// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError, bytes32) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: None
// Developed by Liteflow.com
pragma solidity 0.8.20;
import '@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol';
import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol';
import '@openzeppelin/contracts/access/Ownable.sol';
import '@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol';
import '@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol';
import '@openzeppelin/contracts/utils/ReentrancyGuard.sol';
/**
* @notice Sale Contract
*/
contract Sale is Ownable, ReentrancyGuard {
using SafeERC20 for IERC20Metadata;
/**
* Events
*/
/**
* @notice Deposit event
*/
event Deposit(
address indexed account,
uint256 amount,
uint8 tierLevel,
uint256 fees
);
/**
* @notice Refund event
*/
event Refund(
address indexed account,
uint256 winningAmount,
uint256 loosingAmount
);
/**
* @notice Claim event
*/
event Claim(
address indexed account,
uint256 claimedAmountInToken,
uint256 refundedAmountInCurrency
);
/**
* Errors
*/
/**
* @notice Thrown when sale is full
*/
error HardCapReached();
/**
* @notice Thrown when the deposit period is closed
*/
error DepositClosed();
/**
* @notice Thrown when the refund period is closed
*/
error RefundClosed();
/**
* @notice Thrown when the claim period is closed
*/
error ClaimClosed();
/**
* @notice Thrown when the signature is invalid
*/
error InvalidSignature();
/**
* @notice Thrown when the tier limit is reached
*/
error TierLimitReached();
/**
* @notice Thrown when the amount to transfer is zero
*/
error NothingToTransfer();
/**
* @notice Thrown when the user has already claimed
*/
error AlreadyClaimed();
/**
* @notice Thrown when the user has been already refunded
*/
error AlreadyRefunded();
/**
* @notice Thrown when the dates are invalid
*/
error InvalidDates();
/**
* @notice Thrown when the amount does not respect the deposit increment
*/
error InvalidIncrement();
/**
* @notice Thrown when the winning and loosing amounts are not equal to the deposit amount
*/
error InvalidAmounts();
/**
* @notice Thrown when the total winning amount is reached
*/
error TotalWinningAmountReached();
/**
* @notice Thrown when owner want to withdraw but the claim or refund periods are still open
*/
error WithdrawClosed();
/**
* @notice Thrown when the owner try to change the claim or refund config but it is already set
*/
error ConfigAlreadySet();
/**
* @notice Thrown when the config is not set but required
*/
error ConfigNotSet();
/**
* @notice Thrown when the owner try to withdraw winning amount and fees but it was already done
*/
error AlreadyWithdrawnWinningAmountAndFees();
/**
* Authorizer configuration
*/
/**
* @notice The authorizer wallet
*/
address public authorizer;
/**
* Deposit configuration
*/
/**
* @notice The token to use to participate in the sale
*/
IERC20Metadata public immutable currencyToken;
/**
* @notice The maximum total amount of token to purchase. In currency token.
*/
uint256 public immutable hardCap;
/**
* @notice The limit of each tier. In currency token.
*/
uint256[] private tiersLimit;
/**
* @notice The fees of each tier. In basis point.
*/
uint16[] private tiersFeesBasisPoint;
/**
* @notice The start date of the deposit period
*/
uint32 public immutable depositStartDate;
/**
* @notice The end date of the deposit period
*/
uint32 public immutable depositEndDate;
/**
* @notice The increment in which the deposit amount can be specify. In currency token.
*/
uint256 public immutable depositIncrement;
/**
* Claim configuration
*/
/**
* @notice The token to claim
* @dev If set to the zero address, the claim is not activated yet.
*/
IERC20Metadata public token;
/**
* @notice The numerator price of the token in currency token.
*/
uint256 public tokenPriceNumerator;
/**
* @notice The denominator price of the token in currency token.
*/
uint256 public tokenPriceDenominator;
/**
* @notice The start date of the claim period
* @dev If set to 0, the claim is not activated yet.
*/
uint32 public claimStartDate;
/**
* @notice The end date of the claim period
*/
uint32 public claimEndDate;
/**
* @notice The vesting end date of the claim period. All token are claimable at this date.
*/
uint32 public claimVestingEndDate;
/**
* @notice The vesting cliff in basis point of token claimable at the claim start date. The rest will be unlocked linearly until the claimVestingEndDate.
*/
uint16 public claimVestingCliffBasisPoint;
/**
* @notice The total amount of currency tokens that can be claim for tokens.
*/
uint256 public totalWinningAmount;
/**
* Refund configuration
*/
/**
* @notice The start date of the refund period
* @dev If set to 0, the refund is not activated yet.
*/
uint32 public refundStartDate;
/**
* @notice The end date of the refund period
*/
uint32 public refundEndDate;
/**
* State managed by the contract
*/
/**
* @notice The total amount of currency tokens deposited.
* @dev Managed by the contract
*/
uint256 public totalDepositedAmount;
/**
* @notice The total amount of currency tokens claimed.
* @dev Managed by the contract
*/
uint256 public totalClaimedAmount;
/**
* @notice The total winning amount of currency tokens refunded.
* @dev Managed by the contract
*/
uint256 public totalRefundedWinningAmount;
/**
* @notice The total loosing amount of currency tokens refunded.
* @dev Managed by the contract
*/
uint256 public totalRefundedLoosingAmount;
/**
* @notice The total fees of currency tokens deposited.
* @dev Managed by the contract
*/
uint256 public totalFees;
/**
* @notice The deposited amount for each user.
* @dev Managed by the contract
*/
mapping(address account => uint256 amount) private deposits;
/**
* @notice Track claimed amount for each user.
* @dev Managed by the contract
*/
mapping(address account => uint256 amount) private claims;
/**
* @notice Track refunded amount for each user.
* @dev Managed by the contract
*/
mapping(address account => uint256 amount) private refunds;
/**
* @notice Track if the winning amount and fees are already withdrawn
* @dev Managed by the contract
*/
bool public alreadyWithdrawnWinningAmountAndFees;
/**
* @dev Constructor
*/
constructor(
address initialOwner_,
address authorizer_,
IERC20Metadata currencyToken_,
uint256 hardCap_,
uint32 depositStartDate_,
uint32 depositEndDate_,
uint256 depositIncrement_,
uint256[] memory tiersLimit_,
uint16[] memory tiersFeesBasisPoint_
) Ownable(initialOwner_) {
authorizer = authorizer_;
currencyToken = currencyToken_;
hardCap = hardCap_;
depositStartDate = depositStartDate_;
depositEndDate = depositEndDate_;
depositIncrement = depositIncrement_;
tiersLimit = tiersLimit_;
tiersFeesBasisPoint = tiersFeesBasisPoint_;
// check the dates
if (depositStartDate == 0) revert InvalidDates();
if (depositEndDate == 0) revert InvalidDates();
if (depositStartDate >= depositEndDate) revert InvalidDates();
// check zero values
if (authorizer == address(0)) revert InvalidSignature();
if (depositIncrement == 0) revert InvalidIncrement();
// check hardCap is multiple of deposit increment
if (hardCap % depositIncrement != 0) revert InvalidIncrement();
// check currency token implements balanceOf function
currencyToken.balanceOf(address(this));
}
/**
* @notice Participate in the sale
*/
function deposit(
uint256 amount_,
uint8 tierLevel_,
bytes memory signature_,
uint32 signatureExpiration_
) external nonReentrant {
// check if the sale is open
if (
block.timestamp < depositStartDate ||
block.timestamp > depositEndDate
) revert DepositClosed();
// check if signature is expired
if (block.timestamp > signatureExpiration_) revert InvalidSignature();
// check signature is signed by authorizer
if (
!SignatureChecker.isValidSignatureNow(
authorizer,
MessageHashUtils.toEthSignedMessageHash(
keccak256(
abi.encodePacked(
block.chainid,
address(this),
'deposit',
msg.sender,
tierLevel_,
amount_,
signatureExpiration_
)
)
),
signature_
)
) revert InvalidSignature();
// calculate the fees
uint256 _fees = (amount_ * tiersFeesBasisPoint[tierLevel_]) / 10_000;
// update the total fees
totalFees = totalFees + _fees;
// save balance before transfer
uint256 _contractBalance = currencyToken.balanceOf(address(this));
// transfer amount with fees
currencyToken.safeTransferFrom(
msg.sender,
address(this),
amount_ + _fees
);
// calculate actual amount transferred
uint256 _transferredAmount = currencyToken.balanceOf(address(this)) -
_contractBalance -
_fees;
// check amount is not 0
if (_transferredAmount == 0) revert NothingToTransfer();
// check amount is multiple of deposit increment
if (_transferredAmount % depositIncrement != 0)
revert InvalidIncrement();
// update total deposited amount
totalDepositedAmount = totalDepositedAmount + _transferredAmount;
// check if the hard cap is reached
if (hardCap > 0 && totalDepositedAmount > hardCap)
revert HardCapReached();
// calculate new balance
uint256 _balance = deposits[msg.sender] + _transferredAmount;
// check if the tier limit is reached
if (_balance > tiersLimit[tierLevel_]) revert TierLimitReached();
// update balance
deposits[msg.sender] = _balance;
// emit event
emit Deposit(msg.sender, _transferredAmount, tierLevel_, _fees);
}
/**
* @notice Claim the tokens and refund the currency token.
*/
function claim(
uint256 winningAmount_,
uint256 loosingAmount_,
bytes memory signature_,
uint32 signatureExpiration_
) external {
// check if the claim is open
if (block.timestamp < claimStartDate || block.timestamp > claimEndDate)
revert ClaimClosed();
// check if signature is expired
if (block.timestamp > signatureExpiration_) revert InvalidSignature();
// check signature is signed by authorizer
if (
!SignatureChecker.isValidSignatureNow(
authorizer,
MessageHashUtils.toEthSignedMessageHash(
keccak256(
abi.encodePacked(
block.chainid,
address(this),
'claim',
msg.sender,
winningAmount_,
loosingAmount_,
signatureExpiration_
)
)
),
signature_
)
) revert InvalidSignature();
// check winningAmount is multiple of deposit increment
if (winningAmount_ % depositIncrement != 0) revert InvalidIncrement();
// check loosingAmount is multiple of deposit increment
if (loosingAmount_ % depositIncrement != 0) revert InvalidIncrement();
// get deposited amount
uint256 _depositedAmount = deposits[msg.sender];
// get claimed amount
uint256 _claimedAmount = claims[msg.sender];
// get refunded amount
uint256 _refundedAmount = refunds[msg.sender];
// check if already fully refunded
if (_refundedAmount > loosingAmount_) revert AlreadyRefunded();
// check deposit is not 0
if (_depositedAmount == 0) revert NothingToTransfer();
// check sum of winning and loosing amount is not more than the user's deposit
if (winningAmount_ + loosingAmount_ > _depositedAmount)
revert InvalidAmounts();
// get claimable amount
uint256 _claimableAmount = claimableAmountOf(
msg.sender,
winningAmount_
);
// skip update if nothing to claim
if (_claimableAmount > 0) {
// update user claimed amount
claims[msg.sender] = _claimedAmount + _claimableAmount;
// update total claimed amount
totalClaimedAmount = totalClaimedAmount + _claimableAmount;
// check if the total claimed amount is not higher than the total winning amount
if (totalClaimedAmount > totalWinningAmount)
revert TotalWinningAmountReached();
}
// calculate the remaining amount to refund
uint256 _refundableAmount = loosingAmount_ - _refundedAmount;
// skip update if nothing to refund
if (_refundableAmount > 0) {
// update user claimed amount
refunds[msg.sender] = _refundedAmount + _refundableAmount;
// update total refunded loosing amount
totalRefundedLoosingAmount =
totalRefundedLoosingAmount +
_refundableAmount;
}
// check if there is something to transfer
if (_claimableAmount == 0 && _refundableAmount == 0)
revert NothingToTransfer();
// calculate the claimable amount in token
uint256 _claimableAmountInToken = _claimableAmount > 0
? (_claimableAmount *
10 ** token.decimals() *
tokenPriceDenominator) / tokenPriceNumerator
: 0;
// transfer claimable token
if (_claimableAmountInToken > 0)
token.safeTransfer(msg.sender, _claimableAmountInToken);
// transfer refund currency
if (_refundableAmount > 0)
currencyToken.safeTransfer(msg.sender, _refundableAmount);
// emit event
emit Claim(msg.sender, _claimableAmountInToken, _refundableAmount);
}
/**
* @notice Refund all your deposit
*/
function refund(
uint256 winningAmount_,
uint256 loosingAmount_,
bytes memory signature_,
uint32 signatureExpiration_
) external {
// check if the refund is open
if (
block.timestamp < refundStartDate || block.timestamp > refundEndDate
) revert RefundClosed();
// check if signature is expired
if (block.timestamp > signatureExpiration_) revert InvalidSignature();
// check signature is signed by authorizer
if (
!SignatureChecker.isValidSignatureNow(
authorizer,
MessageHashUtils.toEthSignedMessageHash(
keccak256(
abi.encodePacked(
block.chainid,
address(this),
'refund',
msg.sender,
winningAmount_,
loosingAmount_,
signatureExpiration_
)
)
),
signature_
)
) revert InvalidSignature();
// check winningAmount is multiple of deposit increment
if (winningAmount_ % depositIncrement != 0) revert InvalidIncrement();
// check loosingAmount is multiple of deposit increment
if (loosingAmount_ % depositIncrement != 0) revert InvalidIncrement();
// check if already claimed
if (claims[msg.sender] > 0) revert AlreadyClaimed();
// check if already refunded
if (refunds[msg.sender] > 0) revert AlreadyRefunded();
// get deposited amount
uint256 _depositedAmount = deposits[msg.sender];
// check deposit is not 0
if (_depositedAmount == 0) revert NothingToTransfer();
// check winning amount and loosing amount are equal to the user's deposit
if (winningAmount_ + loosingAmount_ != _depositedAmount)
revert InvalidAmounts();
// mark the user as refunded
refunds[msg.sender] = _depositedAmount;
// update total refunded winning amounts
totalRefundedWinningAmount =
totalRefundedWinningAmount +
winningAmount_;
// update total refunded loosing amounts
totalRefundedLoosingAmount =
totalRefundedLoosingAmount +
loosingAmount_;
// transfer currency token back to user
currencyToken.safeTransfer(msg.sender, _depositedAmount);
// emit event
emit Refund(msg.sender, winningAmount_, loosingAmount_);
}
/**
* @notice Get the deposited amount of a user
*/
function depositedAmountOf(
address account_
) external view returns (uint256) {
return deposits[account_];
}
/**
* @notice Get the claimed amount of a user
*/
function claimedAmountOf(address account_) external view returns (uint256) {
return claims[account_];
}
/**
* @notice Get the refunded amount of a user
*/
function refundedAmountOf(
address account_
) external view returns (uint256) {
return refunds[account_];
}
/**
* @notice Get the limit of a tier
*/
function getTiersLimit() external view returns (uint256[] memory) {
return tiersLimit;
}
/**
* @notice Get the fees of a tier
*/
function getTiersFeesBasisPoint() external view returns (uint16[] memory) {
return tiersFeesBasisPoint;
}
/**
* @notice Get the claimable amount of a user. This take into account the vesting.
*/
function claimableAmountOf(
address account_,
uint256 winningAmount_
) public view returns (uint256) {
// check if claim period has started
if (block.timestamp < claimStartDate) return 0;
// return remaining amount if vesting is over
if (block.timestamp >= claimVestingEndDate)
return winningAmount_ - claims[account_];
// calculate vested amount using a linear vesting schedule
return
(((winningAmount_ * claimVestingCliffBasisPoint) / 10_000) + // cliff
(((winningAmount_ * (10_000 - claimVestingCliffBasisPoint)) /
10_000) * (block.timestamp - claimStartDate)) / // rest linearly unlocked
(claimVestingEndDate - claimStartDate)) - claims[account_];
}
/**
* @notice Set the claim and refund configuration. Only the owner can call this function
*/
function setClaimConfig(
IERC20Metadata token_,
uint256 tokenPriceNumerator_,
uint256 tokenPriceDenominator_,
uint32 claimStartDate_,
uint32 claimEndDate_,
uint32 claimVestingEndDate_,
uint16 claimVestingCliffBasisPoint_,
uint256 totalWinningAmount_
) external onlyOwner {
// check if config is already set
if (token != IERC20Metadata(address(0))) revert ConfigAlreadySet();
// set
token = token_;
tokenPriceNumerator = tokenPriceNumerator_;
tokenPriceDenominator = tokenPriceDenominator_;
claimStartDate = claimStartDate_;
claimEndDate = claimEndDate_;
claimVestingEndDate = claimVestingEndDate_;
claimVestingCliffBasisPoint = claimVestingCliffBasisPoint_;
totalWinningAmount = totalWinningAmount_;
// check the dates
if (claimStartDate == 0) revert InvalidDates();
if (claimEndDate == 0) revert InvalidDates();
if (claimStartDate >= claimEndDate) revert InvalidDates();
if (depositEndDate >= claimStartDate) revert InvalidDates();
if (claimVestingEndDate < claimStartDate) revert InvalidDates();
if (claimVestingEndDate > claimEndDate) revert InvalidDates();
// check amounts
if (tokenPriceNumerator == 0) revert InvalidAmounts();
if (tokenPriceDenominator == 0) revert InvalidAmounts();
if (totalWinningAmount == 0) revert InvalidAmounts();
// check basis point is between 0 and 10,000
if (claimVestingCliffBasisPoint > 10_000) revert InvalidAmounts();
// check token implements decimals and balanceOf function
token.decimals();
token.balanceOf(address(this));
}
/**
* @notice Set the claim and refund configuration. Only the owner can call this function
*/
function setRefundConfig(
uint32 refundStartDate_,
uint32 refundEndDate_
) external onlyOwner {
// check if config is already set
if (refundStartDate != 0) revert ConfigAlreadySet();
// set
refundStartDate = refundStartDate_;
refundEndDate = refundEndDate_;
// check the dates
if (refundStartDate == 0) revert InvalidDates();
if (refundEndDate == 0) revert InvalidDates();
if (refundStartDate >= refundEndDate) revert InvalidDates();
if (depositEndDate >= refundStartDate) revert InvalidDates();
}
/**
* @notice Withdraw winning amount with fees from the contract after the deposit and refund periods are closed. Only the owner can call this function
*/
function withdrawWinningAmountWithFees(address to_) external onlyOwner {
// check this function was not already executed
if (alreadyWithdrawnWinningAmountAndFees)
revert AlreadyWithdrawnWinningAmountAndFees();
alreadyWithdrawnWinningAmountAndFees = true;
// check the deposit period is closed
if (block.timestamp <= depositEndDate) revert WithdrawClosed();
// check the refund period is closed
if (refundEndDate > 0 && block.timestamp <= refundEndDate)
revert WithdrawClosed();
// cap the total winning amount in case the sale is not full
uint256 _cappedTotalWinningAmount = totalDepositedAmount <
totalWinningAmount
? totalDepositedAmount
: totalWinningAmount;
// calculate withdrawable winning amount
uint256 _withdrawableWinningAmount = _cappedTotalWinningAmount +
totalFees -
totalRefundedWinningAmount;
// check there is something to transfer
if (_withdrawableWinningAmount == 0) revert NothingToTransfer();
// transfer currency
currencyToken.safeTransfer(to_, _withdrawableWinningAmount);
}
/**
* @notice Withdraw excess token. Only the owner can call this function
*/
function withdrawExcessToken(address to_) external onlyOwner {
// check config is set
if (token == IERC20Metadata(address(0))) revert ConfigNotSet();
// cap the total winning amount in case the sale is not full
uint256 _cappedTotalWinningAmount = totalDepositedAmount <
totalWinningAmount
? totalDepositedAmount
: totalWinningAmount;
// get token balance
uint256 _tokenBalance = token.balanceOf(address(this));
// reduce token balance if both tokens are the same
if (token == currencyToken) {
// calculate the reserved balance
uint256 _reservedBalance = totalDepositedAmount -
_cappedTotalWinningAmount -
totalRefundedLoosingAmount;
// increase reserved balance with amount that can be withdrawn by function withdrawWinningAmountWithFees
if (!alreadyWithdrawnWinningAmountAndFees) {
// calculate withdrawable winning amount, same as function withdrawWinningAmountWithFees
uint256 _withdrawableWinningAmount = _cappedTotalWinningAmount +
totalFees -
totalRefundedWinningAmount;
// add the amount that can be withdrawn by function withdrawWinningAmountWithFees
_reservedBalance =
_reservedBalance +
_withdrawableWinningAmount;
}
// remove reserved balance from token balance
// _tokenBalance is always greater than or equal to _reservedBalance
_tokenBalance = _tokenBalance - _reservedBalance;
}
// calculate the claimable amount
uint256 _claimableAmount = _cappedTotalWinningAmount -
totalClaimedAmount -
totalRefundedWinningAmount;
// convert claimable amount in token
uint256 _claimableAmountInToken = (_claimableAmount *
10 ** token.decimals() *
tokenPriceDenominator) / tokenPriceNumerator;
// check token balance is not less than the claimable amount
if (_tokenBalance <= _claimableAmountInToken)
revert NothingToTransfer();
// transfer token
token.safeTransfer(to_, _tokenBalance - _claimableAmountInToken);
}
/**
* @notice Withdraw all token from the contract after the deposit, claim and refund periods are closed. Only the owner can call this function
*/
function withdrawAll(address to_) external onlyOwner {
// check the deposit period is closed
if (block.timestamp <= depositEndDate) revert WithdrawClosed();
// check the claim period is closed
if (claimEndDate > 0 && block.timestamp <= claimEndDate)
revert WithdrawClosed();
// check the refund period is closed
if (refundEndDate > 0 && block.timestamp <= refundEndDate)
revert WithdrawClosed();
// get currency balance
uint256 _currencyBalance = currencyToken.balanceOf(address(this));
// get token balance
uint256 _tokenBalance = token != IERC20Metadata(address(0)) &&
token != currencyToken
? token.balanceOf(address(this))
: 0;
// check there is something to transfer
if (_currencyBalance == 0 && _tokenBalance == 0)
revert NothingToTransfer();
// transfer currency
if (_currencyBalance > 0)
currencyToken.safeTransfer(to_, _currencyBalance);
// transfer token
if (_tokenBalance > 0) token.safeTransfer(to_, _tokenBalance);
}
/**
* @notice Set the authorizer wallet, can only be called by the owner
*/
function setAuthorizer(address authorizer_) external onlyOwner {
authorizer = authorizer_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/SignatureChecker.sol)
pragma solidity ^0.8.20;
import {ECDSA} from "./ECDSA.sol";
import {IERC1271} from "../../interfaces/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
* Argent and Safe Wallet (previously Gnosis Safe).
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
(address recovered, ECDSA.RecoverError error, ) = ECDSA.tryRecover(hash, signature);
return
(error == ECDSA.RecoverError.NoError && recovered == signer) ||
isValidERC1271SignatureNow(signer, hash, signature);
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC1271.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 hash,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeCall(IERC1271.isValidSignature, (hash, signature))
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
{
"compilationTarget": {
"contracts/Sale.sol": "Sale"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"initialOwner_","type":"address"},{"internalType":"address","name":"authorizer_","type":"address"},{"internalType":"contract IERC20Metadata","name":"currencyToken_","type":"address"},{"internalType":"uint256","name":"hardCap_","type":"uint256"},{"internalType":"uint32","name":"depositStartDate_","type":"uint32"},{"internalType":"uint32","name":"depositEndDate_","type":"uint32"},{"internalType":"uint256","name":"depositIncrement_","type":"uint256"},{"internalType":"uint256[]","name":"tiersLimit_","type":"uint256[]"},{"internalType":"uint16[]","name":"tiersFeesBasisPoint_","type":"uint16[]"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"AlreadyClaimed","type":"error"},{"inputs":[],"name":"AlreadyRefunded","type":"error"},{"inputs":[],"name":"AlreadyWithdrawnWinningAmountAndFees","type":"error"},{"inputs":[],"name":"ClaimClosed","type":"error"},{"inputs":[],"name":"ConfigAlreadySet","type":"error"},{"inputs":[],"name":"ConfigNotSet","type":"error"},{"inputs":[],"name":"DepositClosed","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"HardCapReached","type":"error"},{"inputs":[],"name":"InvalidAmounts","type":"error"},{"inputs":[],"name":"InvalidDates","type":"error"},{"inputs":[],"name":"InvalidIncrement","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"NothingToTransfer","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"RefundClosed","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"TierLimitReached","type":"error"},{"inputs":[],"name":"TotalWinningAmountReached","type":"error"},{"inputs":[],"name":"WithdrawClosed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"claimedAmountInToken","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"refundedAmountInCurrency","type":"uint256"}],"name":"Claim","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint8","name":"tierLevel","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"fees","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"winningAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"loosingAmount","type":"uint256"}],"name":"Refund","type":"event"},{"inputs":[],"name":"alreadyWithdrawnWinningAmountAndFees","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"authorizer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"winningAmount_","type":"uint256"},{"internalType":"uint256","name":"loosingAmount_","type":"uint256"},{"internalType":"bytes","name":"signature_","type":"bytes"},{"internalType":"uint32","name":"signatureExpiration_","type":"uint32"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimEndDate","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimStartDate","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimVestingCliffBasisPoint","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimVestingEndDate","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account_","type":"address"},{"internalType":"uint256","name":"winningAmount_","type":"uint256"}],"name":"claimableAmountOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account_","type":"address"}],"name":"claimedAmountOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currencyToken","outputs":[{"internalType":"contract IERC20Metadata","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount_","type":"uint256"},{"internalType":"uint8","name":"tierLevel_","type":"uint8"},{"internalType":"bytes","name":"signature_","type":"bytes"},{"internalType":"uint32","name":"signatureExpiration_","type":"uint32"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"depositEndDate","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"depositIncrement","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"depositStartDate","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account_","type":"address"}],"name":"depositedAmountOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTiersFeesBasisPoint","outputs":[{"internalType":"uint16[]","name":"","type":"uint16[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTiersLimit","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"hardCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"winningAmount_","type":"uint256"},{"internalType":"uint256","name":"loosingAmount_","type":"uint256"},{"internalType":"bytes","name":"signature_","type":"bytes"},{"internalType":"uint32","name":"signatureExpiration_","type":"uint32"}],"name":"refund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"refundEndDate","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"refundStartDate","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account_","type":"address"}],"name":"refundedAmountOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"authorizer_","type":"address"}],"name":"setAuthorizer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20Metadata","name":"token_","type":"address"},{"internalType":"uint256","name":"tokenPriceNumerator_","type":"uint256"},{"internalType":"uint256","name":"tokenPriceDenominator_","type":"uint256"},{"internalType":"uint32","name":"claimStartDate_","type":"uint32"},{"internalType":"uint32","name":"claimEndDate_","type":"uint32"},{"internalType":"uint32","name":"claimVestingEndDate_","type":"uint32"},{"internalType":"uint16","name":"claimVestingCliffBasisPoint_","type":"uint16"},{"internalType":"uint256","name":"totalWinningAmount_","type":"uint256"}],"name":"setClaimConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"refundStartDate_","type":"uint32"},{"internalType":"uint32","name":"refundEndDate_","type":"uint32"}],"name":"setRefundConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IERC20Metadata","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenPriceDenominator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenPriceNumerator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalClaimedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalDepositedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalRefundedLoosingAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalRefundedWinningAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalWinningAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to_","type":"address"}],"name":"withdrawAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to_","type":"address"}],"name":"withdrawExcessToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to_","type":"address"}],"name":"withdrawWinningAmountWithFees","outputs":[],"stateMutability":"nonpayable","type":"function"}]