// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.4;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/Pausable.sol";
/// @title JPGD Staking
/// @notice This contract allows users to stake their JPGD and get a share of the protocol's treasury.
/// Staked JPGD can be withdrawn at any time before {snapshot} is called by the owner.
/// After the {snapshot} call, the staked JPGD will be locked with a linear vesting schedule defined in {vestingSchedule}.
/// The start of the vesting schedule is set during the first {increaseClaimableTokenAmount} call, which also distributes owner
/// defined assets.
/// The distribution can also happen in chunks, in which case {increaseClaimableTokenAmount} and {addClaimableToken} will
/// be called more than once.
contract JPGDStaking is Ownable, ReentrancyGuard, Pausable {
using SafeERC20 for IERC20;
error ZeroAddress();
error ZeroAmount();
error InsufficientStake();
error NothingToClaim();
error InvalidIndex(uint256 _idx);
error InvalidCliff();
event JPGDStaked(address indexed _staker, uint256 _amount);
event JPGDUnstaked(address indexed _staker, uint256 _amount);
event Snapshot(uint256 _totalStaked);
event VestingStarted(
uint256 _startingBlock,
uint256 _cliffBlock,
uint256 _endBlock
);
event NewClaimableToken(uint256 indexed _idx, IERC20 _token);
event ClaimableTokenAmountIncreased(uint256 indexed _idx, uint256 _amount);
event TokensClaimed(
address indexed _from,
uint256 indexed _tokenIdx,
uint256 _claimedAmount
);
event JPGDClaimed(address indexed _staker, uint256 _claimedAmount);
struct VestingSchedule {
uint80 startingBlock;
uint80 cliffBlocks;
uint80 durationBlocks;
}
IERC20 public immutable JPGD;
/// @notice The total amount of JPGD deposits, by address
mapping(address => uint256) public stakedJPGD;
/// @notice The addresses of the claimable assets
mapping(uint256 => IERC20) public claimableTokens;
/// @notice The amount of claimable tokens, by asset
mapping(uint256 => uint256) public claimableAmounts;
/// @notice The total amount of assets claimed, by address
mapping(address => mapping(uint256 => uint256)) public userClaimedAmounts;
/// @notice The total amount of vested JPGD claimed, by address
mapping(address => uint256) public userClaimedVestedJPGD;
uint256 public totalStakedJPGD;
uint256 public claimableTokensLength;
VestingSchedule public vestingSchedule;
constructor(address _jpgd) Ownable(msg.sender) {
if (_jpgd == address(0)) revert ZeroAddress();
JPGD = IERC20(_jpgd);
}
/// @notice Allows users to stake their JPGD. It can be called more than once by the same address and only before the snapshot.
/// @param _stakeFor The address to stake for.
/// @param _jpgdAmount The amount of JPGD to deposit.
function stake(
address _stakeFor,
uint256 _jpgdAmount
) external whenNotPaused nonReentrant {
if (_stakeFor == address(0)) revert ZeroAddress();
if (_jpgdAmount == 0) revert ZeroAmount();
JPGD.transferFrom(msg.sender, address(this), _jpgdAmount);
stakedJPGD[_stakeFor] += _jpgdAmount;
totalStakedJPGD += _jpgdAmount;
emit JPGDStaked(_stakeFor, _jpgdAmount);
}
/// @notice Allows users to unstake their JPGD. Can only be called before the snapshot.
/// @param _jpgdAmount The amount to unstake
/// @param _recipient The address to send the tokens to
function unstake(
uint256 _jpgdAmount,
address _recipient
) external whenNotPaused nonReentrant {
if (_jpgdAmount == 0) revert ZeroAmount();
uint256 _stakedAmount = stakedJPGD[msg.sender];
if (_jpgdAmount > _stakedAmount) revert InsufficientStake();
stakedJPGD[msg.sender] = _stakedAmount - _jpgdAmount;
totalStakedJPGD -= _jpgdAmount;
JPGD.transfer(_recipient, _jpgdAmount);
emit JPGDUnstaked(msg.sender, _jpgdAmount);
}
/// @notice Function used to claim assets available for distribution.
/// @param _recipient The address to send assets to.
function claimTokens(address _recipient) external whenPaused nonReentrant {
uint256 _stakedAmount = stakedJPGD[msg.sender];
if (_stakedAmount == 0) revert ZeroAmount();
bool _hasClaimed;
uint256 _length = claimableTokensLength;
if (_length == 0) revert NothingToClaim();
uint256 _totalStakedAmount = totalStakedJPGD;
for (uint256 i; i < _length; ++i) {
uint256 _claimedAmount = userClaimedAmounts[msg.sender][i];
uint256 _userClaimableAmount = (_stakedAmount *
claimableAmounts[i]) / _totalStakedAmount;
uint256 _remainingAmount = _userClaimableAmount - _claimedAmount;
if (_remainingAmount != 0) {
_hasClaimed = true;
userClaimedAmounts[msg.sender][i] = _userClaimableAmount;
claimableTokens[i].safeTransfer(_recipient, _remainingAmount);
emit TokensClaimed(msg.sender, i, _remainingAmount);
}
}
if (!_hasClaimed) {
revert NothingToClaim();
}
}
/// @notice Allows users to claim vested JPGD. Can only be called after the cliff.
/// @param _recipient The address to send the assets to
function claimVestedJPGD(
address _recipient
) external whenPaused nonReentrant {
uint256 _stakedAmount = stakedJPGD[msg.sender];
if (_stakedAmount == 0) revert ZeroAmount();
VestingSchedule memory _schedule = vestingSchedule;
if (
_schedule.startingBlock == 0 ||
_schedule.startingBlock + _schedule.cliffBlocks > block.number
) revert NothingToClaim();
uint256 _elapsedBlocks = block.number - _schedule.startingBlock;
uint256 _claimableJPGD = _elapsedBlocks > _schedule.durationBlocks
? _stakedAmount
: (_stakedAmount * _elapsedBlocks) / _schedule.durationBlocks;
uint256 _claimedJPGD = userClaimedVestedJPGD[msg.sender];
if (_claimableJPGD != _claimedJPGD) {
userClaimedVestedJPGD[msg.sender] = _claimableJPGD;
JPGD.transfer(_recipient, _claimableJPGD - _claimedJPGD);
emit JPGDClaimed(msg.sender, _claimableJPGD - _claimedJPGD);
} else revert NothingToClaim();
}
/// @notice Allows the owner to stop deposits/withdrawals and set the vesting schedule
function snapshot(
uint80 _vestingCliffBlocks,
uint80 _vestingDurationBlocks
) external onlyOwner whenNotPaused {
_pause();
if (_vestingDurationBlocks == 0) revert ZeroAmount();
if (_vestingCliffBlocks > _vestingDurationBlocks) revert InvalidCliff();
vestingSchedule = VestingSchedule({
startingBlock: 0,
cliffBlocks: _vestingCliffBlocks,
durationBlocks: _vestingDurationBlocks
});
emit Snapshot(totalStakedJPGD);
}
/// @notice Allows the owner to add claimable tokens
function addClaimableToken(address _token) external onlyOwner {
if (_token == address(0)) revert ZeroAddress();
uint256 _tokensLength = claimableTokensLength;
claimableTokens[_tokensLength] = IERC20(_token);
claimableTokensLength = _tokensLength + 1;
emit NewClaimableToken(_tokensLength, IERC20(_token));
}
/// @notice Allows the owner to increase the amount of a specific claimable token
function increaseClaimableTokenAmount(
uint256 _tokenIndex,
uint256 _amountToIncrease
) external onlyOwner whenPaused {
if (_amountToIncrease == 0) revert ZeroAmount();
IERC20 _token = claimableTokens[_tokenIndex];
if (address(_token) == address(0)) revert InvalidIndex(_tokenIndex);
VestingSchedule memory _vestingSchedule = vestingSchedule;
if (_vestingSchedule.startingBlock == 0) {
vestingSchedule.startingBlock = uint80(block.number);
emit VestingStarted(
block.number,
_vestingSchedule.cliffBlocks + block.number,
_vestingSchedule.durationBlocks + block.number
);
}
_token.safeTransferFrom(msg.sender, address(this), _amountToIncrease);
claimableAmounts[_tokenIndex] += _amountToIncrease;
emit ClaimableTokenAmountIncreased(_tokenIndex, _amountToIncrease);
}
/// @notice Allows the owner to withdraw any token.
/// Should only be called in case of emergency as it leaves the contract with not enough
/// tokens to distribute and in a broken state until the withdrawn tokens are sent back
function withdrawToken(IERC20 _token, uint256 _amount) external onlyOwner {
_token.safeTransfer(msg.sender, _amount);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
bool private _paused;
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
{
"compilationTarget": {
"contracts/JPGDStaking.sol": "JPGDStaking"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_jpgd","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"InsufficientStake","type":"error"},{"inputs":[],"name":"InvalidCliff","type":"error"},{"inputs":[{"internalType":"uint256","name":"_idx","type":"uint256"}],"name":"InvalidIndex","type":"error"},{"inputs":[],"name":"NothingToClaim","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"inputs":[],"name":"ZeroAmount","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_idx","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"ClaimableTokenAmountIncreased","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_staker","type":"address"},{"indexed":false,"internalType":"uint256","name":"_claimedAmount","type":"uint256"}],"name":"JPGDClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_staker","type":"address"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"JPGDStaked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_staker","type":"address"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"JPGDUnstaked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_idx","type":"uint256"},{"indexed":false,"internalType":"contract IERC20","name":"_token","type":"address"}],"name":"NewClaimableToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_totalStaked","type":"uint256"}],"name":"Snapshot","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_from","type":"address"},{"indexed":true,"internalType":"uint256","name":"_tokenIdx","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_claimedAmount","type":"uint256"}],"name":"TokensClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_startingBlock","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_cliffBlock","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_endBlock","type":"uint256"}],"name":"VestingStarted","type":"event"},{"inputs":[],"name":"JPGD","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"addClaimableToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_recipient","type":"address"}],"name":"claimTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_recipient","type":"address"}],"name":"claimVestedJPGD","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"claimableAmounts","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"claimableTokens","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimableTokensLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenIndex","type":"uint256"},{"internalType":"uint256","name":"_amountToIncrease","type":"uint256"}],"name":"increaseClaimableTokenAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint80","name":"_vestingCliffBlocks","type":"uint80"},{"internalType":"uint80","name":"_vestingDurationBlocks","type":"uint80"}],"name":"snapshot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_stakeFor","type":"address"},{"internalType":"uint256","name":"_jpgdAmount","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"stakedJPGD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalStakedJPGD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_jpgdAmount","type":"uint256"},{"internalType":"address","name":"_recipient","type":"address"}],"name":"unstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"userClaimedAmounts","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userClaimedVestedJPGD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vestingSchedule","outputs":[{"internalType":"uint80","name":"startingBlock","type":"uint80"},{"internalType":"uint80","name":"cliffBlocks","type":"uint80"},{"internalType":"uint80","name":"durationBlocks","type":"uint80"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"_token","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdrawToken","outputs":[],"stateMutability":"nonpayable","type":"function"}]