoid-low-level-calls
// T1 - T4: OK

import {IERC20} from "src/Sushi/IERC20.sol";

contract BaseBoringBatchable {
    function _getRevertMsg(bytes memory _returnData) internal pure returns (string memory) {
        // If the _res length is less than 68, then the transaction failed silently (without a revert message)
        if (_returnData.length < 68) return "Transaction reverted silently";

        assembly {
            // Slice the sighash.
            _returnData := add(_returnData, 0x04)
        }
        return abi.decode(_returnData, (string)); // All that remains is the revert string
    }

    // F3 - F9: OK
    // F1: External is ok here because this is the batch function, adding it to a batch makes no sense
    // F2: Calls in the batch may be payable, delegatecall operates in the same context, so each call in the batch has access to msg.value
    // C1 - C21: OK
    // C3: The length of the loop is fully under user control, so can't be exploited
    // C7: Delegatecall is only used on the same contract, so it's safe
    function batch(bytes[] calldata calls, bool revertOnFail)
        external
        payable
        returns (bool[] memory successes, bytes[] memory results)
    {
        // Interactions
        successes = new bool[](calls.length);
        results = new bytes[](calls.length);
        for (uint256 i = 0; i < calls.length; i++) {
            (bool success, bytes memory result) = address(this).delegatecall(calls[i]);
            require(success || !revertOnFail, _getRevertMsg(result));
            successes[i] = success;
            results[i] = result;
        }
    }
}

// T1 - T4: OK
contract BoringBatchable is BaseBoringBatchable {
    // F1 - F9: OK
    // F6: Parameters can be used front-run the permit and the user's permit will fail (due to nonce or other revert)
    //     if part of a batch this could be used to grief once as the second call would not need the permit
    // C1 - C21: OK
    function permitToken(
        IERC20 token,
        address from,
        address to,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public {
        // Interactions
        // X1 - X5
        token.permit(from, to, amount, deadline, v, r, s);
    }
}
合同源代码
文件 3 的 18:BoringERC20.sol
// File @boringcrypto/boring-solidity/contracts/libraries/BoringERC20.sol@v1.0.4

pragma solidity 0.8.20;

import {IERC20} from "src/Sushi/IERC20.sol";

library BoringERC20 {
    function safeSymbol(IERC20 token) internal view returns (string memory) {
        (bool success, bytes memory data) = address(token).staticcall(abi.encodeWithSelector(0x95d89b41));
        return success && data.length > 0 ? abi.decode(data, (string)) : "???";
    }

    function safeName(IERC20 token) internal view returns (string memory) {
        (bool success, bytes memory data) = address(token).staticcall(abi.encodeWithSelector(0x06fdde03));
        return success && data.length > 0 ? abi.decode(data, (string)) : "???";
    }

    function safeDecimals(IERC20 token) internal view returns (uint8) {
        (bool success, bytes memory data) = address(token).staticcall(abi.encodeWithSelector(0x313ce567));
        return success && data.length == 32 ? abi.decode(data, (uint8)) : 18;
    }

    function safeTransfer(IERC20 token, address to, uint256 amount) internal {
        (bool success, bytes memory data) = address(token).call(abi.encodeWithSelector(0xa9059cbb, to, amount));
        require(success && (data.length == 0 || abi.decode(data, (bool))), "BoringERC20: Transfer failed");
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint256 amount) internal {
        (bool success, bytes memory data) = address(token).call(abi.encodeWithSelector(0x23b872dd, from, to, amount));
        require(success && (data.length == 0 || abi.decode(data, (bool))), "BoringERC20: TransferFrom failed");
    }
}
合同源代码
文件 4 的 18:BoringMath.sol
// File @boringcrypto/boring-solidity/contracts/libraries/BoringMath.sol@v1.0.4

// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

library BoringMath {
    function add(uint256 a, uint256 b) internal pure returns (uint256 c) {
        require((c = a + b) >= b, "BoringMath: Add Overflow");
    }

    function sub(uint256 a, uint256 b) internal pure returns (uint256 c) {
        require((c = a - b) <= a, "BoringMath: Underflow");
    }

    function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
        require(b == 0 || (c = a * b) / b == a, "BoringMath: Mul Overflow");
    }

    function to128(uint256 a) internal pure returns (uint128 c) {
        require(a <= type(uint128).max, "BoringMath: uint128 Overflow");
        c = uint128(a);
    }

    function to64(uint256 a) internal pure returns (uint64 c) {
        require(a <= type(uint64).max, "BoringMath: uint64 Overflow");
        c = uint64(a);
    }

    function to32(uint256 a) internal pure returns (uint32 c) {
        require(a <= type(uint32).max, "BoringMath: uint32 Overflow");
        c = uint32(a);
    }
}

library BoringMath128 {
    function add(uint128 a, uint128 b) internal pure returns (uint128 c) {
        require((c = a + b) >= b, "BoringMath: Add Overflow");
    }

    function sub(uint128 a, uint128 b) internal pure returns (uint128 c) {
        require((c = a - b) <= a, "BoringMath: Underflow");
    }
}

library BoringMath64 {
    function add(uint64 a, uint64 b) internal pure returns (uint64 c) {
        require((c = a + b) >= b, "BoringMath: Add Overflow");
    }

    function sub(uint64 a, uint64 b) internal pure returns (uint64 c) {
        require((c = a - b) <= a, "BoringMath: Underflow");
    }
}

library BoringMath32 {
    function add(uint32 a, uint32 b) internal pure returns (uint32 c) {
        require((c = a + b) >= b, "BoringMath: Add Overflow");
    }

    function sub(uint32 a, uint32 b) internal pure returns (uint32 c) {
        require((c = a - b) <= a, "BoringMath: Underflow");
    }
}
合同源代码
文件 5 的 18:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
合同源代码
文件 6 的 18:ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
合同源代码
文件 7 的 18:Governable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import {AccessControl} from "openzeppelin-contracts/contracts/access/AccessControl.sol";

abstract contract Governable is AccessControl {
    bytes32 public constant GOVERNOR = bytes32("GOVERNOR");

    constructor(address _governor) {
        _grantRole(GOVERNOR, _governor);
    }

    modifier onlyGovernor() {
        _onlyGovernor();
        _;
    }

    function updateGovernor(address _newGovernor) external onlyGovernor {
        _revokeRole(GOVERNOR, msg.sender);
        _grantRole(GOVERNOR, _newGovernor);

        emit GovernorUpdated(msg.sender, _newGovernor);
    }

    function _onlyGovernor() private view {
        if (!hasRole(GOVERNOR, msg.sender)) {
            revert CallerIsNotGovernor();
        }
    }

    event GovernorUpdated(address _oldGovernor, address _newGovernor);

    error CallerIsNotGovernor();
}
合同源代码
文件 8 的 18:IAccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}
合同源代码
文件 9 的 18:IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
合同源代码
文件 10 的 18:IERC20.sol
// File @boringcrypto/boring-solidity/contracts/interfaces/IERC20.sol@v1.0.4

pragma solidity 0.8.20;

interface IERC20 {
    function totalSupply() external view returns (uint256);
    function balanceOf(address account) external view returns (uint256);
    function allowance(address owner, address spender) external view returns (uint256);
    function approve(address spender, uint256 amount) external returns (bool);

    event Transfer(address indexed from, address indexed to, uint256 value);
    event Approval(address indexed owner, address indexed spender, uint256 value);

    // EIP 2612
    function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
        external;
}
合同源代码
文件 11 的 18:IMigratorChef.sol
// File contracts/MiniChefV2.sol

pragma solidity 0.8.20;

import {IERC20} from "src/Sushi/IERC20.sol";

interface IMigratorChef {
    // Take the current LP token address and return the new LP token address.
    // Migrator should have full access to the caller's LP token.
    function migrate(IERC20 token) external returns (IERC20);
}
合同源代码
文件 12 的 18:IRewarder.sol
// File contracts/interfaces/IRewarder.sol

pragma solidity 0.8.20;

import {IERC20} from "src/Sushi/IERC20.sol";

interface IRewarder {
    function onSushiReward(uint256 pid, address user, address recipient, uint256 sushiAmount, uint256 newLpAmount)
        external;
    function pendingTokens(uint256 pid, address user, uint256 sushiAmount)
        external
        view
        returns (IERC20[] memory, uint256[] memory);
}
合同源代码
文件 13 的 18:Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
合同源代码
文件 14 的 18:MiniChefV2.sol
pragma solidity 0.8.20;

/// @notice The (older) MasterChef contract gives out a constant number of SUSHI tokens per block.
/// It is the only address with minting rights for SUSHI.
/// The idea for this MasterChef V2 (MCV2) contract is therefore to be the owner of a dummy token
/// that is deposited into the MasterChef V1 (MCV1) contract.
/// The allocation point for this pool on MCV1 is the total allocation point for all pools that receive double incentives.

import {IERC20} from "src/Sushi/IERC20.sol";
import {SignedSafeMath} from "src/Sushi/SignedSafeMath.sol";
import {BoringMath, BoringMath128} from "src/Sushi/BoringMath.sol";
import {BoringERC20} from "src/Sushi/BoringERC20.sol";
import {Operable, Governable} from "src/common/Operable.sol";
import {BoringBatchable} from "src/Sushi/BoringBatchable.sol";
import {IMigratorChef} from "src/Sushi/IMigratorChef.sol";
import {IRewarder} from "src/Sushi/IRewarder.sol";

contract MiniChefV2 is Operable, BoringBatchable {
    using BoringMath for uint256;
    using BoringMath128 for uint128;
    using BoringERC20 for IERC20;
    using SignedSafeMath for int256;

    /// @notice Info of each MCV2 user.
    /// `amount` LP token amount the user has provided.
    /// `rewardDebt` The amount of SUSHI entitled to the user.
    struct UserInfo {
        uint256 amount;
        int256 rewardDebt;
    }

    /// @notice Info of each MCV2 pool.
    /// `allocPoint` The amount of allocation points assigned to the pool.
    /// Also known as the amount of SUSHI to distribute per block.
    struct PoolInfo {
        uint128 accSushiPerShare;
        uint64 lastRewardTime;
        uint64 allocPoint;
        uint256 depositIncentives;
    }

    /// @notice Address of SUSHI contract.
    IERC20 public immutable SUSHI;
    // @notice The migrator contract. It has a lot of power. Can only be set through governance (owner).
    IMigratorChef public migrator;

    /// @notice Info of each MCV2 pool.
    PoolInfo[] public poolInfo;
    /// @notice Address of the LP token for each MCV2 pool.
    IERC20[] public lpToken;
    /// @notice Address of each `IRewarder` contract in MCV2.
    IRewarder[] public rewarder;

    /// @notice Info of each user that stakes LP tokens.
    mapping(uint256 => mapping(address => UserInfo)) public userInfo;
    /// @dev Total allocation points. Must be the sum of all allocation points in all pools.
    uint256 public totalAllocPoint;

    uint256 public sushiPerSecond;
    uint256 private constant ACC_SUSHI_PRECISION = 1e12;

    /// @notice Extra vars
    uint256 public deadline;
    bool public incentivesOn;
    address public incentiveReceiver;
    /// @notice poolId => deposit incentives
    mapping(uint256 => uint256) depositIncentives;

    event Deposit(address indexed user, uint256 indexed pid, uint256 amount, address indexed to, uint256 incentive);
    event Withdraw(address indexed user, uint256 indexed pid, uint256 amount, address indexed to);
    event EmergencyWithdraw(address indexed user, uint256 indexed pid, uint256 amount, address indexed to);
    event Harvest(address indexed user, uint256 indexed pid, uint256 amount);
    event LogPoolAddition(uint256 indexed pid, uint256 allocPoint, IERC20 indexed lpToken, IRewarder indexed rewarder);
    event LogSetPool(uint256 indexed pid, uint256 allocPoint, IRewarder indexed rewarder, bool overwrite);
    event LogUpdatePool(uint256 indexed pid, uint64 lastRewardTime, uint256 lpSupply, uint256 accSushiPerShare);
    event LogSushiPerSecond(uint256 sushiPerSecond);

    /// @param _sushi The SUSHI token contract address.
    constructor(IERC20 _sushi, address _incentiveReceiver) Governable(msg.sender) {
        SUSHI = _sushi;
        deadline = 1706745599;
        incentivesOn = true;
        incentiveReceiver = _incentiveReceiver;
    }

    /// @notice Returns the number of MCV2 pools.
    function poolLength() public view returns (uint256 pools) {
        pools = poolInfo.length;
    }

    /// @notice Add a new LP to the pool. Can only be called by the owner.
    /// DO NOT add the same LP token more than once. Rewards will be messed up if you do.
    /// @param allocPoint AP of the new pool.
    /// @param _lpToken Address of the LP ERC-20 token.
    /// @param _rewarder Address of the rewarder delegate.
    function add(uint256 allocPoint, IERC20 _lpToken, IRewarder _rewarder, uint256 _depositIncentives)
        public
        onlyGovernor
    {
        totalAllocPoint = totalAllocPoint.add(allocPoint);
        lpToken.push(_lpToken);
        rewarder.push(_rewarder);

        poolInfo.push(
            PoolInfo({
                allocPoint: allocPoint.to64(),
                lastRewardTime: block.timestamp.to64(),
                accSushiPerShare: 0,
                depositIncentives: _depositIncentives
            })
        );
        emit LogPoolAddition(lpToken.length.sub(1), allocPoint, _lpToken, _rewarder);
    }

    /// @notice Update the given pool's SUSHI allocation point and `IRewarder` contract. Can only be called by the owner.
    /// @param _pid The index of the pool. See `poolInfo`.
    /// @param _allocPoint New AP of the pool.
    /// @param _rewarder Address of the rewarder delegate.
    /// @param overwrite True if _rewarder should be `set`. Otherwise `_rewarder` is ignored.
    function set(uint256 _pid, uint256 _allocPoint, IRewarder _rewarder, bool overwrite)
        public
        onlyGovernorOrOperator
    {
        totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
        poolInfo[_pid].allocPoint = _allocPoint.to64();
        if (overwrite) rewarder[_pid] = _rewarder;
        emit LogSetPool(_pid, _allocPoint, overwrite ? _rewarder : rewarder[_pid], overwrite);
    }

    /// @notice Sets the sushi per second to be distributed. Can only be called by the owner.
    /// @param _sushiPerSecond The amount of Sushi to be distributed per second.
    function setSushiPerSecond(uint256 _sushiPerSecond) public onlyGovernor {
        sushiPerSecond = _sushiPerSecond;
        emit LogSushiPerSecond(_sushiPerSecond);
    }

    /// @notice Toggle incentives, if is it true it mean incentives are ON
    function toggleIncentives() public onlyGovernor {
        incentivesOn = !incentivesOn;
    }

    /// @notice Sets the rewards deadline. Can only be called by the owner.
    /// @param _deadline The timestmap for rewards deadline.
    function setDeadline(uint256 _deadline) public onlyGovernor {
        deadline = _deadline;
    }

    /// @notice Set the `migrator` contract. Can only be called by the owner.
    /// @param _migrator The contract address to set.
    function setMigrator(IMigratorChef _migrator) public onlyGovernor {
        migrator = _migrator;
    }

    /// @notice Migrate LP token to another LP contract through the `migrator` contract.
    /// @param _pid The index of the pool. See `poolInfo`.
    function migrate(uint256 _pid) public {
        require(address(migrator) != address(0), "MasterChefV2: no migrator set");
        IERC20 _lpToken = lpToken[_pid];
        uint256 bal = _lpToken.balanceOf(address(this));
        _lpToken.approve(address(migrator), bal);
        IERC20 newLpToken = migrator.migrate(_lpToken);
        require(bal == newLpToken.balanceOf(address(this)), "MasterChefV2: migrated balance must match");
        lpToken[_pid] = newLpToken;
    }

    /// @notice View function to see pending SUSHI on frontend.
    /// @param _pid The index of the pool. See `poolInfo`.
    /// @param _user Address of user.
    /// @return pending SUSHI reward for a given user.
    function pendingSushi(uint256 _pid, address _user) external view returns (uint256 pending) {
        PoolInfo memory pool = poolInfo[_pid];
        UserInfo storage user = userInfo[_pid][_user];
        uint256 accSushiPerShare = pool.accSushiPerShare;
        uint256 lpSupply = lpToken[_pid].balanceOf(address(this));

        if (block.timestamp > pool.lastRewardTime && lpSupply != 0) {
            uint256 time = block.timestamp.sub(pool.lastRewardTime);
            uint256 sushiReward = time.mul(sushiPerSecond).mul(pool.allocPoint) / totalAllocPoint;
            accSushiPerShare = accSushiPerShare.add(sushiReward.mul(ACC_SUSHI_PRECISION) / lpSupply);
        }
        pending = int256(user.amount.mul(accSushiPerShare) / ACC_SUSHI_PRECISION).sub(user.rewardDebt).toUInt256();
    }

    /// @notice Update reward variables for all pools. Be careful of gas spending!
    /// @param pids Pool IDs of all to be updated. Make sure to update all active pools.
    function massUpdatePools(uint256[] calldata pids) external {
        uint256 len = pids.length;
        for (uint256 i = 0; i < len; ++i) {
            updatePool(pids[i]);
        }
    }

    /// @notice Update reward variables of the given pool.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @return pool Returns the pool that was updated.
    function updatePool(uint256 pid) public returns (PoolInfo memory pool) {
        pool = poolInfo[pid];
        if (block.timestamp >= deadline) {
            setSushiPerSecond(0);
        }
        if (block.timestamp > pool.lastRewardTime) {
            uint256 lpSupply = lpToken[pid].balanceOf(address(this));
            if (lpSupply > 0) {
                uint256 time = block.timestamp.sub(pool.lastRewardTime);
                uint256 sushiReward = time.mul(sushiPerSecond).mul(pool.allocPoint) / totalAllocPoint;
                pool.accSushiPerShare =
                    pool.accSushiPerShare.add((sushiReward.mul(ACC_SUSHI_PRECISION) / lpSupply).to128());
            }
            pool.lastRewardTime = block.timestamp.to64();
            poolInfo[pid] = pool;
            emit LogUpdatePool(pid, pool.lastRewardTime, lpSupply, pool.accSushiPerShare);
        }
    }

    /// @notice Deposit LP tokens to MCV2 for SUSHI allocation.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param amount LP token amount to deposit.
    /// @param to The receiver of `amount` deposit benefit.
    function deposit(uint256 pid, uint256 amount, address to) public {
        PoolInfo memory pool = updatePool(pid);
        UserInfo storage user = userInfo[pid][to];

        uint256 incentive;

        if (incentivesOn && pool.depositIncentives != 0 && incentiveReceiver != address(0)) {
            incentive = amount.mul(pool.depositIncentives) / ACC_SUSHI_PRECISION;
            lpToken[pid].safeTransferFrom(msg.sender, incentiveReceiver, incentive);
        }

        amount = amount - incentive;

        // Effects
        user.amount = user.amount.add(amount);
        user.rewardDebt = user.rewardDebt.add(int256(amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION));

        // Interactions
        IRewarder _rewarder = rewarder[pid];
        if (address(_rewarder) != address(0)) {
            _rewarder.onSushiReward(pid, to, to, 0, user.amount);
        }

        lpToken[pid].safeTransferFrom(msg.sender, address(this), amount);

        emit Deposit(msg.sender, pid, amount, to, incentive);
    }

    /// @notice Withdraw LP tokens from MCV2.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param amount LP token amount to withdraw.
    /// @param to Receiver of the LP tokens.
    function withdraw(uint256 pid, uint256 amount, address to) public {
        PoolInfo memory pool = updatePool(pid);
        UserInfo storage user = userInfo[pid][msg.sender];

        // Effects
        user.rewardDebt = user.rewardDebt.sub(int256(amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION));
        user.amount = user.amount.sub(amount);

        // Interactions
        IRewarder _rewarder = rewarder[pid];
        if (address(_rewarder) != address(0)) {
            _rewarder.onSushiReward(pid, msg.sender, to, 0, user.amount);
        }

        lpToken[pid].safeTransfer(to, amount);

        emit Withdraw(msg.sender, pid, amount, to);
    }

    /// @notice Harvest proceeds for transaction sender to `to`.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param to Receiver of SUSHI rewards.
    function harvest(uint256 pid, address to) public {
        PoolInfo memory pool = updatePool(pid);
        UserInfo storage user = userInfo[pid][msg.sender];
        int256 accumulatedSushi = int256(user.amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION);
        uint256 _pendingSushi = accumulatedSushi.sub(user.rewardDebt).toUInt256();

        // Effects
        user.rewardDebt = accumulatedSushi;

        // Interactions
        if (_pendingSushi != 0) {
            SUSHI.safeTransfer(to, _pendingSushi);
        }

        IRewarder _rewarder = rewarder[pid];
        if (address(_rewarder) != address(0)) {
            _rewarder.onSushiReward(pid, msg.sender, to, _pendingSushi, user.amount);
        }

        emit Harvest(msg.sender, pid, _pendingSushi);
    }

    /// @notice Withdraw LP tokens from MCV2 and harvest proceeds for transaction sender to `to`.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param amount LP token amount to withdraw.
    /// @param to Receiver of the LP tokens and SUSHI rewards.
    function withdrawAndHarvest(uint256 pid, uint256 amount, address to) public {
        PoolInfo memory pool = updatePool(pid);
        UserInfo storage user = userInfo[pid][msg.sender];
        int256 accumulatedSushi = int256(user.amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION);
        uint256 _pendingSushi = accumulatedSushi.sub(user.rewardDebt).toUInt256();

        // Effects
        user.rewardDebt = accumulatedSushi.sub(int256(amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION));
        user.amount = user.amount.sub(amount);

        // Interactions
        SUSHI.safeTransfer(to, _pendingSushi);

        IRewarder _rewarder = rewarder[pid];
        if (address(_rewarder) != address(0)) {
            _rewarder.onSushiReward(pid, msg.sender, to, _pendingSushi, user.amount);
        }

        lpToken[pid].safeTransfer(to, amount);

        emit Withdraw(msg.sender, pid, amount, to);
        emit Harvest(msg.sender, pid, _pendingSushi);
    }

    /// @notice Withdraw without caring about rewards. EMERGENCY ONLY.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param to Receiver of the LP tokens.
    function emergencyWithdraw(uint256 pid, address to) public {
        UserInfo storage user = userInfo[pid][msg.sender];
        uint256 amount = user.amount;
        user.amount = 0;
        user.rewardDebt = 0;

        IRewarder _rewarder = rewarder[pid];
        if (address(_rewarder) != address(0)) {
            _rewarder.onSushiReward(pid, msg.sender, to, 0, 0);
        }

        // Note: transfer can fail or succeed if `amount` is zero.
        lpToken[pid].safeTransfer(to, amount);
        emit EmergencyWithdraw(msg.sender, pid, amount, to);
    }

    /**
     * @notice Moves assets from the strategy to `_to`
     * @param _assets An array of IERC20 compatible tokens to move out from the strategy
     * @param _withdrawNative `true` if we want to move the native asset from the strategy
     */
    function emergencyWithdraw(address _to, address[] memory _assets, bool _withdrawNative) external onlyGovernor {
        uint256 assetsLength = _assets.length;
        for (uint256 i = 0; i < assetsLength; i++) {
            IERC20 asset = IERC20(_assets[i]);
            uint256 assetBalance = asset.balanceOf(address(this));

            if (assetBalance > 0) {
                // Transfer the ERC20 tokens
                asset.safeTransfer(_to, assetBalance);
            }

            unchecked {
                ++i;
            }
        }

        uint256 nativeBalance = address(this).balance;

        // Nothing else to do
        if (_withdrawNative && nativeBalance > 0) {
            // Transfer the native currency
            (bool sent,) = payable(_to).call{value: nativeBalance}("");
            if (!sent) {
                revert FailSendETH();
            }
        }

        emit EmergencyWithdrawal(msg.sender, _to, _assets, _withdrawNative ? nativeBalance : 0);
    }

    /**
     * @notice Update pool deposit incentives
     * @param pid Pool id
     * @param _depositIncentives amount of incentives when deposit
     */
    function updatePoolIncentive(uint256 pid, uint256 _depositIncentives) external onlyGovernor {
        poolInfo[pid].depositIncentives = _depositIncentives;
    }

    event EmergencyWithdrawal(address indexed caller, address indexed receiver, address[] tokens, uint256 nativeBalanc);

    error FailSendETH();
}
合同源代码
文件 15 的 18:Operable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import {Governable} from "src/common/Governable.sol";

abstract contract Operable is Governable {
    bytes32 public constant OPERATOR = bytes32("OPERATOR");

    modifier onlyOperator() {
        if (!hasRole(OPERATOR, msg.sender)) {
            revert CallerIsNotOperator();
        }

        _;
    }

    modifier onlyGovernorOrOperator() {
        if (!(hasRole(GOVERNOR, msg.sender) || hasRole(OPERATOR, msg.sender))) {
            revert CallerIsNotAllowed();
        }

        _;
    }

    function addOperator(address _newOperator) external onlyGovernor {
        _grantRole(OPERATOR, _newOperator);

        emit OperatorAdded(_newOperator);
    }

    function removeOperator(address _operator) external onlyGovernor {
        _revokeRole(OPERATOR, _operator);

        emit OperatorRemoved(_operator);
    }

    event OperatorAdded(address _newOperator);
    event OperatorRemoved(address _operator);

    error CallerIsNotOperator();
    error CallerIsNotAllowed();
}
合同源代码
文件 16 的 18:SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
合同源代码
文件 17 的 18:SignedSafeMath.sol
// File contracts/libraries/SignedSafeMath.sol

pragma solidity 0.8.20;

library SignedSafeMath {
    int256 private constant _INT256_MIN = -2 ** 255;

    /**
     * @dev Returns the multiplication of two signed integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(int256 a, int256 b) internal pure returns (int256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow");

        int256 c = a * b;
        require(c / a == b, "SignedSafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two signed integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(int256 a, int256 b) internal pure returns (int256) {
        require(b != 0, "SignedSafeMath: division by zero");
        require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow");

        int256 c = a / b;

        return c;
    }

    /**
     * @dev Returns the subtraction of two signed integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a - b;
        require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow");

        return c;
    }

    /**
     * @dev Returns the addition of two signed integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a + b;
        require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow");

        return c;
    }

    function toUInt256(int256 a) internal pure returns (uint256) {
        require(a >= 0, "Integer < 0");
        return uint256(a);
    }
}
合同源代码
文件 18 的 18:Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
设置
{
  "compilationTarget": {
    "src/Sushi/MiniChefV2.sol": "MiniChefV2"
  },
  "evmVersion": "paris",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "remappings": [
    ":ds-test/=lib/solmate/lib/ds-test/src/",
    ":erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    ":forge-std/=lib/forge-std/src/",
    ":openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    ":openzeppelin-contracts/=lib/openzeppelin-contracts/",
    ":openzeppelin-upgradeable-contracts/=lib/openzeppelin-contracts-upgradeable/contracts/",
    ":openzeppelin/=lib/openzeppelin-contracts-upgradeable/contracts/",
    ":solmate/=lib/solmate/src/"
  ]
}
ABI
[{"inputs":[{"internalType":"contract IERC20","name":"_sushi","type":"address"},{"internalType":"address","name":"_incentiveReceiver","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"CallerIsNotAllowed","type":"error"},{"inputs":[],"name":"CallerIsNotGovernor","type":"error"},{"inputs":[],"name":"CallerIsNotOperator","type":"error"},{"inputs":[],"name":"FailSendETH","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"incentive","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"EmergencyWithdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"address[]","name":"tokens","type":"address[]"},{"indexed":false,"internalType":"uint256","name":"nativeBalanc","type":"uint256"}],"name":"EmergencyWithdrawal","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_oldGovernor","type":"address"},{"indexed":false,"internalType":"address","name":"_newGovernor","type":"address"}],"name":"GovernorUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Harvest","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"allocPoint","type":"uint256"},{"indexed":true,"internalType":"contract IERC20","name":"lpToken","type":"address"},{"indexed":true,"internalType":"contract IRewarder","name":"rewarder","type":"address"}],"name":"LogPoolAddition","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"allocPoint","type":"uint256"},{"indexed":true,"internalType":"contract IRewarder","name":"rewarder","type":"address"},{"indexed":false,"internalType":"bool","name":"overwrite","type":"bool"}],"name":"LogSetPool","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"sushiPerSecond","type":"uint256"}],"name":"LogSushiPerSecond","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint64","name":"lastRewardTime","type":"uint64"},{"indexed":false,"internalType":"uint256","name":"lpSupply","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"accSushiPerShare","type":"uint256"}],"name":"LogUpdatePool","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_newOperator","type":"address"}],"name":"OperatorAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_operator","type":"address"}],"name":"OperatorRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"GOVERNOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPERATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SUSHI","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"allocPoint","type":"uint256"},{"internalType":"contract IERC20","name":"_lpToken","type":"address"},{"internalType":"contract IRewarder","name":"_rewarder","type":"address"},{"internalType":"uint256","name":"_depositIncentives","type":"uint256"}],"name":"add","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newOperator","type":"address"}],"name":"addOperator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"calls","type":"bytes[]"},{"internalType":"bool","name":"revertOnFail","type":"bool"}],"name":"batch","outputs":[{"internalType":"bool[]","name":"successes","type":"bool[]"},{"internalType":"bytes[]","name":"results","type":"bytes[]"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"deadline","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"pid","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"pid","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"emergencyWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"address[]","name":"_assets","type":"address[]"},{"internalType":"bool","name":"_withdrawNative","type":"bool"}],"name":"emergencyWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"pid","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"harvest","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"incentiveReceiver","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"incentivesOn","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"lpToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"pids","type":"uint256[]"}],"name":"massUpdatePools","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"migrate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"migrator","outputs":[{"internalType":"contract IMigratorChef","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"address","name":"_user","type":"address"}],"name":"pendingSushi","outputs":[{"internalType":"uint256","name":"pending","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permitToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"poolInfo","outputs":[{"internalType":"uint128","name":"accSushiPerShare","type":"uint128"},{"internalType":"uint64","name":"lastRewardTime","type":"uint64"},{"internalType":"uint64","name":"allocPoint","type":"uint64"},{"internalType":"uint256","name":"depositIncentives","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolLength","outputs":[{"internalType":"uint256","name":"pools","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_operator","type":"address"}],"name":"removeOperator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewarder","outputs":[{"internalType":"contract IRewarder","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_allocPoint","type":"uint256"},{"internalType":"contract IRewarder","name":"_rewarder","type":"address"},{"internalType":"bool","name":"overwrite","type":"bool"}],"name":"set","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_deadline","type":"uint256"}],"name":"setDeadline","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IMigratorChef","name":"_migrator","type":"address"}],"name":"setMigrator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_sushiPerSecond","type":"uint256"}],"name":"setSushiPerSecond","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sushiPerSecond","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"toggleIncentives","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalAllocPoint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newGovernor","type":"address"}],"name":"updateGovernor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"pid","type":"uint256"}],"name":"updatePool","outputs":[{"components":[{"internalType":"uint128","name":"accSushiPerShare","type":"uint128"},{"internalType":"uint64","name":"lastRewardTime","type":"uint64"},{"internalType":"uint64","name":"allocPoint","type":"uint64"},{"internalType":"uint256","name":"depositIncentives","type":"uint256"}],"internalType":"struct MiniChefV2.PoolInfo","name":"pool","type":"tuple"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"pid","type":"uint256"},{"internalType":"uint256","name":"_depositIncentives","type":"uint256"}],"name":"updatePoolIncentive","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"userInfo","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"int256","name":"rewardDebt","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"pid","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"pid","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"withdrawAndHarvest","outputs":[],"stateMutability":"nonpayable","type":"function"}]