pragma solidity ^0.5.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be aplied to your functions to restrict their use to
* the owner.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, "SafeMath: division by zero");
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0, "SafeMath: modulo by zero");
return a % b;
}
}
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* This test is non-exhaustive, and there may be false-negatives: during the
* execution of a contract's constructor, its address will be reported as
* not containing a contract.
*
* > It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*/
function isContract(address account) internal view returns (bool) {
// This method relies in extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
}
contract ReentrancyGuard {
/// @dev counter to allow mutex lock with only one SSTORE operation
uint256 private _guardCounter;
constructor () internal {
// The counter starts at one to prevent changing it from zero to a non-zero
// value, which is a more expensive operation.
_guardCounter = 1;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_guardCounter += 1;
uint256 localCounter = _guardCounter;
_;
require(localCounter == _guardCounter, "ReentrancyGuard: reentrant call");
}
}
contract Crowdsale is ReentrancyGuard {
using SafeMath for uint256;
uint256 public openingTime = 1607745600; // 2020-12-12 4:00 UTC
uint256 public closingTime = 1607767200; // 2020-12-12 10:00 UTC
uint256 public investorMinCap = 1000000000000000000; // 1 ether
uint256 public investorHardCap = 3000000000000000000; // 3 ether
uint256 constant public maxGasPrice = 1000000000000; // 1000 Gwei
uint256 _cap = 100000000000000000000; // 100 ether
mapping(address => uint256) public contributions;
// Address where funds are collected
address payable private _wallet;
// Amount of wei raised
uint256 private _weiRaised;
constructor (address payable wallet) public {
require(wallet != address(0), "Crowdsale: wallet is the zero address");
_wallet = wallet;
}
function () external payable {
buyTokens(msg.sender);
}
/**
* @return the address where funds are collected.
*/
function wallet() public view returns (address payable) {
return _wallet;
}
/**
* @return the amount of wei raised.
*/
function weiRaised() public view returns (uint256) {
return _weiRaised;
}
/**
* @dev low level token purchase ***DO NOT OVERRIDE***
* This function has a non-reentrancy guard, so it shouldn't be called by
* another `nonReentrant` function.
* @param beneficiary Recipient of the token purchase
*/
function buyTokens(address beneficiary) public nonReentrant payable {
uint256 weiAmount = msg.value;
_preValidatePurchase(beneficiary, weiAmount);
_weiRaised = _weiRaised.add(weiAmount);
contributions[beneficiary] = contributions[beneficiary].add(weiAmount);
_forwardFunds();
}
function _preValidatePurchase(address beneficiary, uint256 weiAmount) internal view {
require(beneficiary != address(0), "Crowdsale: beneficiary is the zero address");
require(weiAmount != 0, "Crowdsale: weiAmount is 0");
require(weiRaised().add(weiAmount) <= _cap, "CappedCrowdsale: cap exceeded");
require(block.timestamp >= openingTime && block.timestamp <= closingTime);
uint256 newContribution = contributions[beneficiary].add(weiAmount);
require(tx.gasprice <= maxGasPrice,"Crowdsale: beneficiary's max Gas Price exceeded");
require(newContribution <= investorHardCap, "Crowdsale: beneficiary's max cap exceeded");
require(newContribution >= investorMinCap, "Crowdsale: beneficiary's min cap not reached");
}
/**
* @dev Determines how ETH is stored/forwarded on purchases.
*/
function _forwardFunds() internal {
_wallet.transfer(msg.value);
}
}
{
"compilationTarget": {
"Crowdsale.sol": "Crowdsale"
},
"evmVersion": "istanbul",
"libraries": {},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address payable","name":"wallet","type":"address"}],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"payable":true,"stateMutability":"payable","type":"fallback"},{"constant":false,"inputs":[{"internalType":"address","name":"beneficiary","type":"address"}],"name":"buyTokens","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"constant":true,"inputs":[],"name":"closingTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"contributions","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"investorHardCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"investorMinCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"maxGasPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"openingTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"wallet","outputs":[{"internalType":"address payable","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"weiRaised","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"}]