// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
import {ERC20} from "../tokens/ERC20.sol";
import {SafeTransferLib} from "../utils/SafeTransferLib.sol";
import {FixedPointMathLib} from "../utils/FixedPointMathLib.sol";
/// @notice Minimal ERC4626 tokenized Vault implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/mixins/ERC4626.sol)
abstract contract ERC4626 is ERC20 {
using SafeTransferLib for ERC20;
using FixedPointMathLib for uint256;
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event Deposit(address indexed caller, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed caller,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/*//////////////////////////////////////////////////////////////
IMMUTABLES
//////////////////////////////////////////////////////////////*/
ERC20 public immutable asset;
constructor(
ERC20 _asset,
string memory _name,
string memory _symbol
) ERC20(_name, _symbol, _asset.decimals()) {
asset = _asset;
}
/*//////////////////////////////////////////////////////////////
DEPOSIT/WITHDRAWAL LOGIC
//////////////////////////////////////////////////////////////*/
function deposit(uint256 assets, address receiver) public virtual returns (uint256 shares) {
// Check for rounding error since we round down in previewDeposit.
require((shares = previewDeposit(assets)) != 0, "ZERO_SHARES");
// Need to transfer before minting or ERC777s could reenter.
asset.safeTransferFrom(msg.sender, address(this), assets);
_mint(receiver, shares);
emit Deposit(msg.sender, receiver, assets, shares);
afterDeposit(assets, shares);
}
function mint(uint256 shares, address receiver) public virtual returns (uint256 assets) {
assets = previewMint(shares); // No need to check for rounding error, previewMint rounds up.
// Need to transfer before minting or ERC777s could reenter.
asset.safeTransferFrom(msg.sender, address(this), assets);
_mint(receiver, shares);
emit Deposit(msg.sender, receiver, assets, shares);
afterDeposit(assets, shares);
}
function withdraw(
uint256 assets,
address receiver,
address owner
) public virtual returns (uint256 shares) {
shares = previewWithdraw(assets); // No need to check for rounding error, previewWithdraw rounds up.
if (msg.sender != owner) {
uint256 allowed = allowance[owner][msg.sender]; // Saves gas for limited approvals.
if (allowed != type(uint256).max) allowance[owner][msg.sender] = allowed - shares;
}
beforeWithdraw(assets, shares);
_burn(owner, shares);
emit Withdraw(msg.sender, receiver, owner, assets, shares);
asset.safeTransfer(receiver, assets);
}
function redeem(
uint256 shares,
address receiver,
address owner
) public virtual returns (uint256 assets) {
if (msg.sender != owner) {
uint256 allowed = allowance[owner][msg.sender]; // Saves gas for limited approvals.
if (allowed != type(uint256).max) allowance[owner][msg.sender] = allowed - shares;
}
// Check for rounding error since we round down in previewRedeem.
require((assets = previewRedeem(shares)) != 0, "ZERO_ASSETS");
beforeWithdraw(assets, shares);
_burn(owner, shares);
emit Withdraw(msg.sender, receiver, owner, assets, shares);
asset.safeTransfer(receiver, assets);
}
/*//////////////////////////////////////////////////////////////
ACCOUNTING LOGIC
//////////////////////////////////////////////////////////////*/
function totalAssets() public view virtual returns (uint256);
function convertToShares(uint256 assets) public view virtual returns (uint256) {
uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.
return supply == 0 ? assets : assets.mulDivDown(supply, totalAssets());
}
function convertToAssets(uint256 shares) public view virtual returns (uint256) {
uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.
return supply == 0 ? shares : shares.mulDivDown(totalAssets(), supply);
}
function previewDeposit(uint256 assets) public view virtual returns (uint256) {
return convertToShares(assets);
}
function previewMint(uint256 shares) public view virtual returns (uint256) {
uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.
return supply == 0 ? shares : shares.mulDivUp(totalAssets(), supply);
}
function previewWithdraw(uint256 assets) public view virtual returns (uint256) {
uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.
return supply == 0 ? assets : assets.mulDivUp(supply, totalAssets());
}
function previewRedeem(uint256 shares) public view virtual returns (uint256) {
return convertToAssets(shares);
}
/*//////////////////////////////////////////////////////////////
DEPOSIT/WITHDRAWAL LIMIT LOGIC
//////////////////////////////////////////////////////////////*/
function maxDeposit(address) public view virtual returns (uint256) {
return type(uint256).max;
}
function maxMint(address) public view virtual returns (uint256) {
return type(uint256).max;
}
function maxWithdraw(address owner) public view virtual returns (uint256) {
return convertToAssets(balanceOf[owner]);
}
function maxRedeem(address owner) public view virtual returns (uint256) {
return balanceOf[owner];
}
/*//////////////////////////////////////////////////////////////
INTERNAL HOOKS LOGIC
//////////////////////////////////////////////////////////////*/
function beforeWithdraw(uint256 assets, uint256 shares) internal virtual {}
function afterDeposit(uint256 assets, uint256 shares) internal virtual {}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
/*//////////////////////////////////////////////////////////////
SIMPLIFIED FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
uint256 internal constant MAX_UINT256 = 2**256 - 1;
uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
}
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
}
function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
}
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
}
/*//////////////////////////////////////////////////////////////
LOW LEVEL FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
function mulDivDown(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
revert(0, 0)
}
// Divide x * y by the denominator.
z := div(mul(x, y), denominator)
}
}
function mulDivUp(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
revert(0, 0)
}
// If x * y modulo the denominator is strictly greater than 0,
// 1 is added to round up the division of x * y by the denominator.
z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
}
}
function rpow(
uint256 x,
uint256 n,
uint256 scalar
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
switch x
case 0 {
switch n
case 0 {
// 0 ** 0 = 1
z := scalar
}
default {
// 0 ** n = 0
z := 0
}
}
default {
switch mod(n, 2)
case 0 {
// If n is even, store scalar in z for now.
z := scalar
}
default {
// If n is odd, store x in z for now.
z := x
}
// Shifting right by 1 is like dividing by 2.
let half := shr(1, scalar)
for {
// Shift n right by 1 before looping to halve it.
n := shr(1, n)
} n {
// Shift n right by 1 each iteration to halve it.
n := shr(1, n)
} {
// Revert immediately if x ** 2 would overflow.
// Equivalent to iszero(eq(div(xx, x), x)) here.
if shr(128, x) {
revert(0, 0)
}
// Store x squared.
let xx := mul(x, x)
// Round to the nearest number.
let xxRound := add(xx, half)
// Revert if xx + half overflowed.
if lt(xxRound, xx) {
revert(0, 0)
}
// Set x to scaled xxRound.
x := div(xxRound, scalar)
// If n is even:
if mod(n, 2) {
// Compute z * x.
let zx := mul(z, x)
// If z * x overflowed:
if iszero(eq(div(zx, x), z)) {
// Revert if x is non-zero.
if iszero(iszero(x)) {
revert(0, 0)
}
}
// Round to the nearest number.
let zxRound := add(zx, half)
// Revert if zx + half overflowed.
if lt(zxRound, zx) {
revert(0, 0)
}
// Return properly scaled zxRound.
z := div(zxRound, scalar)
}
}
}
}
}
/*//////////////////////////////////////////////////////////////
GENERAL NUMBER UTILITIES
//////////////////////////////////////////////////////////////*/
function sqrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
let y := x // We start y at x, which will help us make our initial estimate.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// We check y >= 2^(k + 8) but shift right by k bits
// each branch to ensure that if x >= 256, then y >= 256.
if iszero(lt(y, 0x10000000000000000000000000000000000)) {
y := shr(128, y)
z := shl(64, z)
}
if iszero(lt(y, 0x1000000000000000000)) {
y := shr(64, y)
z := shl(32, z)
}
if iszero(lt(y, 0x10000000000)) {
y := shr(32, y)
z := shl(16, z)
}
if iszero(lt(y, 0x1000000)) {
y := shr(16, y)
z := shl(8, z)
}
// Goal was to get z*z*y within a small factor of x. More iterations could
// get y in a tighter range. Currently, we will have y in [256, 256*2^16).
// We ensured y >= 256 so that the relative difference between y and y+1 is small.
// That's not possible if x < 256 but we can just verify those cases exhaustively.
// Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
// Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
// Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
// For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
// (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
// Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
// sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
// There is no overflow risk here since y < 2^136 after the first branch above.
z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If x+1 is a perfect square, the Babylonian method cycles between
// floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
// Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
// If you don't care whether the floor or ceil square root is returned, you can remove this statement.
z := sub(z, lt(div(x, z), z))
}
}
function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Mod x by y. Note this will return
// 0 instead of reverting if y is zero.
z := mod(x, y)
}
}
function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
// Divide x by y. Note this will return
// 0 instead of reverting if y is zero.
r := div(x, y)
}
}
function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Add 1 to x * y if x % y > 0. Note this will
// return 0 instead of reverting if y is zero.
z := add(gt(mod(x, y), 0), div(x, y))
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.19;
// ====================================================================
// | ______ _______ |
// | / _____________ __ __ / ____(_____ ____ _____ ________ |
// | / /_ / ___/ __ `| |/_/ / /_ / / __ \/ __ `/ __ \/ ___/ _ \ |
// | / __/ / / / /_/ _> < / __/ / / / / / /_/ / / / / /__/ __/ |
// | /_/ /_/ \__,_/_/|_| /_/ /_/_/ /_/\__,_/_/ /_/\___/\___/ |
// | |
// ====================================================================
// ======================== LinearRewardsErc4626 ======================
// ====================================================================
// Frax Finance: https://github.com/FraxFinance
import { ERC20, ERC4626 } from "solmate/mixins/ERC4626.sol";
import { SafeCastLib } from "solmate/utils/SafeCastLib.sol";
/// @title LinearRewardsErc4626
/// @notice An ERC4626 Vault implementation with linear rewards
contract LinearRewardsErc4626 is ERC4626 {
using SafeCastLib for *;
/// @notice The precision of all integer calculations
uint256 public constant PRECISION = 1e18;
/// @notice The rewards cycle length in seconds
uint256 public immutable REWARDS_CYCLE_LENGTH;
/// @notice Information about the current rewards cycle
struct RewardsCycleData {
uint40 cycleEnd; // Timestamp of the end of the current rewards cycle
uint40 lastSync; // Timestamp of the last time the rewards cycle was synced
uint216 rewardCycleAmount; // Amount of rewards to be distributed in the current cycle
}
/// @notice The rewards cycle data, stored in a single word to save gas
RewardsCycleData public rewardsCycleData;
/// @notice The timestamp of the last time rewards were distributed
uint256 public lastRewardsDistribution;
/// @notice The total amount of assets that have been distributed and deposited
uint256 public storedTotalAssets;
/// @param _underlying The erc20 asset deposited
/// @param _name The name of the vault
/// @param _symbol The symbol of the vault
/// @param _rewardsCycleLength The length of the rewards cycle in seconds
constructor(
ERC20 _underlying,
string memory _name,
string memory _symbol,
uint256 _rewardsCycleLength
) ERC4626(_underlying, _name, _symbol) {
REWARDS_CYCLE_LENGTH = _rewardsCycleLength;
// initialize rewardsCycleEnd value
// NOTE: normally distribution of rewards should be done prior to _syncRewards but in this case we know there are no users or rewards yet.
_syncRewards();
// initialize lastRewardsDistribution value
distributeRewards();
}
/// @notice The ```calculateRewardsToDistribute``` function calculates the amount of rewards to distribute based on the rewards cycle data and the time elapsed
/// @param _rewardsCycleData The rewards cycle data
/// @param _deltaTime The time elapsed since the last rewards distribution
/// @return _rewardToDistribute The amount of rewards to distribute
function calculateRewardsToDistribute(
RewardsCycleData memory _rewardsCycleData,
uint256 _deltaTime
) public view virtual returns (uint256 _rewardToDistribute) {
_rewardToDistribute =
(_rewardsCycleData.rewardCycleAmount * _deltaTime) /
(_rewardsCycleData.cycleEnd - _rewardsCycleData.lastSync);
}
/// @notice The ```previewDistributeRewards``` function is used to preview the rewards distributed at the top of the block
/// @return _rewardToDistribute The amount of underlying to distribute
function previewDistributeRewards() public view virtual returns (uint256 _rewardToDistribute) {
// Cache state for gas savings
RewardsCycleData memory _rewardsCycleData = rewardsCycleData;
uint256 _lastRewardsDistribution = lastRewardsDistribution;
uint40 _timestamp = block.timestamp.safeCastTo40();
// Calculate the delta time, but only include up to the cycle end in case we are passed it
uint256 _deltaTime = _timestamp > _rewardsCycleData.cycleEnd
? _rewardsCycleData.cycleEnd - _lastRewardsDistribution
: _timestamp - _lastRewardsDistribution;
// Calculate the rewards to distribute
_rewardToDistribute = calculateRewardsToDistribute({
_rewardsCycleData: _rewardsCycleData,
_deltaTime: _deltaTime
});
}
/// @notice The ```distributeRewards``` function distributes the rewards once per block
/// @return _rewardToDistribute The amount of underlying to distribute
function distributeRewards() public virtual returns (uint256 _rewardToDistribute) {
_rewardToDistribute = previewDistributeRewards();
// Only write to state if we need to update
if (_rewardToDistribute != 0) {
storedTotalAssets += _rewardToDistribute;
}
lastRewardsDistribution = block.timestamp;
emit DistributeRewards({ rewardsToDistribute: _rewardToDistribute });
}
/// @notice The ```previewSyncRewards``` function returns the updated rewards cycle data without updating the state
/// @return _newRewardsCycleData The updated rewards cycle data
function previewSyncRewards() public view virtual returns (RewardsCycleData memory _newRewardsCycleData) {
RewardsCycleData memory _rewardsCycleData = rewardsCycleData;
uint256 _timestamp = block.timestamp;
// Only sync if the previous cycle has ended
if (_timestamp <= _rewardsCycleData.cycleEnd) return _rewardsCycleData;
// Calculate rewards for next cycle
uint256 _newRewards = asset.balanceOf(address(this)) - storedTotalAssets;
// Calculate the next cycle end, this keeps cycles at the same time regardless of when sync is called
uint40 _cycleEnd = (((_timestamp + REWARDS_CYCLE_LENGTH) / REWARDS_CYCLE_LENGTH) * REWARDS_CYCLE_LENGTH)
.safeCastTo40();
// This block prevents big jumps in rewards rate in case the sync happens near the end of the cycle
if (_cycleEnd - _timestamp < REWARDS_CYCLE_LENGTH / 20) {
_cycleEnd += REWARDS_CYCLE_LENGTH.safeCastTo40();
}
// Write return values
_rewardsCycleData.rewardCycleAmount = _newRewards.safeCastTo216();
_rewardsCycleData.lastSync = _timestamp.safeCastTo40();
_rewardsCycleData.cycleEnd = _cycleEnd;
return _rewardsCycleData;
}
/// @notice The ```_syncRewards``` function is used to update the rewards cycle data
function _syncRewards() internal virtual {
RewardsCycleData memory _rewardsCycleData = previewSyncRewards();
if (
block
.timestamp
// If true, then preview shows a rewards should be processed
.safeCastTo40() ==
_rewardsCycleData.lastSync &&
// Ensures that we don't write to state twice in the same block
rewardsCycleData.lastSync != _rewardsCycleData.lastSync
) {
rewardsCycleData = _rewardsCycleData;
emit SyncRewards({
cycleEnd: _rewardsCycleData.cycleEnd,
lastSync: _rewardsCycleData.lastSync,
rewardCycleAmount: _rewardsCycleData.rewardCycleAmount
});
}
}
/// @notice The ```syncRewardsAndDistribution``` function is used to update the rewards cycle data and distribute rewards
/// @dev rewards must be distributed before the cycle is synced
function syncRewardsAndDistribution() public virtual {
distributeRewards();
_syncRewards();
}
/// @notice The ```totalAssets``` function returns the total assets available in the vault
/// @dev This function simulates the rewards that will be distributed at the top of the block
/// @return _totalAssets The total assets available in the vault
function totalAssets() public view virtual override returns (uint256 _totalAssets) {
uint256 _rewardToDistribute = previewDistributeRewards();
_totalAssets = storedTotalAssets + _rewardToDistribute;
}
function afterDeposit(uint256 amount, uint256 shares) internal virtual override {
storedTotalAssets += amount;
}
/// @notice The ```deposit``` function allows a user to mint shares by depositing underlying
/// @param _assets The amount of underlying to deposit
/// @param _receiver The address to send the shares to
/// @return _shares The amount of shares minted
function deposit(uint256 _assets, address _receiver) public override returns (uint256 _shares) {
distributeRewards();
_syncRewards();
_shares = super.deposit({ assets: _assets, receiver: _receiver });
}
/// @notice The ```mint``` function allows a user to mint a given number of shares
/// @param _shares The amount of shares to mint
/// @param _receiver The address to send the shares to
/// @return _assets The amount of underlying deposited
function mint(uint256 _shares, address _receiver) public override returns (uint256 _assets) {
distributeRewards();
_syncRewards();
_assets = super.mint({ shares: _shares, receiver: _receiver });
}
function beforeWithdraw(uint256 amount, uint256 shares) internal virtual override {
storedTotalAssets -= amount;
}
/// @notice The ```withdraw``` function allows a user to withdraw a given amount of underlying
/// @param _assets The amount of underlying to withdraw
/// @param _receiver The address to send the underlying to
/// @param _owner The address of the owner of the shares
/// @return _shares The amount of shares burned
function withdraw(uint256 _assets, address _receiver, address _owner) public override returns (uint256 _shares) {
distributeRewards();
_syncRewards();
_shares = super.withdraw({ assets: _assets, receiver: _receiver, owner: _owner });
}
/// @notice The ```redeem``` function allows a user to redeem their shares for underlying
/// @param _shares The amount of shares to redeem
/// @param _receiver The address to send the underlying to
/// @param _owner The address of the owner of the shares
/// @return _assets The amount of underlying redeemed
function redeem(uint256 _shares, address _receiver, address _owner) public override returns (uint256 _assets) {
distributeRewards();
_syncRewards();
_assets = super.redeem({ shares: _shares, receiver: _receiver, owner: _owner });
}
/// @notice The ```depositWithSignature``` function allows a user to use signed approvals to deposit
/// @param _assets The amount of underlying to deposit
/// @param _receiver The address to send the shares to
/// @param _deadline The deadline for the signature
/// @param _approveMax Whether or not to approve the maximum amount
/// @param _v The v value of the signature
/// @param _r The r value of the signature
/// @param _s The s value of the signature
/// @return _shares The amount of shares minted
function depositWithSignature(
uint256 _assets,
address _receiver,
uint256 _deadline,
bool _approveMax,
uint8 _v,
bytes32 _r,
bytes32 _s
) external returns (uint256 _shares) {
uint256 _amount = _approveMax ? type(uint256).max : _assets;
asset.permit({
owner: msg.sender,
spender: address(this),
value: _amount,
deadline: _deadline,
v: _v,
r: _r,
s: _s
});
_shares = (deposit({ _assets: _assets, _receiver: _receiver }));
}
//==============================================================================
// Events
//==============================================================================
/// @notice The ```SyncRewards``` event is emitted when the rewards cycle is synced
/// @param cycleEnd The timestamp of the end of the current rewards cycle
/// @param lastSync The timestamp of the last time the rewards cycle was synced
/// @param rewardCycleAmount The amount of rewards to be distributed in the current cycle
event SyncRewards(uint40 cycleEnd, uint40 lastSync, uint216 rewardCycleAmount);
/// @notice The ```DistributeRewards``` event is emitted when rewards are distributed to storedTotalAssets
/// @param rewardsToDistribute The amount of rewards that were distributed
event DistributeRewards(uint256 rewardsToDistribute);
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Safe unsigned integer casting library that reverts on overflow.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeCastLib.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol)
library SafeCastLib {
function safeCastTo248(uint256 x) internal pure returns (uint248 y) {
require(x < 1 << 248);
y = uint248(x);
}
function safeCastTo240(uint256 x) internal pure returns (uint240 y) {
require(x < 1 << 240);
y = uint240(x);
}
function safeCastTo232(uint256 x) internal pure returns (uint232 y) {
require(x < 1 << 232);
y = uint232(x);
}
function safeCastTo224(uint256 x) internal pure returns (uint224 y) {
require(x < 1 << 224);
y = uint224(x);
}
function safeCastTo216(uint256 x) internal pure returns (uint216 y) {
require(x < 1 << 216);
y = uint216(x);
}
function safeCastTo208(uint256 x) internal pure returns (uint208 y) {
require(x < 1 << 208);
y = uint208(x);
}
function safeCastTo200(uint256 x) internal pure returns (uint200 y) {
require(x < 1 << 200);
y = uint200(x);
}
function safeCastTo192(uint256 x) internal pure returns (uint192 y) {
require(x < 1 << 192);
y = uint192(x);
}
function safeCastTo184(uint256 x) internal pure returns (uint184 y) {
require(x < 1 << 184);
y = uint184(x);
}
function safeCastTo176(uint256 x) internal pure returns (uint176 y) {
require(x < 1 << 176);
y = uint176(x);
}
function safeCastTo168(uint256 x) internal pure returns (uint168 y) {
require(x < 1 << 168);
y = uint168(x);
}
function safeCastTo160(uint256 x) internal pure returns (uint160 y) {
require(x < 1 << 160);
y = uint160(x);
}
function safeCastTo152(uint256 x) internal pure returns (uint152 y) {
require(x < 1 << 152);
y = uint152(x);
}
function safeCastTo144(uint256 x) internal pure returns (uint144 y) {
require(x < 1 << 144);
y = uint144(x);
}
function safeCastTo136(uint256 x) internal pure returns (uint136 y) {
require(x < 1 << 136);
y = uint136(x);
}
function safeCastTo128(uint256 x) internal pure returns (uint128 y) {
require(x < 1 << 128);
y = uint128(x);
}
function safeCastTo120(uint256 x) internal pure returns (uint120 y) {
require(x < 1 << 120);
y = uint120(x);
}
function safeCastTo112(uint256 x) internal pure returns (uint112 y) {
require(x < 1 << 112);
y = uint112(x);
}
function safeCastTo104(uint256 x) internal pure returns (uint104 y) {
require(x < 1 << 104);
y = uint104(x);
}
function safeCastTo96(uint256 x) internal pure returns (uint96 y) {
require(x < 1 << 96);
y = uint96(x);
}
function safeCastTo88(uint256 x) internal pure returns (uint88 y) {
require(x < 1 << 88);
y = uint88(x);
}
function safeCastTo80(uint256 x) internal pure returns (uint80 y) {
require(x < 1 << 80);
y = uint80(x);
}
function safeCastTo72(uint256 x) internal pure returns (uint72 y) {
require(x < 1 << 72);
y = uint72(x);
}
function safeCastTo64(uint256 x) internal pure returns (uint64 y) {
require(x < 1 << 64);
y = uint64(x);
}
function safeCastTo56(uint256 x) internal pure returns (uint56 y) {
require(x < 1 << 56);
y = uint56(x);
}
function safeCastTo48(uint256 x) internal pure returns (uint48 y) {
require(x < 1 << 48);
y = uint48(x);
}
function safeCastTo40(uint256 x) internal pure returns (uint40 y) {
require(x < 1 << 40);
y = uint40(x);
}
function safeCastTo32(uint256 x) internal pure returns (uint32 y) {
require(x < 1 << 32);
y = uint32(x);
}
function safeCastTo24(uint256 x) internal pure returns (uint24 y) {
require(x < 1 << 24);
y = uint24(x);
}
function safeCastTo16(uint256 x) internal pure returns (uint16 y) {
require(x < 1 << 16);
y = uint16(x);
}
function safeCastTo8(uint256 x) internal pure returns (uint8 y) {
require(x < 1 << 8);
y = uint8(x);
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
import {ERC20} from "../tokens/ERC20.sol";
/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
/// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
library SafeTransferLib {
/*//////////////////////////////////////////////////////////////
ETH OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferETH(address to, uint256 amount) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Transfer the ETH and store if it succeeded or not.
success := call(gas(), to, amount, 0, 0, 0, 0)
}
require(success, "ETH_TRANSFER_FAILED");
}
/*//////////////////////////////////////////////////////////////
ERC20 OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferFrom(
ERC20 token,
address from,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
)
}
require(success, "TRANSFER_FROM_FAILED");
}
function safeTransfer(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
)
}
require(success, "TRANSFER_FAILED");
}
function safeApprove(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
)
}
require(success, "APPROVE_FAILED");
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.19;
// ====================================================================
// | ______ _______ |
// | / _____________ __ __ / ____(_____ ____ _____ ________ |
// | / /_ / ___/ __ `| |/_/ / /_ / / __ \/ __ `/ __ \/ ___/ _ \ |
// | / __/ / / / /_/ _> < / __/ / / / / / /_/ / / / / /__/ __/ |
// | /_/ /_/ \__,_/_/|_| /_/ /_/_/ /_/\__,_/_/ /_/\___/\___/ |
// | |
// ====================================================================
// ============================ StakedFrax ============================
// ====================================================================
// Frax Finance: https://github.com/FraxFinance
import { Timelock2Step } from "frax-std/access-control/v2/Timelock2Step.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { SafeCastLib } from "solmate/utils/SafeCastLib.sol";
import { LinearRewardsErc4626, ERC20 } from "./LinearRewardsErc4626.sol";
/// @title Staked Frax
/// @notice A ERC4626 Vault implementation with linear rewards, rewards can be capped
contract StakedFrax is LinearRewardsErc4626, Timelock2Step {
using SafeCastLib for *;
/// @notice The maximum amount of rewards that can be distributed per second per 1e18 asset
uint256 public maxDistributionPerSecondPerAsset;
/// @param _underlying The erc20 asset deposited
/// @param _name The name of the vault
/// @param _symbol The symbol of the vault
/// @param _rewardsCycleLength The length of the rewards cycle in seconds
/// @param _maxDistributionPerSecondPerAsset The maximum amount of rewards that can be distributed per second per 1e18 asset
/// @param _timelockAddress The address of the timelock/owner contract
constructor(
IERC20 _underlying,
string memory _name,
string memory _symbol,
uint32 _rewardsCycleLength,
uint256 _maxDistributionPerSecondPerAsset,
address _timelockAddress
)
LinearRewardsErc4626(ERC20(address(_underlying)), _name, _symbol, _rewardsCycleLength)
Timelock2Step(_timelockAddress)
{
maxDistributionPerSecondPerAsset = _maxDistributionPerSecondPerAsset;
}
/// @notice The ```SetMaxDistributionPerSecondPerAsset``` event is emitted when the maxDistributionPerSecondPerAsset is set
/// @param oldMax The old maxDistributionPerSecondPerAsset value
/// @param newMax The new maxDistributionPerSecondPerAsset value
event SetMaxDistributionPerSecondPerAsset(uint256 oldMax, uint256 newMax);
/// @notice The ```setMaxDistributionPerSecondPerAsset``` function sets the maxDistributionPerSecondPerAsset
/// @dev This function can only be called by the timelock, caps the value to type(uint64).max
/// @param _maxDistributionPerSecondPerAsset The maximum amount of rewards that can be distributed per second per 1e18 asset
function setMaxDistributionPerSecondPerAsset(uint256 _maxDistributionPerSecondPerAsset) external {
_requireSenderIsTimelock();
syncRewardsAndDistribution();
// NOTE: prevents bricking the contract via overflow
if (_maxDistributionPerSecondPerAsset > type(uint64).max) {
_maxDistributionPerSecondPerAsset = type(uint64).max;
}
emit SetMaxDistributionPerSecondPerAsset({
oldMax: maxDistributionPerSecondPerAsset,
newMax: _maxDistributionPerSecondPerAsset
});
maxDistributionPerSecondPerAsset = _maxDistributionPerSecondPerAsset;
}
/// @notice The ```calculateRewardsToDistribute``` function calculates the amount of rewards to distribute based on the rewards cycle data and the time passed
/// @param _rewardsCycleData The rewards cycle data
/// @param _deltaTime The time passed since the last rewards distribution
/// @return _rewardToDistribute The amount of rewards to distribute
function calculateRewardsToDistribute(
RewardsCycleData memory _rewardsCycleData,
uint256 _deltaTime
) public view override returns (uint256 _rewardToDistribute) {
_rewardToDistribute = super.calculateRewardsToDistribute({
_rewardsCycleData: _rewardsCycleData,
_deltaTime: _deltaTime
});
// Cap rewards
uint256 _maxDistribution = (maxDistributionPerSecondPerAsset * _deltaTime * storedTotalAssets) / PRECISION;
if (_rewardToDistribute > _maxDistribution) {
_rewardToDistribute = _maxDistribution;
}
}
}
// SPDX-License-Identifier: ISC
pragma solidity >=0.8.0;
// ====================================================================
// | ______ _______ |
// | / _____________ __ __ / ____(_____ ____ _____ ________ |
// | / /_ / ___/ __ `| |/_/ / /_ / / __ \/ __ `/ __ \/ ___/ _ \ |
// | / __/ / / / /_/ _> < / __/ / / / / / /_/ / / / / /__/ __/ |
// | /_/ /_/ \__,_/_/|_| /_/ /_/_/ /_/\__,_/_/ /_/\___/\___/ |
// | |
// ====================================================================
// ========================== Timelock2Step ===========================
// ====================================================================
// Frax Finance: https://github.com/FraxFinance
// Primary Author
// Drake Evans: https://github.com/DrakeEvans
// Reviewers
// Dennis: https://github.com/denett
// ====================================================================
/// @title Timelock2Step
/// @author Drake Evans (Frax Finance) https://github.com/drakeevans
/// @dev Inspired by OpenZeppelin's Ownable2Step contract
/// @notice An abstract contract which contains 2-step transfer and renounce logic for a timelock address
abstract contract Timelock2Step {
/// @notice The pending timelock address
address public pendingTimelockAddress;
/// @notice The current timelock address
address public timelockAddress;
constructor(address _timelockAddress) {
timelockAddress = _timelockAddress;
}
// ============================================================================================
// Functions: External Functions
// ============================================================================================
/// @notice The ```transferTimelock``` function initiates the timelock transfer
/// @dev Must be called by the current timelock
/// @param _newTimelock The address of the nominated (pending) timelock
function transferTimelock(address _newTimelock) external virtual {
_requireSenderIsTimelock();
_transferTimelock(_newTimelock);
}
/// @notice The ```acceptTransferTimelock``` function completes the timelock transfer
/// @dev Must be called by the pending timelock
function acceptTransferTimelock() external virtual {
_requireSenderIsPendingTimelock();
_acceptTransferTimelock();
}
/// @notice The ```renounceTimelock``` function renounces the timelock after setting pending timelock to current timelock
/// @dev Pending timelock must be set to current timelock before renouncing, creating a 2-step renounce process
function renounceTimelock() external virtual {
_requireSenderIsTimelock();
_requireSenderIsPendingTimelock();
_transferTimelock(address(0));
_setTimelock(address(0));
}
// ============================================================================================
// Functions: Internal Actions
// ============================================================================================
/// @notice The ```_transferTimelock``` function initiates the timelock transfer
/// @dev This function is to be implemented by a public function
/// @param _newTimelock The address of the nominated (pending) timelock
function _transferTimelock(address _newTimelock) internal {
pendingTimelockAddress = _newTimelock;
emit TimelockTransferStarted(timelockAddress, _newTimelock);
}
/// @notice The ```_acceptTransferTimelock``` function completes the timelock transfer
/// @dev This function is to be implemented by a public function
function _acceptTransferTimelock() internal {
pendingTimelockAddress = address(0);
_setTimelock(msg.sender);
}
/// @notice The ```_setTimelock``` function sets the timelock address
/// @dev This function is to be implemented by a public function
/// @param _newTimelock The address of the new timelock
function _setTimelock(address _newTimelock) internal {
emit TimelockTransferred(timelockAddress, _newTimelock);
timelockAddress = _newTimelock;
}
// ============================================================================================
// Functions: Internal Checks
// ============================================================================================
/// @notice The ```_isTimelock``` function checks if _address is current timelock address
/// @param _address The address to check against the timelock
/// @return Whether or not msg.sender is current timelock address
function _isTimelock(address _address) internal view returns (bool) {
return _address == timelockAddress;
}
/// @notice The ```_requireIsTimelock``` function reverts if _address is not current timelock address
/// @param _address The address to check against the timelock
function _requireIsTimelock(address _address) internal view {
if (!_isTimelock(_address)) revert AddressIsNotTimelock(timelockAddress, _address);
}
/// @notice The ```_requireSenderIsTimelock``` function reverts if msg.sender is not current timelock address
/// @dev This function is to be implemented by a public function
function _requireSenderIsTimelock() internal view {
_requireIsTimelock(msg.sender);
}
/// @notice The ```_isPendingTimelock``` function checks if the _address is pending timelock address
/// @dev This function is to be implemented by a public function
/// @param _address The address to check against the pending timelock
/// @return Whether or not _address is pending timelock address
function _isPendingTimelock(address _address) internal view returns (bool) {
return _address == pendingTimelockAddress;
}
/// @notice The ```_requireIsPendingTimelock``` function reverts if the _address is not pending timelock address
/// @dev This function is to be implemented by a public function
/// @param _address The address to check against the pending timelock
function _requireIsPendingTimelock(address _address) internal view {
if (!_isPendingTimelock(_address)) revert AddressIsNotPendingTimelock(pendingTimelockAddress, _address);
}
/// @notice The ```_requirePendingTimelock``` function reverts if msg.sender is not pending timelock address
/// @dev This function is to be implemented by a public function
function _requireSenderIsPendingTimelock() internal view {
_requireIsPendingTimelock(msg.sender);
}
// ============================================================================================
// Functions: Events
// ============================================================================================
/// @notice The ```TimelockTransferStarted``` event is emitted when the timelock transfer is initiated
/// @param previousTimelock The address of the previous timelock
/// @param newTimelock The address of the new timelock
event TimelockTransferStarted(address indexed previousTimelock, address indexed newTimelock);
/// @notice The ```TimelockTransferred``` event is emitted when the timelock transfer is completed
/// @param previousTimelock The address of the previous timelock
/// @param newTimelock The address of the new timelock
event TimelockTransferred(address indexed previousTimelock, address indexed newTimelock);
// ============================================================================================
// Functions: Errors
// ============================================================================================
/// @notice Emitted when timelock is transferred
error AddressIsNotTimelock(address timelockAddress, address actualAddress);
/// @notice Emitted when pending timelock is transferred
error AddressIsNotPendingTimelock(address pendingTimelockAddress, address actualAddress);
}
{
"compilationTarget": {
"src/contracts/StakedFrax.sol": "StakedFrax"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"appendCBOR": false,
"bytecodeHash": "none"
},
"optimizer": {
"enabled": true,
"runs": 1000000
},
"remappings": [
":@openzeppelin/=node_modules/@openzeppelin/",
":ds-test/=lib/frax-standard-solidity/lib/forge-std/lib/ds-test/src/",
":forge-std/=lib/frax-standard-solidity/lib/forge-std/src/",
":frax-standard-solidity/=lib/frax-standard-solidity/src/",
":frax-std/=lib/frax-standard-solidity/src/",
":solidity-bytes-utils/=lib/frax-standard-solidity/lib/solidity-bytes-utils/",
":solmate/=lib/solmate/src/"
],
"viaIR": true
}
[{"inputs":[{"internalType":"contract IERC20","name":"_underlying","type":"address"},{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"uint32","name":"_rewardsCycleLength","type":"uint32"},{"internalType":"uint256","name":"_maxDistributionPerSecondPerAsset","type":"uint256"},{"internalType":"address","name":"_timelockAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"pendingTimelockAddress","type":"address"},{"internalType":"address","name":"actualAddress","type":"address"}],"name":"AddressIsNotPendingTimelock","type":"error"},{"inputs":[{"internalType":"address","name":"timelockAddress","type":"address"},{"internalType":"address","name":"actualAddress","type":"address"}],"name":"AddressIsNotTimelock","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"rewardsToDistribute","type":"uint256"}],"name":"DistributeRewards","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldMax","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newMax","type":"uint256"}],"name":"SetMaxDistributionPerSecondPerAsset","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint40","name":"cycleEnd","type":"uint40"},{"indexed":false,"internalType":"uint40","name":"lastSync","type":"uint40"},{"indexed":false,"internalType":"uint216","name":"rewardCycleAmount","type":"uint216"}],"name":"SyncRewards","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousTimelock","type":"address"},{"indexed":true,"internalType":"address","name":"newTimelock","type":"address"}],"name":"TimelockTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousTimelock","type":"address"},{"indexed":true,"internalType":"address","name":"newTimelock","type":"address"}],"name":"TimelockTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRECISION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"REWARDS_CYCLE_LENGTH","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptTransferTimelock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"contract ERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint40","name":"cycleEnd","type":"uint40"},{"internalType":"uint40","name":"lastSync","type":"uint40"},{"internalType":"uint216","name":"rewardCycleAmount","type":"uint216"}],"internalType":"struct LinearRewardsErc4626.RewardsCycleData","name":"_rewardsCycleData","type":"tuple"},{"internalType":"uint256","name":"_deltaTime","type":"uint256"}],"name":"calculateRewardsToDistribute","outputs":[{"internalType":"uint256","name":"_rewardToDistribute","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"convertToAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"uint256","name":"_deadline","type":"uint256"},{"internalType":"bool","name":"_approveMax","type":"bool"},{"internalType":"uint8","name":"_v","type":"uint8"},{"internalType":"bytes32","name":"_r","type":"bytes32"},{"internalType":"bytes32","name":"_s","type":"bytes32"}],"name":"depositWithSignature","outputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"distributeRewards","outputs":[{"internalType":"uint256","name":"_rewardToDistribute","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lastRewardsDistribution","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"maxDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxDistributionPerSecondPerAsset","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"maxMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"maxRedeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"maxWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"}],"name":"mint","outputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingTimelockAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"previewDistributeRewards","outputs":[{"internalType":"uint256","name":"_rewardToDistribute","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"previewMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"previewRedeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"previewSyncRewards","outputs":[{"components":[{"internalType":"uint40","name":"cycleEnd","type":"uint40"},{"internalType":"uint40","name":"lastSync","type":"uint40"},{"internalType":"uint216","name":"rewardCycleAmount","type":"uint216"}],"internalType":"struct LinearRewardsErc4626.RewardsCycleData","name":"_newRewardsCycleData","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceTimelock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardsCycleData","outputs":[{"internalType":"uint40","name":"cycleEnd","type":"uint40"},{"internalType":"uint40","name":"lastSync","type":"uint40"},{"internalType":"uint216","name":"rewardCycleAmount","type":"uint216"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_maxDistributionPerSecondPerAsset","type":"uint256"}],"name":"setMaxDistributionPerSecondPerAsset","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"storedTotalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"syncRewardsAndDistribution","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"timelockAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"_totalAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newTimelock","type":"address"}],"name":"transferTimelock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]