// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Provides a flexible and updatable auth pattern which is completely separate from application logic.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/auth/Auth.sol)
/// @author Modified from Dappsys (https://github.com/dapphub/ds-auth/blob/master/src/auth.sol)
abstract contract Auth {
event OwnerUpdated(address indexed user, address indexed newOwner);
event AuthorityUpdated(address indexed user, Authority indexed newAuthority);
address public owner;
Authority public authority;
constructor(address _owner, Authority _authority) {
owner = _owner;
authority = _authority;
emit OwnerUpdated(msg.sender, _owner);
emit AuthorityUpdated(msg.sender, _authority);
}
modifier requiresAuth() {
require(isAuthorized(msg.sender, msg.sig), "UNAUTHORIZED");
_;
}
function isAuthorized(address user, bytes4 functionSig) internal view virtual returns (bool) {
Authority auth = authority; // Memoizing authority saves us a warm SLOAD, around 100 gas.
// Checking if the caller is the owner only after calling the authority saves gas in most cases, but be
// aware that this makes protected functions uncallable even to the owner if the authority is out of order.
return (address(auth) != address(0) && auth.canCall(user, address(this), functionSig)) || user == owner;
}
function setAuthority(Authority newAuthority) public virtual {
// We check if the caller is the owner first because we want to ensure they can
// always swap out the authority even if it's reverting or using up a lot of gas.
require(msg.sender == owner || authority.canCall(msg.sender, address(this), msg.sig));
authority = newAuthority;
emit AuthorityUpdated(msg.sender, newAuthority);
}
function setOwner(address newOwner) public virtual requiresAuth {
owner = newOwner;
emit OwnerUpdated(msg.sender, newOwner);
}
}
/// @notice A generic interface for a contract which provides authorization data to an Auth instance.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/auth/Auth.sol)
/// @author Modified from Dappsys (https://github.com/dapphub/ds-auth/blob/master/src/auth.sol)
interface Authority {
function canCall(
address user,
address target,
bytes4 functionSig
) external view returns (bool);
}
// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity 0.8.15;
import {ERC20} from "solmate/tokens/ERC20.sol";
import {ReentrancyGuard} from "solmate/utils/ReentrancyGuard.sol";
import {Auth, Authority} from "solmate/auth/Auth.sol";
import {IBondSDA, IBondAuctioneer} from "../interfaces/IBondSDA.sol";
import {IBondTeller} from "../interfaces/IBondTeller.sol";
import {IBondCallback} from "../interfaces/IBondCallback.sol";
import {IBondAggregator} from "../interfaces/IBondAggregator.sol";
import {TransferHelper} from "../lib/TransferHelper.sol";
import {FullMath} from "../lib/FullMath.sol";
/// @title Bond Sequential Dutch Auctioneer (SDA)
/// @notice Bond Sequential Dutch Auctioneer Base Contract
/// @dev Bond Protocol is a system to create Olympus-style bond markets
/// for any token pair. The markets do not require maintenance and will manage
/// bond prices based on activity. Bond issuers create BondMarkets that pay out
/// a Payout Token in exchange for deposited Quote Tokens. Users can purchase
/// future-dated Payout Tokens with Quote Tokens at the current market price and
/// receive Bond Tokens to represent their position while their bond vests.
/// Once the Bond Tokens vest, they can redeem it for the Quote Tokens.
///
/// @dev The Auctioneer contract allows users to create and manage bond markets.
/// All bond pricing logic and market data is stored in the Auctioneer.
/// A Auctioneer is dependent on a Teller to serve external users and
/// an Aggregator to register new markets. This implementation of the Auctioneer
/// uses a Sequential Dutch Auction pricing system to buy a target amount of quote
/// tokens or sell a target amount of payout tokens over the duration of a market.
///
/// @author Oighty, Zeus, Potted Meat, indigo
abstract contract BondBaseSDA is IBondSDA, Auth {
using TransferHelper for ERC20;
using FullMath for uint256;
/* ========== ERRORS ========== */
error Auctioneer_OnlyMarketOwner();
error Auctioneer_InitialPriceLessThanMin();
error Auctioneer_MarketConcluded(uint256 conclusion_);
error Auctioneer_MaxPayoutExceeded();
error Auctioneer_AmountLessThanMinimum();
error Auctioneer_NotEnoughCapacity();
error Auctioneer_InvalidCallback();
error Auctioneer_BadExpiry();
error Auctioneer_InvalidParams();
error Auctioneer_NotAuthorized();
error Auctioneer_NewMarketsNotAllowed();
/* ========== EVENTS ========== */
event MarketCreated(
uint256 indexed id,
address indexed payoutToken,
address indexed quoteToken,
uint48 vesting,
uint256 initialPrice
);
event MarketClosed(uint256 indexed id);
event Tuned(uint256 indexed id, uint256 oldControlVariable, uint256 newControlVariable);
event DefaultsUpdated(
uint32 defaultTuneInterval,
uint32 defaultTuneAdjustment,
uint32 minDebtDecayInterval,
uint32 minDepositInterval,
uint32 minMarketDuration,
uint32 minDebtBuffer
);
/* ========== STATE VARIABLES ========== */
/// @notice Main information pertaining to bond market
mapping(uint256 => BondMarket) public markets;
/// @notice Information used to control how a bond market changes
mapping(uint256 => BondTerms) public terms;
/// @notice Data needed for tuning bond market
mapping(uint256 => BondMetadata) public metadata;
/// @notice Control variable changes
mapping(uint256 => Adjustment) public adjustments;
/// @notice New address to designate as market owner. They must accept ownership to transfer permissions.
mapping(uint256 => address) public newOwners;
/// @notice Whether or not the auctioneer allows new markets to be created
/// @dev Changing to false will sunset the auctioneer after all active markets end
bool public allowNewMarkets;
/// @notice Whether or not the market creator is authorized to use a callback address
mapping(address => bool) public callbackAuthorized;
/// Sane defaults for tuning. Can be adjusted for a specific market via setters.
uint32 public defaultTuneInterval;
uint32 public defaultTuneAdjustment;
/// Minimum values for decay, deposit interval, market duration and debt buffer.
uint32 public minDebtDecayInterval;
uint32 public minDepositInterval;
uint32 public minMarketDuration;
uint32 public minDebtBuffer;
// A 'vesting' param longer than 50 years is considered a timestamp for fixed expiry.
uint48 internal constant MAX_FIXED_TERM = 52 weeks * 50;
uint48 internal constant FEE_DECIMALS = 1e5; // one percent equals 1000.
// BondAggregator contract with utility functions
IBondAggregator internal immutable _aggregator;
// BondTeller contract that handles interactions with users and issues tokens
IBondTeller internal immutable _teller;
constructor(
IBondTeller teller_,
IBondAggregator aggregator_,
address guardian_,
Authority authority_
) Auth(guardian_, authority_) {
_aggregator = aggregator_;
_teller = teller_;
defaultTuneInterval = 24 hours;
defaultTuneAdjustment = 1 hours;
minDebtDecayInterval = 3 days;
minDepositInterval = 1 hours;
minMarketDuration = 1 days;
minDebtBuffer = 10000; // 10%
allowNewMarkets = true;
}
/* ========== MARKET FUNCTIONS ========== */
/// @inheritdoc IBondAuctioneer
function createMarket(bytes calldata params_) external virtual returns (uint256);
/// @notice core market creation logic, see IBondSDA.MarketParams documentation
function _createMarket(MarketParams memory params_) internal returns (uint256) {
{
// Check that the auctioneer is allowing new markets to be created
if (!allowNewMarkets) revert Auctioneer_NewMarketsNotAllowed();
// Ensure params are in bounds
uint8 payoutTokenDecimals = params_.payoutToken.decimals();
uint8 quoteTokenDecimals = params_.quoteToken.decimals();
if (payoutTokenDecimals < 6 || payoutTokenDecimals > 18)
revert Auctioneer_InvalidParams();
if (quoteTokenDecimals < 6 || quoteTokenDecimals > 18)
revert Auctioneer_InvalidParams();
if (params_.scaleAdjustment < -24 || params_.scaleAdjustment > 24)
revert Auctioneer_InvalidParams();
// Restrict the use of a callback address unless allowed
if (!callbackAuthorized[msg.sender] && params_.callbackAddr != address(0))
revert Auctioneer_NotAuthorized();
}
// Unit to scale calculation for this market by to ensure reasonable values
// for price, debt, and control variable without under/overflows.
// See IBondSDA for more details.
//
// scaleAdjustment should be equal to (payoutDecimals - quoteDecimals) - ((payoutPriceDecimals - quotePriceDecimals) / 2)
uint256 scale;
unchecked {
scale = 10**uint8(36 + params_.scaleAdjustment);
}
if (params_.formattedInitialPrice < params_.formattedMinimumPrice)
revert Auctioneer_InitialPriceLessThanMin();
// Register new market on aggregator and get marketId
uint256 marketId = _aggregator.registerMarket(params_.payoutToken, params_.quoteToken);
uint32 secondsToConclusion;
uint32 debtDecayInterval;
{
// Conclusion must be later than the current block timestamp or will revert
secondsToConclusion = uint32(params_.conclusion - block.timestamp);
if (
secondsToConclusion < minMarketDuration ||
params_.depositInterval < minDepositInterval ||
params_.depositInterval > secondsToConclusion
) revert Auctioneer_InvalidParams();
// The debt decay interval is how long it takes for price to drop to 0 from the last decay timestamp.
// In reality, a 50% drop is likely a guaranteed bond sale. Therefore, debt decay interval needs to be
// long enough to allow a bond to adjust if oversold. It also needs to be some multiple of deposit interval
// because you don't want to go from 100 to 0 during the time frame you expected to sell a single bond.
// A multiple of 5 is a sane default observed from running OP v1 bond markets.
uint32 userDebtDecay = params_.depositInterval * 5;
debtDecayInterval = minDebtDecayInterval > userDebtDecay
? minDebtDecayInterval
: userDebtDecay;
uint256 tuneIntervalCapacity = params_.capacity.mulDiv(
uint256(
params_.depositInterval > defaultTuneInterval
? params_.depositInterval
: defaultTuneInterval
),
uint256(secondsToConclusion)
);
metadata[marketId] = BondMetadata({
lastTune: uint48(block.timestamp),
lastDecay: uint48(block.timestamp),
length: secondsToConclusion,
depositInterval: params_.depositInterval,
tuneInterval: params_.depositInterval > defaultTuneInterval
? params_.depositInterval
: defaultTuneInterval,
tuneAdjustmentDelay: defaultTuneAdjustment,
debtDecayInterval: debtDecayInterval,
tuneIntervalCapacity: tuneIntervalCapacity,
tuneBelowCapacity: params_.capacity - tuneIntervalCapacity,
lastTuneDebt: (
params_.capacityInQuote
? params_.capacity.mulDiv(scale, params_.formattedInitialPrice)
: params_.capacity
).mulDiv(uint256(debtDecayInterval), uint256(secondsToConclusion))
});
}
// Initial target debt is equal to capacity scaled by the ratio of the debt decay interval and the length of the market.
// This is the amount of debt that should be decayed over the decay interval if no purchases are made.
// Note price should be passed in a specific format:
// price = (payoutPriceCoefficient / quotePriceCoefficient)
// * 10**(36 + scaleAdjustment + quoteDecimals - payoutDecimals + payoutPriceDecimals - quotePriceDecimals)
// See IBondSDA for more details and variable definitions.
uint256 targetDebt;
uint256 maxPayout;
{
uint256 capacity = params_.capacityInQuote
? params_.capacity.mulDiv(scale, params_.formattedInitialPrice)
: params_.capacity;
targetDebt = capacity.mulDiv(uint256(debtDecayInterval), uint256(secondsToConclusion));
// Max payout is the amount of capacity that should be utilized in a deposit
// interval. for example, if capacity is 1,000 TOKEN, there are 10 days to conclusion,
// and the preferred deposit interval is 1 day, max payout would be 100 TOKEN.
// Additionally, max payout is the maximum amount that a user can receive from a single
// purchase at that moment in time.
maxPayout = capacity.mulDiv(
uint256(params_.depositInterval),
uint256(secondsToConclusion)
);
}
markets[marketId] = BondMarket({
owner: msg.sender,
payoutToken: params_.payoutToken,
quoteToken: params_.quoteToken,
callbackAddr: params_.callbackAddr,
capacityInQuote: params_.capacityInQuote,
capacity: params_.capacity,
totalDebt: targetDebt,
minPrice: params_.formattedMinimumPrice,
maxPayout: maxPayout,
purchased: 0,
sold: 0,
scale: scale
});
// Max debt serves as a circuit breaker for the market. let's say the quote token is a stablecoin,
// and that stablecoin depegs. without max debt, the market would continue to buy until it runs
// out of capacity. this is configurable with a 3 decimal buffer (1000 = 1% above initial price).
// Note that its likely advisable to keep this buffer wide.
// Note that the buffer is above 100%. i.e. 10% buffer = initial debt * 1.1
// 1e5 = 100,000. 10,000 / 100,000 = 10%.
// See IBondSDA.MarketParams for more information on determining a reasonable debt buffer.
uint256 minDebtBuffer_ = maxPayout.mulDiv(FEE_DECIMALS, targetDebt) > minDebtBuffer
? maxPayout.mulDiv(FEE_DECIMALS, targetDebt)
: minDebtBuffer;
uint256 maxDebt = targetDebt +
targetDebt.mulDiv(
uint256(params_.debtBuffer > minDebtBuffer_ ? params_.debtBuffer : minDebtBuffer_),
1e5
);
// The control variable is set as the ratio of price to the initial targetDebt, scaled to prevent under/overflows.
// It determines the price of the market as the debt decays and is tuned by the market based on user activity.
// See _tune() for more information.
//
// price = control variable * debt / scale
// therefore, control variable = price * scale / debt
uint256 controlVariable = params_.formattedInitialPrice.mulDiv(scale, targetDebt);
terms[marketId] = BondTerms({
controlVariable: controlVariable,
maxDebt: maxDebt,
vesting: params_.vesting,
conclusion: params_.conclusion
});
emit MarketCreated(
marketId,
address(params_.payoutToken),
address(params_.quoteToken),
params_.vesting,
params_.formattedInitialPrice
);
return marketId;
}
/// @inheritdoc IBondAuctioneer
function setIntervals(uint256 id_, uint32[3] calldata intervals_) external override {
// Check that the market is live
if (!isLive(id_)) revert Auctioneer_InvalidParams();
// Check that the intervals are non-zero
if (intervals_[0] == 0 || intervals_[1] == 0 || intervals_[2] == 0)
revert Auctioneer_InvalidParams();
// Check that tuneInterval >= tuneAdjustmentDelay
if (intervals_[0] < intervals_[1]) revert Auctioneer_InvalidParams();
BondMetadata storage meta = metadata[id_];
// Check that tuneInterval >= depositInterval
if (intervals_[0] < meta.depositInterval) revert Auctioneer_InvalidParams();
// Check that debtDecayInterval >= minDebtDecayInterval
if (intervals_[2] < minDebtDecayInterval) revert Auctioneer_InvalidParams();
// Check that sender is market owner
BondMarket memory market = markets[id_];
if (msg.sender != market.owner) revert Auctioneer_OnlyMarketOwner();
// Update intervals
meta.tuneInterval = intervals_[0];
meta.tuneIntervalCapacity = market.capacity.mulDiv(
uint256(intervals_[0]),
uint256(terms[id_].conclusion) - block.timestamp
); // don't have a stored value for market duration, this will update tuneIntervalCapacity based on time remaining
meta.tuneBelowCapacity = market.capacity > meta.tuneIntervalCapacity
? market.capacity - meta.tuneIntervalCapacity
: 0;
meta.tuneAdjustmentDelay = intervals_[1];
meta.debtDecayInterval = intervals_[2];
}
/// @inheritdoc IBondAuctioneer
function pushOwnership(uint256 id_, address newOwner_) external override {
if (msg.sender != markets[id_].owner) revert Auctioneer_OnlyMarketOwner();
newOwners[id_] = newOwner_;
}
/// @inheritdoc IBondAuctioneer
function pullOwnership(uint256 id_) external override {
if (msg.sender != newOwners[id_]) revert Auctioneer_NotAuthorized();
markets[id_].owner = newOwners[id_];
}
/// @inheritdoc IBondAuctioneer
function setDefaults(uint32[6] memory defaults_) external override requiresAuth {
// Restricted to authorized addresses
// Validate inputs
// Check that defaultTuneInterval >= defaultTuneAdjustment
if (defaults_[0] < defaults_[1]) revert Auctioneer_InvalidParams();
// Check that defaultTuneInterval >= minDepositInterval
if (defaults_[0] < defaults_[3]) revert Auctioneer_InvalidParams();
// Check that minDepositInterval <= minMarketDuration
if (defaults_[3] > defaults_[4]) revert Auctioneer_InvalidParams();
// Check that minDebtDecayInterval >= 5 * minDepositInterval
if (defaults_[2] < defaults_[3] * 5) revert Auctioneer_InvalidParams();
// Update defaults
defaultTuneInterval = defaults_[0];
defaultTuneAdjustment = defaults_[1];
minDebtDecayInterval = defaults_[2];
minDepositInterval = defaults_[3];
minMarketDuration = defaults_[4];
minDebtBuffer = defaults_[5];
emit DefaultsUpdated(
defaultTuneInterval,
defaultTuneAdjustment,
minDebtDecayInterval,
minDepositInterval,
minMarketDuration,
minDebtBuffer
);
}
/// @inheritdoc IBondAuctioneer
function setAllowNewMarkets(bool status_) external override requiresAuth {
// Restricted to authorized addresses
allowNewMarkets = status_;
}
/// @inheritdoc IBondAuctioneer
function setCallbackAuthStatus(address creator_, bool status_) external override requiresAuth {
// Restricted to authorized addresses
callbackAuthorized[creator_] = status_;
}
/// @inheritdoc IBondAuctioneer
function closeMarket(uint256 id_) external override {
if (msg.sender != markets[id_].owner) revert Auctioneer_OnlyMarketOwner();
_close(id_);
}
/* ========== TELLER FUNCTIONS ========== */
/// @inheritdoc IBondAuctioneer
function purchaseBond(
uint256 id_,
uint256 amount_,
uint256 minAmountOut_
) external override returns (uint256 payout) {
if (msg.sender != address(_teller)) revert Auctioneer_NotAuthorized();
BondMarket storage market = markets[id_];
BondTerms memory term = terms[id_];
// If market uses a callback, check that owner is still callback authorized
if (market.callbackAddr != address(0) && !callbackAuthorized[market.owner])
revert Auctioneer_NotAuthorized();
// Markets end at a defined timestamp
uint48 currentTime = uint48(block.timestamp);
if (currentTime >= term.conclusion) revert Auctioneer_MarketConcluded(term.conclusion);
uint256 price;
(price, payout) = _decayAndGetPrice(id_, amount_, uint48(block.timestamp)); // Debt and the control variable decay over time
// Payout must be greater than user inputted minimum
if (payout < minAmountOut_) revert Auctioneer_AmountLessThanMinimum();
// Markets have a max payout amount, capping size because deposits
// do not experience slippage. max payout is recalculated upon tuning
if (payout > market.maxPayout) revert Auctioneer_MaxPayoutExceeded();
// Update Capacity and Debt values
// Capacity is either the number of payout tokens that the market can sell
// (if capacity in quote is false),
//
// or the number of quote tokens that the market can buy
// (if capacity in quote is true)
// If amount/payout is greater than capacity remaining, revert
if (market.capacityInQuote ? amount_ > market.capacity : payout > market.capacity)
revert Auctioneer_NotEnoughCapacity();
// Capacity is decreased by the deposited or paid amount
market.capacity -= market.capacityInQuote ? amount_ : payout;
// Markets keep track of how many quote tokens have been
// purchased, and how many payout tokens have been sold
market.purchased += amount_;
market.sold += payout;
// Circuit breaker. If max debt is breached, the market is closed
if (term.maxDebt < market.totalDebt) {
_close(id_);
} else {
// If market will continue, the control variable is tuned to to expend remaining capacity over remaining market duration
_tune(id_, currentTime, price);
}
}
/* ========== INTERNAL DEPO FUNCTIONS ========== */
/// @notice Close a market
/// @dev Closing a market sets capacity to 0 and immediately stops bonding
function _close(uint256 id_) internal {
terms[id_].conclusion = uint48(block.timestamp);
markets[id_].capacity = 0;
emit MarketClosed(id_);
}
/// @notice Decay debt, and adjust control variable if there is an active change
/// @param id_ ID of market
/// @param amount_ Amount of quote tokens being purchased
/// @param time_ Current timestamp (saves gas when passed in)
/// @return marketPrice_ Current market price of bond, accounting for decay
/// @return payout_ Amount of payout tokens received at current price
function _decayAndGetPrice(
uint256 id_,
uint256 amount_,
uint48 time_
) internal returns (uint256 marketPrice_, uint256 payout_) {
BondMarket memory market = markets[id_];
// Debt is a time-decayed sum of tokens spent in a market
// Debt is added when deposits occur and removed over time
// |
// | debt falls with
// | / \ inactivity / \
// | / \ /\ / \
// | \ / \ / \
// | \ /\/
// | \ / and rises
// | with deposits
// |
// |------------------------------------| t
// Decay debt by the amount of time since the last decay
uint256 decayedDebt = currentDebt(id_);
markets[id_].totalDebt = decayedDebt;
// Control variable decay
// The bond control variable is continually tuned. When it is lowered (which
// lowers the market price), the change is carried out smoothly over time.
if (adjustments[id_].active) {
Adjustment storage adjustment = adjustments[id_];
(uint256 adjustBy, uint48 secondsSince, bool stillActive) = _controlDecay(id_);
terms[id_].controlVariable -= adjustBy;
if (stillActive) {
adjustment.change -= adjustBy;
adjustment.timeToAdjusted -= secondsSince;
adjustment.lastAdjustment = time_;
} else {
adjustment.active = false;
}
}
// Price is not allowed to be lower than the minimum price
marketPrice_ = _currentMarketPrice(id_);
uint256 minPrice = market.minPrice;
if (marketPrice_ < minPrice) marketPrice_ = minPrice;
// Payout for the deposit = amount / price
//
// where:
// payout = payout tokens out
// amount = quote tokens in
// price = quote tokens : payout token (i.e. 200 QUOTE : BASE), adjusted for scaling
payout_ = amount_.mulDiv(market.scale, marketPrice_);
// Cache storage variables to memory
uint256 debtDecayInterval = uint256(metadata[id_].debtDecayInterval);
uint256 lastTuneDebt = metadata[id_].lastTuneDebt;
uint256 lastDecay = uint256(metadata[id_].lastDecay);
// Set last decay timestamp based on size of purchase to linearize decay
uint256 lastDecayIncrement = debtDecayInterval.mulDivUp(payout_, lastTuneDebt);
metadata[id_].lastDecay += uint48(lastDecayIncrement);
// Update total debt following the purchase
// Goal is to have the same decayed debt post-purchase as pre-purchase so that price is the same as before purchase and then add new debt to increase price
// 1. Adjust total debt so that decayed debt is equal to the current debt after updating the last decay timestamp.
// This is the currentDebt function solved for totalDebt and adding lastDecayIncrement (the number of seconds lastDecay moves forward in time)
// to the number of seconds used to calculate the previous currentDebt.
// 2. Add the payout to the total debt to increase the price.
uint256 decayOffset = time_ > lastDecay
? (
debtDecayInterval > (time_ - lastDecay)
? debtDecayInterval - (time_ - lastDecay)
: 0
)
: debtDecayInterval + (lastDecay - time_);
markets[id_].totalDebt =
decayedDebt.mulDiv(debtDecayInterval, decayOffset + lastDecayIncrement) +
payout_ +
1; // add 1 to satisfy price inequality
}
/// @notice Auto-adjust control variable to hit capacity/spend target
/// @param id_ ID of market
/// @param time_ Timestamp (saves gas when passed in)
/// @param price_ Current price of the market
function _tune(
uint256 id_,
uint48 time_,
uint256 price_
) internal {
BondMetadata memory meta = metadata[id_];
BondMarket memory market = markets[id_];
// Market tunes in 2 situations:
// 1. If capacity has exceeded target since last tune adjustment and the market is oversold
// 2. If a tune interval has passed since last tune adjustment and the market is undersold
//
// Markets are created with a target capacity with the expectation that capacity will
// be utilized evenly over the duration of the market.
// The intuition with tuning is:
// - When the market is ahead of target capacity, we should tune based on capacity.
// - When the market is behind target capacity, we should tune based on time.
// Compute seconds remaining until market will conclude
uint256 timeRemaining = uint256(terms[id_].conclusion - time_);
// Standardize capacity into an payout token amount
uint256 capacity = market.capacityInQuote
? market.capacity.mulDiv(market.scale, price_)
: market.capacity;
// Calculate initial capacity based on remaining capacity and amount sold/purchased up to this point
uint256 initialCapacity = capacity +
(market.capacityInQuote ? market.purchased.mulDiv(market.scale, price_) : market.sold);
// Calculate timeNeutralCapacity as the capacity expected to be sold up to this point and the current capacity
// Higher than initial capacity means the market is undersold, lower than initial capacity means the market is oversold
uint256 timeNeutralCapacity = initialCapacity.mulDiv(
uint256(meta.length) - timeRemaining,
uint256(meta.length)
) + capacity;
if (
(market.capacity < meta.tuneBelowCapacity && timeNeutralCapacity < initialCapacity) ||
(time_ >= meta.lastTune + meta.tuneInterval && timeNeutralCapacity > initialCapacity)
) {
// Calculate the correct payout to complete on time assuming each bond
// will be max size in the desired deposit interval for the remaining time
//
// i.e. market has 10 days remaining. deposit interval is 1 day. capacity
// is 10,000 TOKEN. max payout would be 1,000 TOKEN (10,000 * 1 / 10).
markets[id_].maxPayout = capacity.mulDiv(uint256(meta.depositInterval), timeRemaining);
// Calculate ideal target debt to satisty capacity in the remaining time
// The target debt is based on whether the market is under or oversold at this point in time
// This target debt will ensure price is reactive while ensuring the magnitude of being over/undersold
// doesn't cause larger fluctuations towards the end of the market.
//
// Calculate target debt from the timeNeutralCapacity and the ratio of debt decay interval and the length of the market
uint256 targetDebt = timeNeutralCapacity.mulDiv(
uint256(meta.debtDecayInterval),
uint256(meta.length)
);
// Derive a new control variable from the target debt
uint256 controlVariable = terms[id_].controlVariable;
uint256 newControlVariable = price_.mulDivUp(market.scale, targetDebt);
emit Tuned(id_, controlVariable, newControlVariable);
if (newControlVariable < controlVariable) {
// If decrease, control variable change will be carried out over the tune interval
// this is because price will be lowered
uint256 change = controlVariable - newControlVariable;
adjustments[id_] = Adjustment(change, time_, meta.tuneAdjustmentDelay, true);
} else {
// Tune up immediately
terms[id_].controlVariable = newControlVariable;
// Set current adjustment to inactive (e.g. if we are re-tuning early)
adjustments[id_].active = false;
}
metadata[id_].lastTune = time_;
metadata[id_].tuneBelowCapacity = market.capacity > meta.tuneIntervalCapacity
? market.capacity - meta.tuneIntervalCapacity
: 0;
metadata[id_].lastTuneDebt = targetDebt;
}
}
/* ========== INTERNAL VIEW FUNCTIONS ========== */
/// @notice Calculate current market price of payout token in quote tokens
/// @dev See marketPrice() in IBondSDA for explanation of price computation
/// @dev Uses info from storage because data has been updated before call (vs marketPrice())
/// @param id_ Market ID
/// @return Price for market in payout token decimals
function _currentMarketPrice(uint256 id_) internal view returns (uint256) {
BondMarket memory market = markets[id_];
return terms[id_].controlVariable.mulDivUp(market.totalDebt, market.scale);
}
/// @notice Amount to decay control variable by
/// @param id_ ID of market
/// @return decay change in control variable
/// @return secondsSince seconds since last change in control variable
/// @return active whether or not change remains active
function _controlDecay(uint256 id_)
internal
view
returns (
uint256 decay,
uint48 secondsSince,
bool active
)
{
Adjustment memory info = adjustments[id_];
if (!info.active) return (0, 0, false);
secondsSince = uint48(block.timestamp) - info.lastAdjustment;
active = secondsSince < info.timeToAdjusted;
decay = active
? info.change.mulDiv(uint256(secondsSince), uint256(info.timeToAdjusted))
: info.change;
}
/* ========== EXTERNAL VIEW FUNCTIONS ========== */
/// @inheritdoc IBondAuctioneer
function getMarketInfoForPurchase(uint256 id_)
external
view
returns (
address owner,
address callbackAddr,
ERC20 payoutToken,
ERC20 quoteToken,
uint48 vesting,
uint256 maxPayout
)
{
BondMarket memory market = markets[id_];
return (
market.owner,
market.callbackAddr,
market.payoutToken,
market.quoteToken,
terms[id_].vesting,
market.maxPayout
);
}
/// @inheritdoc IBondSDA
function marketPrice(uint256 id_) public view override returns (uint256) {
uint256 price = currentControlVariable(id_).mulDivUp(currentDebt(id_), markets[id_].scale);
return (price > markets[id_].minPrice) ? price : markets[id_].minPrice;
}
/// @inheritdoc IBondAuctioneer
function marketScale(uint256 id_) external view override returns (uint256) {
return markets[id_].scale;
}
/// @inheritdoc IBondAuctioneer
function payoutFor(
uint256 amount_,
uint256 id_,
address referrer_
) public view override returns (uint256) {
// Calculate the payout for the given amount of tokens
uint256 fee = amount_.mulDiv(_teller.getFee(referrer_), 1e5);
uint256 payout = (amount_ - fee).mulDiv(markets[id_].scale, marketPrice(id_));
// Check that the payout is less than or equal to the maximum payout,
// Revert if not, otherwise return the payout
if (payout > markets[id_].maxPayout) {
revert Auctioneer_MaxPayoutExceeded();
} else {
return payout;
}
}
/// @inheritdoc IBondAuctioneer
function maxAmountAccepted(uint256 id_, address referrer_) external view returns (uint256) {
// Calculate maximum amount of quote tokens that correspond to max bond size
// Maximum of the maxPayout and the remaining capacity converted to quote tokens
BondMarket memory market = markets[id_];
uint256 price = marketPrice(id_);
uint256 quoteCapacity = market.capacityInQuote
? market.capacity
: market.capacity.mulDiv(price, market.scale);
uint256 maxQuote = market.maxPayout.mulDiv(price, market.scale);
uint256 amountAccepted = quoteCapacity < maxQuote ? quoteCapacity : maxQuote;
// Take into account teller fees and return
// Estimate fee based on amountAccepted. Fee taken will be slightly larger than
// this given it will be taken off the larger amount, but this avoids rounding
// errors with trying to calculate the exact amount.
// Therefore, the maxAmountAccepted is slightly conservative.
uint256 estimatedFee = amountAccepted.mulDiv(_teller.getFee(referrer_), 1e5);
return amountAccepted + estimatedFee;
}
/// @inheritdoc IBondSDA
function currentDebt(uint256 id_) public view override returns (uint256) {
BondMetadata memory meta = metadata[id_];
uint256 lastDecay = uint256(meta.lastDecay);
uint256 currentTime = block.timestamp;
// Determine if decay should increase or decrease debt based on last decay time
// If last decay time is in the future, then debt should be increased
// If last decay time is in the past, then debt should be decreased
if (lastDecay > currentTime) {
uint256 secondsUntil;
unchecked {
secondsUntil = lastDecay - currentTime;
}
return
markets[id_].totalDebt.mulDiv(
uint256(meta.debtDecayInterval) + secondsUntil,
uint256(meta.debtDecayInterval)
);
} else {
uint256 secondsSince;
unchecked {
secondsSince = currentTime - lastDecay;
}
return
secondsSince > meta.debtDecayInterval
? 0
: markets[id_].totalDebt.mulDiv(
uint256(meta.debtDecayInterval) - secondsSince,
uint256(meta.debtDecayInterval)
);
}
}
/// @inheritdoc IBondSDA
function currentControlVariable(uint256 id_) public view override returns (uint256) {
(uint256 decay, , ) = _controlDecay(id_);
return terms[id_].controlVariable - decay;
}
/// @inheritdoc IBondAuctioneer
function isInstantSwap(uint256 id_) public view returns (bool) {
uint256 vesting = terms[id_].vesting;
return (vesting <= MAX_FIXED_TERM) ? vesting == 0 : vesting <= block.timestamp;
}
/// @inheritdoc IBondAuctioneer
function isLive(uint256 id_) public view override returns (bool) {
return (markets[id_].capacity != 0 && terms[id_].conclusion > block.timestamp);
}
/// @inheritdoc IBondAuctioneer
function ownerOf(uint256 id_) external view override returns (address) {
return markets[id_].owner;
}
/// @inheritdoc IBondAuctioneer
function getTeller() external view override returns (IBondTeller) {
return _teller;
}
/// @inheritdoc IBondAuctioneer
function getAggregator() external view override returns (IBondAggregator) {
return _aggregator;
}
/// @inheritdoc IBondAuctioneer
function currentCapacity(uint256 id_) external view override returns (uint256) {
return markets[id_].capacity;
}
}
// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity 0.8.15;
import {BondBaseSDA, IBondAggregator, Authority} from "./bases/BondBaseSDA.sol";
import {IBondTeller} from "./interfaces/IBondTeller.sol";
/// @title Bond Fixed-Term Sequential Dutch Auctioneer
/// @notice Bond Fixed-Term Sequential Dutch Auctioneer Contract
/// @dev Bond Protocol is a permissionless system to create Olympus-style bond markets
/// for any token pair. The markets do not require maintenance and will manage
/// bond prices based on activity. Bond issuers create BondMarkets that pay out
/// a Payout Token in exchange for deposited Quote Tokens. Users can purchase
/// future-dated Payout Tokens with Quote Tokens at the current market price and
/// receive Bond Tokens to represent their position while their bond vests.
/// Once the Bond Tokens vest, they can redeem it for the Quote Tokens.
///
/// @dev The Fixed-Term Auctioneer is an implementation of the
/// Bond Base Auctioneer contract specific to creating bond markets where
/// purchases vest in a fixed amount of time after purchased (rounded to the day).
///
/// @author Oighty, Zeus, Potted Meat, indigo
contract BondFixedTermSDA is BondBaseSDA {
/* ========== CONSTRUCTOR ========== */
constructor(
IBondTeller teller_,
IBondAggregator aggregator_,
address guardian_,
Authority authority_
) BondBaseSDA(teller_, aggregator_, guardian_, authority_) {}
/* ========== MARKET FUNCTIONS ========== */
/// @inheritdoc BondBaseSDA
function createMarket(bytes calldata params_) external override returns (uint256) {
// Decode params into the struct type expected by this auctioneer
MarketParams memory params = abi.decode(params_, (MarketParams));
// Check that the vesting parameter is valid for a fixed-term market
if (params.vesting != 0 && (params.vesting < 1 days || params.vesting > MAX_FIXED_TERM))
revert Auctioneer_InvalidParams();
// Create market and return market ID
return _createMarket(params);
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
/*///////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
/*///////////////////////////////////////////////////////////////
METADATA STORAGE
//////////////////////////////////////////////////////////////*/
string public name;
string public symbol;
uint8 public immutable decimals;
/*///////////////////////////////////////////////////////////////
ERC20 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 public totalSupply;
mapping(address => uint256) public balanceOf;
mapping(address => mapping(address => uint256)) public allowance;
/*///////////////////////////////////////////////////////////////
EIP-2612 STORAGE
//////////////////////////////////////////////////////////////*/
bytes32 public constant PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
uint256 internal immutable INITIAL_CHAIN_ID;
bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
mapping(address => uint256) public nonces;
/*///////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(
string memory _name,
string memory _symbol,
uint8 _decimals
) {
name = _name;
symbol = _symbol;
decimals = _decimals;
INITIAL_CHAIN_ID = block.chainid;
INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
}
/*///////////////////////////////////////////////////////////////
ERC20 LOGIC
//////////////////////////////////////////////////////////////*/
function approve(address spender, uint256 amount) public virtual returns (bool) {
allowance[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function transfer(address to, uint256 amount) public virtual returns (bool) {
balanceOf[msg.sender] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(msg.sender, to, amount);
return true;
}
function transferFrom(
address from,
address to,
uint256 amount
) public virtual returns (bool) {
uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
balanceOf[from] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(from, to, amount);
return true;
}
/*///////////////////////////////////////////////////////////////
EIP-2612 LOGIC
//////////////////////////////////////////////////////////////*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
// Unchecked because the only math done is incrementing
// the owner's nonce which cannot realistically overflow.
unchecked {
bytes32 digest = keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR(),
keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
)
);
address recoveredAddress = ecrecover(digest, v, r, s);
require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
allowance[recoveredAddress][spender] = value;
}
emit Approval(owner, spender, value);
}
function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
}
function computeDomainSeparator() internal view virtual returns (bytes32) {
return
keccak256(
abi.encode(
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
keccak256(bytes(name)),
keccak256("1"),
block.chainid,
address(this)
)
);
}
/*///////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(address to, uint256 amount) internal virtual {
totalSupply += amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(address(0), to, amount);
}
function _burn(address from, uint256 amount) internal virtual {
balanceOf[from] -= amount;
// Cannot underflow because a user's balance
// will never be larger than the total supply.
unchecked {
totalSupply -= amount;
}
emit Transfer(from, address(0), amount);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = (type(uint256).max - denominator + 1) & denominator;
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivUp(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
result = mulDiv(a, b, denominator);
unchecked {
if (mulmod(a, b, denominator) > 0) {
require(result < type(uint256).max);
result++;
}
}
}
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.0;
import {ERC20} from "solmate/tokens/ERC20.sol";
import {IBondAuctioneer} from "../interfaces/IBondAuctioneer.sol";
import {IBondTeller} from "../interfaces/IBondTeller.sol";
interface IBondAggregator {
/// @notice Register a auctioneer with the aggregator
/// @notice Only Guardian
/// @param auctioneer_ Address of the Auctioneer to register
/// @dev A auctioneer must be registered with an aggregator to create markets
function registerAuctioneer(IBondAuctioneer auctioneer_) external;
/// @notice Register a new market with the aggregator
/// @notice Only registered depositories
/// @param payoutToken_ Token to be paid out by the market
/// @param quoteToken_ Token to be accepted by the market
/// @param marketId ID of the market being created
function registerMarket(ERC20 payoutToken_, ERC20 quoteToken_)
external
returns (uint256 marketId);
/// @notice Get the auctioneer for the provided market ID
/// @param id_ ID of Market
function getAuctioneer(uint256 id_) external view returns (IBondAuctioneer);
/// @notice Calculate current market price of payout token in quote tokens
/// @dev Accounts for debt and control variable decay since last deposit (vs _marketPrice())
/// @param id_ ID of market
/// @return Price for market (see the specific auctioneer for units)
//
// if price is below minimum price, minimum price is returned
// this is enforced on deposits by manipulating total debt (see _decay())
function marketPrice(uint256 id_) external view returns (uint256);
/// @notice Scale value to use when converting between quote token and payout token amounts with marketPrice()
/// @param id_ ID of market
/// @return Scaling factor for market in configured decimals
function marketScale(uint256 id_) external view returns (uint256);
/// @notice Payout due for amount of quote tokens
/// @dev Accounts for debt and control variable decay so it is up to date
/// @param amount_ Amount of quote tokens to spend
/// @param id_ ID of market
/// @param referrer_ Address of referrer, used to get fees to calculate accurate payout amount.
/// Inputting the zero address will take into account just the protocol fee.
/// @return amount of payout tokens to be paid
function payoutFor(
uint256 amount_,
uint256 id_,
address referrer_
) external view returns (uint256);
/// @notice Returns maximum amount of quote token accepted by the market
/// @param id_ ID of market
/// @param referrer_ Address of referrer, used to get fees to calculate accurate payout amount.
/// Inputting the zero address will take into account just the protocol fee.
function maxAmountAccepted(uint256 id_, address referrer_) external view returns (uint256);
/// @notice Does market send payout immediately
/// @param id_ Market ID to search for
function isInstantSwap(uint256 id_) external view returns (bool);
/// @notice Is a given market accepting deposits
/// @param id_ ID of market
function isLive(uint256 id_) external view returns (bool);
/// @notice Returns array of active market IDs within a range
/// @dev Should be used if length exceeds max to query entire array
function liveMarketsBetween(uint256 firstIndex_, uint256 lastIndex_)
external
view
returns (uint256[] memory);
/// @notice Returns an array of all active market IDs for a given quote token
/// @param token_ Address of token to query by
/// @param isPayout_ If true, search by payout token, else search for quote token
function liveMarketsFor(address token_, bool isPayout_)
external
view
returns (uint256[] memory);
/// @notice Returns an array of all active market IDs for a given owner
/// @param owner_ Address of owner to query by
/// @param firstIndex_ Market ID to start at
/// @param lastIndex_ Market ID to end at (non-inclusive)
function liveMarketsBy(
address owner_,
uint256 firstIndex_,
uint256 lastIndex_
) external view returns (uint256[] memory);
/// @notice Returns an array of all active market IDs for a given payout and quote token
/// @param payout_ Address of payout token
/// @param quote_ Address of quote token
function marketsFor(address payout_, address quote_) external view returns (uint256[] memory);
/// @notice Returns the market ID with the highest current payoutToken payout for depositing quoteToken
/// @param payout_ Address of payout token
/// @param quote_ Address of quote token
/// @param amountIn_ Amount of quote tokens to deposit
/// @param minAmountOut_ Minimum amount of payout tokens to receive as payout
/// @param maxExpiry_ Latest acceptable vesting timestamp for bond
/// Inputting the zero address will take into account just the protocol fee.
function findMarketFor(
address payout_,
address quote_,
uint256 amountIn_,
uint256 minAmountOut_,
uint256 maxExpiry_
) external view returns (uint256 id);
/// @notice Returns the Teller that services the market ID
function getTeller(uint256 id_) external view returns (IBondTeller);
/// @notice Returns current capacity of a market
function currentCapacity(uint256 id_) external view returns (uint256);
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.0;
import {ERC20} from "solmate/tokens/ERC20.sol";
import {IBondTeller} from "../interfaces/IBondTeller.sol";
import {IBondAggregator} from "../interfaces/IBondAggregator.sol";
interface IBondAuctioneer {
/// @notice Creates a new bond market
/// @param params_ Configuration data needed for market creation, encoded in a bytes array
/// @dev See specific auctioneer implementations for details on encoding the parameters.
/// @return id ID of new bond market
function createMarket(bytes memory params_) external returns (uint256);
/// @notice Disable existing bond market
/// @notice Must be market owner
/// @param id_ ID of market to close
function closeMarket(uint256 id_) external;
/// @notice Exchange quote tokens for a bond in a specified market
/// @notice Must be teller
/// @param id_ ID of the Market the bond is being purchased from
/// @param amount_ Amount to deposit in exchange for bond (after fee has been deducted)
/// @param minAmountOut_ Minimum acceptable amount of bond to receive. Prevents frontrunning
/// @return payout Amount of payout token to be received from the bond
function purchaseBond(
uint256 id_,
uint256 amount_,
uint256 minAmountOut_
) external returns (uint256 payout);
/// @notice Set market intervals to different values than the defaults
/// @notice Must be market owner
/// @dev Changing the intervals could cause markets to behave in unexpected way
/// tuneInterval should be greater than tuneAdjustmentDelay
/// @param id_ Market ID
/// @param intervals_ Array of intervals (3)
/// 1. Tune interval - Frequency of tuning
/// 2. Tune adjustment delay - Time to implement downward tuning adjustments
/// 3. Debt decay interval - Interval over which debt should decay completely
function setIntervals(uint256 id_, uint32[3] calldata intervals_) external;
/// @notice Designate a new owner of a market
/// @notice Must be market owner
/// @dev Doesn't change permissions until newOwner calls pullOwnership
/// @param id_ Market ID
/// @param newOwner_ New address to give ownership to
function pushOwnership(uint256 id_, address newOwner_) external;
/// @notice Accept ownership of a market
/// @notice Must be market newOwner
/// @dev The existing owner must call pushOwnership prior to the newOwner calling this function
/// @param id_ Market ID
function pullOwnership(uint256 id_) external;
/// @notice Set the auctioneer defaults
/// @notice Must be policy
/// @param defaults_ Array of default values
/// 1. Tune interval - amount of time between tuning adjustments
/// 2. Tune adjustment delay - amount of time to apply downward tuning adjustments
/// 3. Minimum debt decay interval - minimum amount of time to let debt decay to zero
/// 4. Minimum deposit interval - minimum amount of time to wait between deposits
/// 5. Minimum market duration - minimum amount of time a market can be created for
/// 6. Minimum debt buffer - the minimum amount of debt over the initial debt to trigger a market shutdown
/// @dev The defaults set here are important to avoid edge cases in market behavior, e.g. a very short market reacts doesn't tune well
/// @dev Only applies to new markets that are created after the change
function setDefaults(uint32[6] memory defaults_) external;
/// @notice Change the status of the auctioneer to allow creation of new markets
/// @dev Setting to false and allowing active markets to end will sunset the auctioneer
/// @param status_ Allow market creation (true) : Disallow market creation (false)
function setAllowNewMarkets(bool status_) external;
/// @notice Change whether a market creator is allowed to use a callback address in their markets or not
/// @notice Must be guardian
/// @dev Callback is believed to be safe, but a whitelist is implemented to prevent abuse
/// @param creator_ Address of market creator
/// @param status_ Allow callback (true) : Disallow callback (false)
function setCallbackAuthStatus(address creator_, bool status_) external;
/* ========== VIEW FUNCTIONS ========== */
/// @notice Provides information for the Teller to execute purchases on a Market
/// @param id_ Market ID
/// @return owner Address of the market owner (tokens transferred from this address if no callback)
/// @return callbackAddr Address of the callback contract to get tokens for payouts
/// @return payoutToken Payout Token (token paid out) for the Market
/// @return quoteToken Quote Token (token received) for the Market
/// @return vesting Timestamp or duration for vesting, implementation-dependent
/// @return maxPayout Maximum amount of payout tokens you can purchase in one transaction
function getMarketInfoForPurchase(uint256 id_)
external
view
returns (
address owner,
address callbackAddr,
ERC20 payoutToken,
ERC20 quoteToken,
uint48 vesting,
uint256 maxPayout
);
/// @notice Calculate current market price of payout token in quote tokens
/// @param id_ ID of market
/// @return Price for market in configured decimals
//
// if price is below minimum price, minimum price is returned
function marketPrice(uint256 id_) external view returns (uint256);
/// @notice Scale value to use when converting between quote token and payout token amounts with marketPrice()
/// @param id_ ID of market
/// @return Scaling factor for market in configured decimals
function marketScale(uint256 id_) external view returns (uint256);
/// @notice Payout due for amount of quote tokens
/// @dev Accounts for debt and control variable decay so it is up to date
/// @param amount_ Amount of quote tokens to spend
/// @param id_ ID of market
/// @param referrer_ Address of referrer, used to get fees to calculate accurate payout amount.
/// Inputting the zero address will take into account just the protocol fee.
/// @return amount of payout tokens to be paid
function payoutFor(
uint256 amount_,
uint256 id_,
address referrer_
) external view returns (uint256);
/// @notice Returns maximum amount of quote token accepted by the market
/// @param id_ ID of market
/// @param referrer_ Address of referrer, used to get fees to calculate accurate payout amount.
/// Inputting the zero address will take into account just the protocol fee.
function maxAmountAccepted(uint256 id_, address referrer_) external view returns (uint256);
/// @notice Does market send payout immediately
/// @param id_ Market ID to search for
function isInstantSwap(uint256 id_) external view returns (bool);
/// @notice Is a given market accepting deposits
/// @param id_ ID of market
function isLive(uint256 id_) external view returns (bool);
/// @notice Returns the address of the market owner
/// @param id_ ID of market
function ownerOf(uint256 id_) external view returns (address);
/// @notice Returns the Teller that services the Auctioneer
function getTeller() external view returns (IBondTeller);
/// @notice Returns the Aggregator that services the Auctioneer
function getAggregator() external view returns (IBondAggregator);
/// @notice Returns current capacity of a market
function currentCapacity(uint256 id_) external view returns (uint256);
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.0;
import {ERC20} from "solmate/tokens/ERC20.sol";
interface IBondCallback {
/// @notice Send payout tokens to Teller while allowing market owners to perform custom logic on received or paid out tokens
/// @notice Market ID on Teller must be whitelisted
/// @param id_ ID of the market
/// @param inputAmount_ Amount of quote tokens bonded to the market
/// @param outputAmount_ Amount of payout tokens to be paid out to the market
/// @dev Must transfer the output amount of payout tokens back to the Teller
/// @dev Should check that the quote tokens have been transferred to the contract in the _callback function
function callback(
uint256 id_,
uint256 inputAmount_,
uint256 outputAmount_
) external;
/// @notice Returns the number of quote tokens received and payout tokens paid out for a market
/// @param id_ ID of the market
/// @return in_ Amount of quote tokens bonded to the market
/// @return out_ Amount of payout tokens paid out to the market
function amountsForMarket(uint256 id_) external view returns (uint256 in_, uint256 out_);
/// @notice Whitelist a teller and market ID combination
/// @notice Must be callback owner
/// @param teller_ Address of the Teller contract which serves the market
/// @param id_ ID of the market
function whitelist(address teller_, uint256 id_) external;
/// @notice Remove a market ID on a teller from the whitelist
/// @dev Shutdown function in case there's an issue with the teller
/// @param teller_ Address of the Teller contract which serves the market
/// @param id_ ID of the market to remove from whitelist
function blacklist(address teller_, uint256 id_) external;
/// @notice Withdraw tokens from the callback and update balances
/// @notice Only callback owner
/// @param to_ Address of the recipient
/// @param token_ Address of the token to withdraw
/// @param amount_ Amount of tokens to withdraw
function withdraw(
address to_,
ERC20 token_,
uint256 amount_
) external;
/// @notice Deposit tokens to the callback and update balances
/// @notice Only callback owner
/// @param token_ Address of the token to deposit
/// @param amount_ Amount of tokens to deposit
function deposit(ERC20 token_, uint256 amount_) external;
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.0;
import {ERC20} from "solmate/tokens/ERC20.sol";
import {IBondAuctioneer} from "../interfaces/IBondAuctioneer.sol";
interface IBondSDA is IBondAuctioneer {
/// @notice Main information pertaining to bond market
struct BondMarket {
address owner; // market owner. sends payout tokens, receives quote tokens (defaults to creator)
ERC20 payoutToken; // token to pay depositors with
ERC20 quoteToken; // token to accept as payment
address callbackAddr; // address to call for any operations on bond purchase. Must inherit to IBondCallback.
bool capacityInQuote; // capacity limit is in payment token (true) or in payout (false, default)
uint256 capacity; // capacity remaining
uint256 totalDebt; // total payout token debt from market
uint256 minPrice; // minimum price (hard floor for the market)
uint256 maxPayout; // max payout tokens out in one order
uint256 sold; // payout tokens out
uint256 purchased; // quote tokens in
uint256 scale; // scaling factor for the market (see MarketParams struct)
}
/// @notice Information used to control how a bond market changes
struct BondTerms {
uint256 controlVariable; // scaling variable for price
uint256 maxDebt; // max payout token debt accrued
uint48 vesting; // length of time from deposit to expiry if fixed-term, vesting timestamp if fixed-expiry
uint48 conclusion; // timestamp when market no longer offered
}
/// @notice Data needed for tuning bond market
/// @dev Durations are stored in uint32 (not int32) and timestamps are stored in uint48, so is not subject to Y2K38 overflow
struct BondMetadata {
uint48 lastTune; // last timestamp when control variable was tuned
uint48 lastDecay; // last timestamp when market was created and debt was decayed
uint32 length; // time from creation to conclusion.
uint32 depositInterval; // target frequency of deposits
uint32 tuneInterval; // frequency of tuning
uint32 tuneAdjustmentDelay; // time to implement downward tuning adjustments
uint32 debtDecayInterval; // interval over which debt should decay completely
uint256 tuneIntervalCapacity; // capacity expected to be used during a tuning interval
uint256 tuneBelowCapacity; // capacity that the next tuning will occur at
uint256 lastTuneDebt; // target debt calculated at last tuning
}
/// @notice Control variable adjustment data
struct Adjustment {
uint256 change;
uint48 lastAdjustment;
uint48 timeToAdjusted; // how long until adjustment happens
bool active;
}
/// @notice Parameters to create a new bond market
/// @dev Note price should be passed in a specific format:
/// formatted price = (payoutPriceCoefficient / quotePriceCoefficient)
/// * 10**(36 + scaleAdjustment + quoteDecimals - payoutDecimals + payoutPriceDecimals - quotePriceDecimals)
/// where:
/// payoutDecimals - Number of decimals defined for the payoutToken in its ERC20 contract
/// quoteDecimals - Number of decimals defined for the quoteToken in its ERC20 contract
/// payoutPriceCoefficient - The coefficient of the payoutToken price in scientific notation (also known as the significant digits)
/// payoutPriceDecimals - The significand of the payoutToken price in scientific notation (also known as the base ten exponent)
/// quotePriceCoefficient - The coefficient of the quoteToken price in scientific notation (also known as the significant digits)
/// quotePriceDecimals - The significand of the quoteToken price in scientific notation (also known as the base ten exponent)
/// scaleAdjustment - see below
/// * In the above definitions, the "prices" need to have the same unit of account (i.e. both in OHM, $, ETH, etc.)
/// If price is not provided in this format, the market will not behave as intended.
/// @param params_ Encoded bytes array, with the following elements
/// @dev 0. Payout Token (token paid out)
/// @dev 1. Quote Token (token to be received)
/// @dev 2. Callback contract address, should conform to IBondCallback. If 0x00, tokens will be transferred from market.owner
/// @dev 3. Is Capacity in Quote Token?
/// @dev 4. Capacity (amount in quoteDecimals or amount in payoutDecimals)
/// @dev 5. Formatted initial price (see note above)
/// @dev 6. Formatted minimum price (see note above)
/// @dev 7. Debt buffer. Percent with 3 decimals. Percentage over the initial debt to allow the market to accumulate at anyone time.
/// @dev Works as a circuit breaker for the market in case external conditions incentivize massive buying (e.g. stablecoin depeg).
/// @dev Minimum is the greater of 10% or initial max payout as a percentage of capacity.
/// @dev If the value is too small, the market will not be able function normally and close prematurely.
/// @dev If the value is too large, the market will not circuit break when intended. The value must be > 10% but can exceed 100% if desired.
/// @dev A good heuristic to calculate a debtBuffer with is to determine the amount of capacity that you think is reasonable to be expended
/// @dev in a short duration as a percent, e.g. 25%. Then a reasonable debtBuffer would be: 0.25 * 1e3 * decayInterval / marketDuration
/// @dev where decayInterval = max(3 days, 5 * depositInterval) and marketDuration = conclusion - creation time.
/// @dev 8. Is fixed term ? Vesting length (seconds) : Vesting expiry (timestamp).
/// @dev A 'vesting' param longer than 50 years is considered a timestamp for fixed expiry.
/// @dev 9. Conclusion (timestamp)
/// @dev 10. Deposit interval (seconds)
/// @dev 11. Market scaling factor adjustment, ranges from -24 to +24 within the configured market bounds.
/// @dev Should be calculated as: (payoutDecimals - quoteDecimals) - ((payoutPriceDecimals - quotePriceDecimals) / 2)
/// @dev Providing a scaling factor adjustment that doesn't follow this formula could lead to under or overflow errors in the market.
/// @return ID of new bond market
struct MarketParams {
ERC20 payoutToken;
ERC20 quoteToken;
address callbackAddr;
bool capacityInQuote;
uint256 capacity;
uint256 formattedInitialPrice;
uint256 formattedMinimumPrice;
uint32 debtBuffer;
uint48 vesting;
uint48 conclusion;
uint32 depositInterval;
int8 scaleAdjustment;
}
/* ========== VIEW FUNCTIONS ========== */
/// @notice Calculate current market price of payout token in quote tokens
/// @dev Accounts for debt and control variable decay since last deposit (vs _marketPrice())
/// @param id_ ID of market
/// @return Price for market in configured decimals (see MarketParams)
//
// price is derived from the equation
//
// p = c * d
//
// where
// p = price
// c = control variable
// d = debt
//
// d -= ( d * (dt / l) )
//
// where
// dt = change in time
// l = length of program
//
// if price is below minimum price, minimum price is returned
// this is enforced on deposits by manipulating total debt (see _decay())
function marketPrice(uint256 id_) external view override returns (uint256);
/// @notice Calculate debt factoring in decay
/// @dev Accounts for debt decay since last deposit
/// @param id_ ID of market
/// @return Current debt for market in payout token decimals
function currentDebt(uint256 id_) external view returns (uint256);
/// @notice Up to date control variable
/// @dev Accounts for control variable adjustment
/// @param id_ ID of market
/// @return Control variable for market in payout token decimals
function currentControlVariable(uint256 id_) external view returns (uint256);
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.0;
import {ERC20} from "solmate/tokens/ERC20.sol";
interface IBondTeller {
/// @notice Exchange quote tokens for a bond in a specified market
/// @param recipient_ Address of recipient of bond. Allows deposits for other addresses
/// @param referrer_ Address of referrer who will receive referral fee. For frontends to fill.
/// Direct calls can use the zero address for no referrer fee.
/// @param id_ ID of the Market the bond is being purchased from
/// @param amount_ Amount to deposit in exchange for bond
/// @param minAmountOut_ Minimum acceptable amount of bond to receive. Prevents frontrunning
/// @return Amount of payout token to be received from the bond
/// @return Timestamp at which the bond token can be redeemed for the underlying token
function purchase(
address recipient_,
address referrer_,
uint256 id_,
uint256 amount_,
uint256 minAmountOut_
) external returns (uint256, uint48);
/// @notice Get current fee charged by the teller based on the combined protocol and referrer fee
/// @param referrer_ Address of the referrer
/// @return Fee in basis points (3 decimal places)
function getFee(address referrer_) external view returns (uint48);
/// @notice Set protocol fee
/// @notice Must be guardian
/// @param fee_ Protocol fee in basis points (3 decimal places)
function setProtocolFee(uint48 fee_) external;
/// @notice Set the discount for creating bond tokens from the base protocol fee
/// @dev The discount is subtracted from the protocol fee to determine the fee
/// when using create() to mint bond tokens without using an Auctioneer
/// @param discount_ Create Fee Discount in basis points (3 decimal places)
function setCreateFeeDiscount(uint48 discount_) external;
/// @notice Set your fee as a referrer to the protocol
/// @notice Fee is set for sending address
/// @param fee_ Referrer fee in basis points (3 decimal places)
function setReferrerFee(uint48 fee_) external;
/// @notice Claim fees accrued by sender in the input tokens and sends them to the provided address
/// @param tokens_ Array of tokens to claim fees for
/// @param to_ Address to send fees to
function claimFees(ERC20[] memory tokens_, address to_) external;
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Gas optimized reentrancy protection for smart contracts.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/ReentrancyGuard.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol)
abstract contract ReentrancyGuard {
uint256 private locked = 1;
modifier nonReentrant() {
require(locked == 1, "REENTRANCY");
locked = 2;
_;
locked = 1;
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
import {ERC20} from "solmate/tokens/ERC20.sol";
/// @notice Safe ERC20 and ETH transfer library that safely handles missing return values.
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v3-periphery/blob/main/contracts/libraries/TransferHelper.sol)
/// @author Taken from Solmate.
library TransferHelper {
function safeTransferFrom(
ERC20 token,
address from,
address to,
uint256 amount
) internal {
(bool success, bytes memory data) = address(token).call(
abi.encodeWithSelector(ERC20.transferFrom.selector, from, to, amount)
);
require(
success &&
(data.length == 0 || abi.decode(data, (bool))) &&
address(token).code.length > 0,
"TRANSFER_FROM_FAILED"
);
}
function safeTransfer(
ERC20 token,
address to,
uint256 amount
) internal {
(bool success, bytes memory data) = address(token).call(
abi.encodeWithSelector(ERC20.transfer.selector, to, amount)
);
require(
success &&
(data.length == 0 || abi.decode(data, (bool))) &&
address(token).code.length > 0,
"TRANSFER_FAILED"
);
}
// function safeApprove(
// ERC20 token,
// address to,
// uint256 amount
// ) internal {
// (bool success, bytes memory data) = address(token).call(
// abi.encodeWithSelector(ERC20.approve.selector, to, amount)
// );
// require(success && (data.length == 0 || abi.decode(data, (bool))), "APPROVE_FAILED");
// }
// function safeTransferETH(address to, uint256 amount) internal {
// (bool success, ) = to.call{value: amount}(new bytes(0));
// require(success, "ETH_TRANSFER_FAILED");
// }
}
{
"compilationTarget": {
"src/BondFixedTermSDA.sol": "BondFixedTermSDA"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 100000
},
"remappings": [
":clones-with-immutable-args/=lib/clones-with-immutable-args/src/",
":clones/=lib/clones-with-immutable-args/src/",
":ds-test/=lib/ds-test/src/",
":forge-std/=lib/forge-std/src/",
":hardhat/=node_modules/hardhat/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
":openzeppelin/=lib/openzeppelin-contracts/contracts/",
":solidity-code-metrics/=node_modules/solidity-code-metrics/",
":solmate/=lib/solmate/src/",
":weird-erc20/=lib/solmate/lib/weird-erc20/src/"
]
}
[{"inputs":[{"internalType":"contract IBondTeller","name":"teller_","type":"address"},{"internalType":"contract IBondAggregator","name":"aggregator_","type":"address"},{"internalType":"address","name":"guardian_","type":"address"},{"internalType":"contract Authority","name":"authority_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"Auctioneer_AmountLessThanMinimum","type":"error"},{"inputs":[],"name":"Auctioneer_BadExpiry","type":"error"},{"inputs":[],"name":"Auctioneer_InitialPriceLessThanMin","type":"error"},{"inputs":[],"name":"Auctioneer_InvalidCallback","type":"error"},{"inputs":[],"name":"Auctioneer_InvalidParams","type":"error"},{"inputs":[{"internalType":"uint256","name":"conclusion_","type":"uint256"}],"name":"Auctioneer_MarketConcluded","type":"error"},{"inputs":[],"name":"Auctioneer_MaxPayoutExceeded","type":"error"},{"inputs":[],"name":"Auctioneer_NewMarketsNotAllowed","type":"error"},{"inputs":[],"name":"Auctioneer_NotAuthorized","type":"error"},{"inputs":[],"name":"Auctioneer_NotEnoughCapacity","type":"error"},{"inputs":[],"name":"Auctioneer_OnlyMarketOwner","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"contract Authority","name":"newAuthority","type":"address"}],"name":"AuthorityUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint32","name":"defaultTuneInterval","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"defaultTuneAdjustment","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"minDebtDecayInterval","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"minDepositInterval","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"minMarketDuration","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"minDebtBuffer","type":"uint32"}],"name":"DefaultsUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"MarketClosed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":true,"internalType":"address","name":"payoutToken","type":"address"},{"indexed":true,"internalType":"address","name":"quoteToken","type":"address"},{"indexed":false,"internalType":"uint48","name":"vesting","type":"uint48"},{"indexed":false,"internalType":"uint256","name":"initialPrice","type":"uint256"}],"name":"MarketCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"oldControlVariable","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newControlVariable","type":"uint256"}],"name":"Tuned","type":"event"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"adjustments","outputs":[{"internalType":"uint256","name":"change","type":"uint256"},{"internalType":"uint48","name":"lastAdjustment","type":"uint48"},{"internalType":"uint48","name":"timeToAdjusted","type":"uint48"},{"internalType":"bool","name":"active","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"allowNewMarkets","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"authority","outputs":[{"internalType":"contract Authority","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"callbackAuthorized","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"}],"name":"closeMarket","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"params_","type":"bytes"}],"name":"createMarket","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"}],"name":"currentCapacity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"}],"name":"currentControlVariable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"}],"name":"currentDebt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"defaultTuneAdjustment","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"defaultTuneInterval","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAggregator","outputs":[{"internalType":"contract IBondAggregator","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"}],"name":"getMarketInfoForPurchase","outputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"callbackAddr","type":"address"},{"internalType":"contract ERC20","name":"payoutToken","type":"address"},{"internalType":"contract ERC20","name":"quoteToken","type":"address"},{"internalType":"uint48","name":"vesting","type":"uint48"},{"internalType":"uint256","name":"maxPayout","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTeller","outputs":[{"internalType":"contract IBondTeller","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"}],"name":"isInstantSwap","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"}],"name":"isLive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"}],"name":"marketPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"}],"name":"marketScale","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"markets","outputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"contract ERC20","name":"payoutToken","type":"address"},{"internalType":"contract ERC20","name":"quoteToken","type":"address"},{"internalType":"address","name":"callbackAddr","type":"address"},{"internalType":"bool","name":"capacityInQuote","type":"bool"},{"internalType":"uint256","name":"capacity","type":"uint256"},{"internalType":"uint256","name":"totalDebt","type":"uint256"},{"internalType":"uint256","name":"minPrice","type":"uint256"},{"internalType":"uint256","name":"maxPayout","type":"uint256"},{"internalType":"uint256","name":"sold","type":"uint256"},{"internalType":"uint256","name":"purchased","type":"uint256"},{"internalType":"uint256","name":"scale","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"},{"internalType":"address","name":"referrer_","type":"address"}],"name":"maxAmountAccepted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"metadata","outputs":[{"internalType":"uint48","name":"lastTune","type":"uint48"},{"internalType":"uint48","name":"lastDecay","type":"uint48"},{"internalType":"uint32","name":"length","type":"uint32"},{"internalType":"uint32","name":"depositInterval","type":"uint32"},{"internalType":"uint32","name":"tuneInterval","type":"uint32"},{"internalType":"uint32","name":"tuneAdjustmentDelay","type":"uint32"},{"internalType":"uint32","name":"debtDecayInterval","type":"uint32"},{"internalType":"uint256","name":"tuneIntervalCapacity","type":"uint256"},{"internalType":"uint256","name":"tuneBelowCapacity","type":"uint256"},{"internalType":"uint256","name":"lastTuneDebt","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minDebtBuffer","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minDebtDecayInterval","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minDepositInterval","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minMarketDuration","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"newOwners","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount_","type":"uint256"},{"internalType":"uint256","name":"id_","type":"uint256"},{"internalType":"address","name":"referrer_","type":"address"}],"name":"payoutFor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"}],"name":"pullOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"},{"internalType":"uint256","name":"amount_","type":"uint256"},{"internalType":"uint256","name":"minAmountOut_","type":"uint256"}],"name":"purchaseBond","outputs":[{"internalType":"uint256","name":"payout","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"},{"internalType":"address","name":"newOwner_","type":"address"}],"name":"pushOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"status_","type":"bool"}],"name":"setAllowNewMarkets","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract Authority","name":"newAuthority","type":"address"}],"name":"setAuthority","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"creator_","type":"address"},{"internalType":"bool","name":"status_","type":"bool"}],"name":"setCallbackAuthStatus","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32[6]","name":"defaults_","type":"uint32[6]"}],"name":"setDefaults","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id_","type":"uint256"},{"internalType":"uint32[3]","name":"intervals_","type":"uint32[3]"}],"name":"setIntervals","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"setOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"terms","outputs":[{"internalType":"uint256","name":"controlVariable","type":"uint256"},{"internalType":"uint256","name":"maxDebt","type":"uint256"},{"internalType":"uint48","name":"vesting","type":"uint48"},{"internalType":"uint48","name":"conclusion","type":"uint48"}],"stateMutability":"view","type":"function"}]