Accounts
0xaf...6d09
0xAF...6D09

0xAF...6D09

$500
This contract's source code is verified!
Contract Metadata
Compiler
0.7.6+commit.7338295f
Language
Solidity
Contract Source Code
File 1 of 11: Address.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.2 <0.8.0;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        uint256 size;
        // solhint-disable-next-line no-inline-assembly
        assembly { size := extcodesize(account) }
        return size > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: value }(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.staticcall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}
Contract Source Code
File 2 of 11: Context.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}
Contract Source Code
File 3 of 11: FeeDistributor.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@openzeppelin-solc-0.7/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin-solc-0.7/contracts/math/Math.sol";
import "@openzeppelin-solc-0.7/contracts/math/SafeMath.sol";
import "@openzeppelin-solc-0.7/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin-solc-0.7/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin-solc-0.7/contracts/access/Ownable.sol";

import "./interfaces/IFeeDistributor.sol";
import "./interfaces/IVotingEscrow.sol";

// solhint-disable not-rely-on-time

/**
 * @title Fee Distributor
 * @author Balancer Labs. Original version https://github.com/balancer/balancer-v2-monorepo/blob/master/pkg/liquidity-mining/contracts/fee-distribution/FeeDistributor.sol
 * @notice Distributes any tokens transferred to the contract (e.g. Protocol fees) among veSTG
 * holders proportionally based on a snapshot of the week at which the tokens are sent to the FeeDistributor contract.
 * @dev Supports distributing arbitrarily many different tokens. In order to start distributing a new token to veSTG holders call `depositToken`.
 */
contract FeeDistributor is IFeeDistributor, Ownable, ReentrancyGuard {
    using SafeMath for uint256;
    using SafeERC20 for IERC20;

    // gas optimization
    uint256 private constant WEEK_MINUS_SECOND = 1 weeks - 1;

    IVotingEscrow private immutable _votingEscrow;

    uint256 private immutable _startTime;

    // Global State
    uint256 private _timeCursor;
    mapping(uint256 => uint256) private _veSupplyCache;

    // Token State

    // `startTime` and `timeCursor` are both timestamps so comfortably fit in a uint64.
    // `cachedBalance` will comfortably fit the total supply of any meaningful token.
    // Should more than 2^128 tokens be sent to this contract then checkpointing this token will fail until enough
    // tokens have been claimed to bring the total balance back below 2^128.
    struct TokenState {
        uint64 startTime;
        uint64 timeCursor;
        uint128 cachedBalance;
    }
    mapping(IERC20 => TokenState) private _tokenState;
    mapping(IERC20 => mapping(uint256 => uint256)) private _tokensPerWeek;
    mapping(IERC20 => bool) private _tokenClaimingEnabled;

    // User State

    // `startTime` and `timeCursor` are timestamps so will comfortably fit in a uint64.
    // For `lastEpochCheckpointed` to overflow would need over 2^128 transactions to the VotingEscrow contract.
    struct UserState {
        uint64 startTime;
        uint64 timeCursor;
        uint128 lastEpochCheckpointed;
    }
    mapping(address => UserState) internal _userState;
    mapping(address => mapping(uint256 => uint256)) private _userBalanceAtTimestamp;
    mapping(address => mapping(IERC20 => uint256)) private _userTokenTimeCursor;
    mapping(address => bool) private _onlyVeHolderClaimingEnabled;

    /**
     * @dev Reverts if only the VotingEscrow holder can claim their rewards and the given address is a third-party caller.
     * @param user - The address to validate as the only allowed caller.
     */
    modifier userAllowedToClaim(address user) {
        if (_onlyVeHolderClaimingEnabled[user]) {
            require(msg.sender == user, "Claiming is not allowed");
        }
        _;
    }

    /**
     * @dev Reverts if the given token cannot be claimed.
     * @param token - The token to check.
     */
    modifier tokenCanBeClaimed(IERC20 token) {
        _checkIfClaimingEnabled(token);
        _;
    }

    /**
     * @dev Reverts if the given tokens cannot be claimed.
     * @param tokens - The tokens to check.
     */
    modifier tokensCanBeClaimed(IERC20[] calldata tokens) {
        uint256 tokensLength = tokens.length;
        for (uint256 i = 0; i < tokensLength; ++i) {
            _checkIfClaimingEnabled(tokens[i]);
        }
        _;
    }

    constructor(IVotingEscrow votingEscrow, uint256 startTime) {
        _votingEscrow = votingEscrow;

        startTime = _roundDownTimestamp(startTime);
        uint256 currentWeek = _roundDownTimestamp(block.timestamp);
        require(startTime >= currentWeek, "Cannot start before current week");

        IVotingEscrow.Point memory pt = votingEscrow.point_history(0);
        require(startTime > pt.ts, "Cannot start before VotingEscrow first epoch");

        _startTime = startTime;
        _timeCursor = startTime;
    }

    /**
     * @notice Returns the VotingEscrow (veSTG) token contract
     */
    function getVotingEscrow() external view override returns (IVotingEscrow) {
        return _votingEscrow;
    }

    /**
     * @notice Returns the time when fee distribution starts.
     */
    function getStartTime() external view override returns (uint256) {
        return _startTime;
    }

    /**
     * @notice Returns the global time cursor representing the most earliest uncheckpointed week.
     */
    function getTimeCursor() external view override returns (uint256) {
        return _timeCursor;
    }

    /**
     * @notice Returns the user-level start time representing the first week they're eligible to claim tokens.
     * @param user - The address of the user to query.
     */
    function getUserStartTime(address user) external view override returns (uint256) {
        return _userState[user].startTime;
    }

    /**
     * @notice Returns the user-level time cursor representing the most earliest uncheckpointed week.
     * @param user - The address of the user to query.
     */
    function getUserTimeCursor(address user) external view override returns (uint256) {
        return _userState[user].timeCursor;
    }

    /**
     * @notice Returns the user-level last checkpointed epoch.
     * @param user - The address of the user to query.
     */
    function getUserLastEpochCheckpointed(address user) external view override returns (uint256) {
        return _userState[user].lastEpochCheckpointed;
    }

    /**
     * @notice True if the given token can be claimed, false otherwise.
     * @param token - The ERC20 token address to query.
     */
    function canTokenBeClaimed(IERC20 token) external view override returns (bool) {
        return _tokenClaimingEnabled[token];
    }

    /**
     * @notice Returns the token-level start time representing the timestamp users could start claiming this token
     * @param token - The ERC20 token address to query.
     */
    function getTokenStartTime(IERC20 token) external view override returns (uint256) {
        return _tokenState[token].startTime;
    }

    /**
     * @notice Returns the token-level time cursor storing the timestamp at up to which tokens have been distributed.
     * @param token - The ERC20 token address to query.
     */
    function getTokenTimeCursor(IERC20 token) external view override returns (uint256) {
        return _tokenState[token].timeCursor;
    }

    /**
     * @notice Returns the token-level cached balance.
     * @param token - The ERC20 token address to query.
     */
    function getTokenCachedBalance(IERC20 token) external view override returns (uint256) {
        return _tokenState[token].cachedBalance;
    }

    /**
     * @notice Returns the user-level time cursor storing the timestamp of the latest token distribution claimed.
     * @param user - The address of the user to query.
     * @param token - The ERC20 token address to query.
     */
    function getUserTokenTimeCursor(address user, IERC20 token) external view override returns (uint256) {
        return _getUserTokenTimeCursor(user, token);
    }

    /**
     * @notice Returns the user's cached balance of veSTG as of the provided timestamp.
     * @dev Only timestamps which fall on Thursdays 00:00:00 UTC will return correct values.
     * This function requires `user` to have been checkpointed past `timestamp` so that their balance is cached.
     * @param user - The address of the user of which to read the cached balance of.
     * @param timestamp - The timestamp at which to read the `user`'s cached balance at.
     */
    function getUserBalanceAtTimestamp(address user, uint256 timestamp) external view override returns (uint256) {
        return _userBalanceAtTimestamp[user][timestamp];
    }

    /**
     * @notice Returns the cached total supply of veSTG as of the provided timestamp.
     * @dev Only timestamps which fall on Thursdays 00:00:00 UTC will return correct values.
     * This function requires the contract to have been checkpointed past `timestamp` so that the supply is cached.
     * @param timestamp - The timestamp at which to read the cached total supply at.
     */
    function getTotalSupplyAtTimestamp(uint256 timestamp) external view override returns (uint256) {
        return _veSupplyCache[timestamp];
    }

    /**
     * @notice Returns the FeeDistributor's cached balance of `token`.
     */
    function getTokenLastBalance(IERC20 token) external view override returns (uint256) {
        return _tokenState[token].cachedBalance;
    }

    /**
     * @notice Returns the amount of `token` which the FeeDistributor received in the week beginning at `timestamp`.
     * @param token - The ERC20 token address to query.
     * @param timestamp - The timestamp corresponding to the beginning of the week of interest.
     */
    function getTokensDistributedInWeek(IERC20 token, uint256 timestamp) external view override returns (uint256) {
        return _tokensPerWeek[token][timestamp];
    }

    // Preventing third-party claiming

    /**
     * @notice Enables / disables rewards claiming only by the VotingEscrow holder for the message sender.
     * @param enabled - True if only the VotingEscrow holder can claim their rewards, false otherwise.
     */
    function enableOnlyVeHolderClaiming(bool enabled) external override {
        _onlyVeHolderClaimingEnabled[msg.sender] = enabled;
        emit OnlyVeHolderClaimingEnabled(msg.sender, enabled);
    }

    /**
     * @notice Returns true if only the VotingEscrow holder can claim their rewards, false otherwise.
     */
    function onlyVeHolderClaimingEnabled(address user) external view override returns (bool) {
        return _onlyVeHolderClaimingEnabled[user];
    }

    // Depositing

    /**
     * @notice Deposits tokens to be distributed in the current week.
     * @dev Sending tokens directly to the FeeDistributor instead of using `depositToken` may result in tokens being
     * retroactively distributed to past weeks, or for the distribution to carry over to future weeks.
     *
     * If for some reason `depositToken` cannot be called, in order to ensure that all tokens are correctly distributed
     * manually call `checkpointToken` before and after the token transfer.
     * @param token - The ERC20 token address to distribute.
     * @param amount - The amount of tokens to deposit.
     */
    function depositToken(IERC20 token, uint256 amount) external override nonReentrant tokenCanBeClaimed(token) {
        _checkpointToken(token, false);
        token.safeTransferFrom(msg.sender, address(this), amount);
        _checkpointToken(token, true);
    }

    /**
     * @notice Deposits tokens to be distributed in the current week.
     * @dev A version of `depositToken` which supports depositing multiple `tokens` at once.
     * See `depositToken` for more details.
     * @param tokens - An array of ERC20 token addresses to distribute.
     * @param amounts - An array of token amounts to deposit.
     */
    function depositTokens(IERC20[] calldata tokens, uint256[] calldata amounts) external override nonReentrant {
        require(tokens.length == amounts.length, "Input length mismatch");

        uint256 length = tokens.length;
        for (uint256 i = 0; i < length; ++i) {
            _checkIfClaimingEnabled(tokens[i]);
            _checkpointToken(tokens[i], false);
            tokens[i].safeTransferFrom(msg.sender, address(this), amounts[i]);
            _checkpointToken(tokens[i], true);
        }
    }

    // Checkpointing

    /**
     * @notice Caches the total supply of veSTG at the beginning of each week.
     * This function will be called automatically before claiming tokens to ensure the contract is properly updated.
     */
    function checkpoint() external override nonReentrant {
        _checkpointTotalSupply();
    }

    /**
     * @notice Caches the user's balance of veSTG at the beginning of each week.
     * This function will be called automatically before claiming tokens to ensure the contract is properly updated.
     * @param user - The address of the user to be checkpointed.
     */
    function checkpointUser(address user) external override nonReentrant {
        _checkpointUserBalance(user);
    }

    /**
     * @notice Assigns any newly-received tokens held by the FeeDistributor to weekly distributions.
     * @dev Any `token` balance held by the FeeDistributor above that which is returned by `getTokenLastBalance`
     * will be distributed evenly across the time period since `token` was last checkpointed.
     *
     * This function will be called automatically before claiming tokens to ensure the contract is properly updated.
     * @param token - The ERC20 token address to be checkpointed.
     */
    function checkpointToken(IERC20 token) external override nonReentrant tokenCanBeClaimed(token) {
        _checkpointToken(token, true);
    }

    /**
     * @notice Assigns any newly-received tokens held by the FeeDistributor to weekly distributions.
     * @dev A version of `checkpointToken` which supports checkpointing multiple tokens.
     * See `checkpointToken` for more details.
     * @param tokens - An array of ERC20 token addresses to be checkpointed.
     */
    function checkpointTokens(IERC20[] calldata tokens) external override nonReentrant {
        uint256 tokensLength = tokens.length;
        for (uint256 i = 0; i < tokensLength; ++i) {
            _checkIfClaimingEnabled(tokens[i]);
            _checkpointToken(tokens[i], true);
        }
    }

    // Claiming

    /**
     * @notice Claims all pending distributions of the provided token for a user.
     * @dev It's not necessary to explicitly checkpoint before calling this function, it will ensure the FeeDistributor
     * is up to date before calculating the amount of tokens to be claimed.
     * @param user - The user on behalf of which to claim.
     * @param token - The ERC20 token address to be claimed.
     * @return The amount of `token` sent to `user` as a result of claiming.
     */
    function claimToken(address user, IERC20 token) external override nonReentrant userAllowedToClaim(user) tokenCanBeClaimed(token) returns (uint256) {
        _checkpointTotalSupply();
        _checkpointUserBalance(user);
        _checkpointToken(token, false);

        return _claimToken(user, token);
    }

    /**
     * @notice Claims a number of tokens on behalf of a user.
     * @dev A version of `claimToken` which supports claiming multiple `tokens` on behalf of `user`.
     * See `claimToken` for more details.
     * @param user - The user on behalf of which to claim.
     * @param tokens - An array of ERC20 token addresses to be claimed.
     * @return An array of the amounts of each token in `tokens` sent to `user` as a result of claiming.
     */
    function claimTokens(address user, IERC20[] calldata tokens) external override nonReentrant userAllowedToClaim(user) tokensCanBeClaimed(tokens) returns (uint256[] memory) {
        _checkpointTotalSupply();
        _checkpointUserBalance(user);

        uint256 tokensLength = tokens.length;
        uint256[] memory amounts = new uint256[](tokensLength);
        for (uint256 i = 0; i < tokensLength; ++i) {
            _checkpointToken(tokens[i], false);
            amounts[i] = _claimToken(user, tokens[i]);
        }

        return amounts;
    }

    // Governance

    /**
     * @notice Withdraws the specified `amount` of the `token` from the contract to the `recipient`. Can be called only by Stargate DAO.
     * @param token - The token to withdraw.
     * @param amount - The amount to withdraw.
     * @param recipient - The address to transfer the tokens to.
     */
    function withdrawToken(IERC20 token, uint256 amount, address recipient) external override onlyOwner {
        token.safeTransfer(recipient, amount);
        emit TokenWithdrawn(token, amount, recipient);
    }

    /**
     * @notice Enables or disables claiming of the given token. Can be called only by Stargate DAO.
     * @param token - The token to enable or disable claiming.
     * @param enable - True if the token can be claimed, false otherwise.
     */
    function enableTokenClaiming(IERC20 token, bool enable) external override onlyOwner {
        _tokenClaimingEnabled[token] = enable;
        emit TokenClaimingEnabled(token, enable);
    }

    // Internal functions

    /**
     * @dev It is required that both the global, token and user state have been properly checkpointed
     * before calling this function.
     */
    function _claimToken(address user, IERC20 token) internal returns (uint256) {
        TokenState storage tokenState = _tokenState[token];
        uint256 nextUserTokenWeekToClaim = _getUserTokenTimeCursor(user, token);

        // The first week which cannot be correctly claimed is the earliest of:
        // - A) The global or user time cursor (whichever is earliest), rounded up to the end of the week.
        // - B) The token time cursor, rounded down to the beginning of the week.
        //
        // This prevents the two failure modes:
        // - A) A user may claim a week for which we have not processed their balance, resulting in tokens being locked.
        // - B) A user may claim a week which then receives more tokens to be distributed. However the user has
        //      already claimed for that week so their share of these new tokens are lost.
        uint256 firstUnclaimableWeek = Math.min(_roundUpTimestamp(Math.min(_timeCursor, _userState[user].timeCursor)), _roundDownTimestamp(tokenState.timeCursor));

        mapping(uint256 => uint256) storage tokensPerWeek = _tokensPerWeek[token];
        mapping(uint256 => uint256) storage userBalanceAtTimestamp = _userBalanceAtTimestamp[user];

        uint256 amount;
        for (uint256 i = 0; i < 20; ++i) {
            // We clearly cannot claim for `firstUnclaimableWeek` and so we break here.
            if (nextUserTokenWeekToClaim >= firstUnclaimableWeek) break;

            amount += (tokensPerWeek[nextUserTokenWeekToClaim] * userBalanceAtTimestamp[nextUserTokenWeekToClaim]) / _veSupplyCache[nextUserTokenWeekToClaim];
            nextUserTokenWeekToClaim += 1 weeks;
        }
        // Update the stored user-token time cursor to prevent this user claiming this week again.
        _userTokenTimeCursor[user][token] = nextUserTokenWeekToClaim;

        if (amount > 0) {
            // For a token to be claimable it must have been added to the cached balance so this is safe.
            tokenState.cachedBalance = uint128(tokenState.cachedBalance - amount);
            token.safeTransfer(user, amount);
            emit TokensClaimed(user, token, amount, nextUserTokenWeekToClaim);
        }

        return amount;
    }

    /**
     * @dev Calculate the amount of `token` to be distributed to `_votingEscrow` holders since the last checkpoint.
     */
    function _checkpointToken(IERC20 token, bool force) internal {
        TokenState storage tokenState = _tokenState[token];
        uint256 lastTokenTime = tokenState.timeCursor;
        uint256 timeSinceLastCheckpoint;
        if (lastTokenTime == 0) {
            // Prevent someone from assigning tokens to an inaccessible week.
            require(block.timestamp > _startTime, "Fee distribution has not started yet");

            // If it's the first time we're checkpointing this token then start distributing from now.
            // Also mark at which timestamp users should start attempts to claim this token from.
            lastTokenTime = block.timestamp;
            tokenState.startTime = uint64(_roundDownTimestamp(block.timestamp));
        } else {
            timeSinceLastCheckpoint = block.timestamp - lastTokenTime;

            if (!force) {
                // Checkpointing N times within a single week is completely equivalent to checkpointing once at the end.
                // We then want to get as close as possible to a single checkpoint every Wed 23:59 UTC to save gas.

                // We then skip checkpointing if we're in the same week as the previous checkpoint.
                bool alreadyCheckpointedThisWeek = _roundDownTimestamp(block.timestamp) == _roundDownTimestamp(lastTokenTime);
                // However we want to ensure that all of this week's fees are assigned to the current week without
                // overspilling into the next week. To mitigate this, we checkpoint if we're near the end of the week.
                bool nearingEndOfWeek = _roundUpTimestamp(block.timestamp) - block.timestamp < 1 days;

                // This ensures that we checkpoint once at the beginning of the week and again for each user interaction
                // towards the end of the week to give an accurate final reading of the balance.
                if (alreadyCheckpointedThisWeek && !nearingEndOfWeek) {
                    return;
                }
            }
        }

        tokenState.timeCursor = uint64(block.timestamp);

        uint256 tokenBalance = token.balanceOf(address(this));
        uint256 newTokensToDistribute = tokenBalance.sub(tokenState.cachedBalance);
        if (newTokensToDistribute == 0) return;
        require(tokenBalance <= type(uint128).max, "Maximum token balance exceeded");
        tokenState.cachedBalance = uint128(tokenBalance);

        uint256 firstIncompleteWeek = _roundDownTimestamp(lastTokenTime);
        uint256 nextWeek = 0;

        // Distribute `newTokensToDistribute` evenly across the time period from `lastTokenTime` to now.
        // These tokens are assigned to weeks proportionally to how much of this period falls into each week.
        mapping(uint256 => uint256) storage tokensPerWeek = _tokensPerWeek[token];
        for (uint256 i = 0; i < 20; ++i) {
            // This is safe as we're incrementing a timestamp.
            nextWeek = firstIncompleteWeek + 1 weeks;
            if (block.timestamp < nextWeek) {
                // `firstIncompleteWeek` is now the beginning of the current week, i.e. this is the final iteration.
                if (timeSinceLastCheckpoint == 0 && block.timestamp == lastTokenTime) {
                    tokensPerWeek[firstIncompleteWeek] += newTokensToDistribute;
                } else {
                    // block.timestamp >= lastTokenTime by definition.
                    tokensPerWeek[firstIncompleteWeek] += (newTokensToDistribute * (block.timestamp - lastTokenTime)) / timeSinceLastCheckpoint;
                }
                // As we've caught up to the present then we should now break.
                break;
            } else {
                // We've gone a full week or more without checkpointing so need to distribute tokens to previous weeks.
                if (timeSinceLastCheckpoint == 0 && nextWeek == lastTokenTime) {
                    // It shouldn't be possible to enter this block
                    tokensPerWeek[firstIncompleteWeek] += newTokensToDistribute;
                } else {
                    // nextWeek > lastTokenTime by definition.
                    tokensPerWeek[firstIncompleteWeek] += (newTokensToDistribute * (nextWeek - lastTokenTime)) / timeSinceLastCheckpoint;
                }
            }

            // We've now "checkpointed" up to the beginning of next week so must update timestamps appropriately.
            lastTokenTime = nextWeek;
            firstIncompleteWeek = nextWeek;
        }

        emit TokenCheckpointed(token, newTokensToDistribute, lastTokenTime);
    }

    /**
     * @dev Cache the `user`'s balance of `_votingEscrow` at the beginning of each new week
     */
    function _checkpointUserBalance(address user) internal {
        uint256 maxUserEpoch = _votingEscrow.user_point_epoch(user);

        // If user has no epochs then they have never locked STG.
        // They clearly will not then receive fees.
        require(maxUserEpoch > 0, "veSTG balance is zero");

        UserState storage userState = _userState[user];

        // `nextWeekToCheckpoint` represents the timestamp of the beginning of the first week
        // which we haven't checkpointed the user's VotingEscrow balance yet.
        uint256 nextWeekToCheckpoint = userState.timeCursor;

        uint256 userEpoch;
        if (nextWeekToCheckpoint == 0) {
            // First checkpoint for user so need to do the initial binary search
            userEpoch = _findTimestampUserEpoch(user, _startTime, 0, maxUserEpoch);
        } else {
            if (nextWeekToCheckpoint >= block.timestamp) {
                // User has checkpointed the current week already so perform early return.
                // This prevents a user from processing epochs created later in this week, however this is not an issue
                // as if a significant number of these builds up then the user will skip past them with a binary search.
                return;
            }

            // Otherwise use the value saved from last time
            userEpoch = userState.lastEpochCheckpointed;

            // This optimizes a scenario common for power users, which have frequent `VotingEscrow` interactions in
            // the same week. We assume that any such user is also claiming fees every week, and so we only perform
            // a binary search here rather than integrating it into the main search algorithm, effectively skipping
            // most of the week's irrelevant checkpoints.
            // The slight tradeoff is that users who have multiple infrequent `VotingEscrow` interactions and also don't
            // claim frequently will also perform the binary search, despite it not leading to gas savings.
            if (maxUserEpoch - userEpoch > 20) {
                userEpoch = _findTimestampUserEpoch(user, nextWeekToCheckpoint, userEpoch, maxUserEpoch);
            }
        }

        // Epoch 0 is always empty so bump onto the next one so that we start on a valid epoch.
        if (userEpoch == 0) {
            userEpoch = 1;
        }

        IVotingEscrow.Point memory nextUserPoint = _votingEscrow.user_point_history(user, userEpoch);

        // If this is the first checkpoint for the user, calculate the first week they're eligible for.
        // i.e. the timestamp of the first Thursday after they locked.
        // If this is earlier then the first distribution then fast forward to then.
        if (nextWeekToCheckpoint == 0) {
            // Disallow checkpointing before `startTime`.
            require(block.timestamp > _startTime, "Fee distribution has not started yet");
            nextWeekToCheckpoint = Math.max(_startTime, _roundUpTimestamp(nextUserPoint.ts));
            userState.startTime = uint64(nextWeekToCheckpoint);
        }

        // It's safe to increment `userEpoch` and `nextWeekToCheckpoint` in this loop as epochs and timestamps
        // are always much smaller than 2^256 and are being incremented by small values.
        IVotingEscrow.Point memory currentUserPoint;
        for (uint256 i = 0; i < 50; ++i) {
            if (nextWeekToCheckpoint >= nextUserPoint.ts && userEpoch <= maxUserEpoch) {
                // The week being considered is contained in a user epoch after that described by `currentUserPoint`.
                // We then shift `nextUserPoint` into `currentUserPoint` and query the Point for the next user epoch.
                // We do this in order to step though epochs until we find the first epoch starting after
                // `nextWeekToCheckpoint`, making the previous epoch the one that contains `nextWeekToCheckpoint`.
                userEpoch += 1;
                currentUserPoint = nextUserPoint;
                if (userEpoch > maxUserEpoch) {
                    nextUserPoint = IVotingEscrow.Point(0, 0, 0, 0);
                } else {
                    nextUserPoint = _votingEscrow.user_point_history(user, userEpoch);
                }
            } else {
                // The week being considered lies inside the user epoch described by `oldUserPoint`
                // we can then use it to calculate the user's balance at the beginning of the week.
                if (nextWeekToCheckpoint >= block.timestamp) {
                    // Break if we're trying to cache the user's balance at a timestamp in the future.
                    // We only perform this check here to ensure that we can still process checkpoints created
                    // in the current week.
                    break;
                }

                int128 dt = int128(nextWeekToCheckpoint - currentUserPoint.ts);
                uint256 userBalance = currentUserPoint.bias > currentUserPoint.slope * dt ? uint256(currentUserPoint.bias - currentUserPoint.slope * dt) : 0;

                // User's lock has expired and they haven't relocked yet.
                if (userBalance == 0 && userEpoch > maxUserEpoch) {
                    nextWeekToCheckpoint = _roundUpTimestamp(block.timestamp);
                    break;
                }

                // User had a nonzero lock and so is eligible to collect fees.
                _userBalanceAtTimestamp[user][nextWeekToCheckpoint] = userBalance;

                nextWeekToCheckpoint += 1 weeks;
            }
        }

        // We subtract off 1 from the userEpoch to step back once so that on the next attempt to checkpoint
        // the current `currentUserPoint` will be loaded as `nextUserPoint`. This ensures that we can't skip over the
        // user epoch containing `nextWeekToCheckpoint`.
        // userEpoch > 0 so this is safe.
        userState.lastEpochCheckpointed = uint64(userEpoch - 1);
        userState.timeCursor = uint64(nextWeekToCheckpoint);
    }

    /**
     * @dev Cache the totalSupply of VotingEscrow token at the beginning of each new week
     */
    function _checkpointTotalSupply() internal {
        uint256 nextWeekToCheckpoint = _timeCursor;
        uint256 weekStart = _roundDownTimestamp(block.timestamp);

        // We expect `timeCursor == weekStart + 1 weeks` when fully up to date.
        if (nextWeekToCheckpoint > weekStart || weekStart == block.timestamp) {
            // We've already checkpointed up to this week so perform early return
            return;
        }

        _votingEscrow.checkpoint();

        // Step through the each week and cache the total supply at beginning of week on this contract
        for (uint256 i = 0; i < 20; ++i) {
            if (nextWeekToCheckpoint > weekStart) break;

            // NOTE: Replaced Balancer's logic with Solidly/Velodrome implementation due to the differences in the VotingEscrow totalSupply function
            // See https://github.com/velodrome-finance/v1/blob/master/contracts/RewardsDistributor.sol#L143

            uint256 epoch = _findTimestampEpoch(nextWeekToCheckpoint);
            IVotingEscrow.Point memory pt = _votingEscrow.point_history(epoch);

            int128 dt = nextWeekToCheckpoint > pt.ts ? int128(nextWeekToCheckpoint - pt.ts) : 0;
            int128 supply = pt.bias - pt.slope * dt;
            _veSupplyCache[nextWeekToCheckpoint] = supply > 0 ? uint256(supply) : 0;

            // This is safe as we're incrementing a timestamp
            nextWeekToCheckpoint += 1 weeks;
        }
        // Update state to the end of the current week (`weekStart` + 1 weeks)
        _timeCursor = nextWeekToCheckpoint;
    }

    // Helper functions

    /**
     * @dev Wrapper around `_userTokenTimeCursor` which returns the start timestamp for `token`
     * if `user` has not attempted to interact with it previously.
     */
    function _getUserTokenTimeCursor(address user, IERC20 token) internal view returns (uint256) {
        uint256 userTimeCursor = _userTokenTimeCursor[user][token];
        if (userTimeCursor > 0) return userTimeCursor;
        // This is the first time that the user has interacted with this token.
        // We then start from the latest out of either when `user` first locked veSTG or `token` was first checkpointed.
        return Math.max(_userState[user].startTime, _tokenState[token].startTime);
    }

    /**
     * @dev Return the user epoch number for `user` corresponding to the provided `timestamp`
     */
    function _findTimestampUserEpoch(address user, uint256 timestamp, uint256 minUserEpoch, uint256 maxUserEpoch) internal view returns (uint256) {
        uint256 min = minUserEpoch;
        uint256 max = maxUserEpoch;

        // Perform binary search through epochs to find epoch containing `timestamp`
        for (uint256 i = 0; i < 128; ++i) {
            if (min >= max) break;

            // Algorithm assumes that inputs are less than 2^128 so this operation is safe.
            // +2 avoids getting stuck in min == mid < max
            uint256 mid = (min + max + 2) / 2;
            IVotingEscrow.Point memory pt = _votingEscrow.user_point_history(user, mid);
            if (pt.ts <= timestamp) {
                min = mid;
            } else {
                // max > min so this is safe.
                max = mid - 1;
            }
        }
        return min;
    }

    /**
     * @dev Return the global epoch number corresponding to the provided `timestamp`
     */
    function _findTimestampEpoch(uint256 timestamp) internal view returns (uint256) {
        uint256 min = 0;
        uint256 max = _votingEscrow.epoch();

        // Perform binary search through epochs to find epoch containing `timestamp`
        for (uint256 i = 0; i < 128; i++) {
            if (min >= max) break;

            // Algorithm assumes that inputs are less than 2^128 so this operation is safe.
            // +2 avoids getting stuck in min == mid < max
            uint256 mid = (min + max + 2) / 2;
            IVotingEscrow.Point memory pt = _votingEscrow.point_history(mid);
            if (pt.ts <= timestamp) {
                min = mid;
            } else {
                max = mid - 1;
            }
        }
        return min;
    }

    /**
     * @dev Rounds the provided timestamp down to the beginning of the previous week (Thurs 00:00 UTC)
     */
    function _roundDownTimestamp(uint256 timestamp) private pure returns (uint256) {
        // Division by zero or overflows are impossible here.
        return (timestamp / 1 weeks) * 1 weeks;
    }

    /**
     * @dev Rounds the provided timestamp up to the beginning of the next week (Thurs 00:00 UTC)
     */
    function _roundUpTimestamp(uint256 timestamp) private pure returns (uint256) {
        // Overflows are impossible here for all realistic inputs.
        return _roundDownTimestamp(timestamp + WEEK_MINUS_SECOND);
    }

    /**
     * @dev Reverts if the provided token cannot be claimed.
     */
    function _checkIfClaimingEnabled(IERC20 token) private view {
        require(_tokenClaimingEnabled[token], "Token is not allowed");
    }
}
Contract Source Code
File 4 of 11: IERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}
Contract Source Code
File 5 of 11: IFeeDistributor.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity >=0.7.0 <0.9.0;
pragma experimental ABIEncoderV2;

import "@openzeppelin-solc-0.7/contracts/token/ERC20/IERC20.sol";
import "./IVotingEscrow.sol";

/**
 * @title Fee Distributor
 * @notice Distributes any tokens transferred to the contract (e.g. Protocol fees) among veSTG
 * holders proportionally based on a snapshot of the week at which the tokens are sent to the FeeDistributor contract.
 * @dev Supports distributing arbitrarily many different tokens. In order to start distributing a new token to veSTG
 * holders simply transfer the tokens to the `FeeDistributor` contract and then call `checkpointToken`.
 */
interface IFeeDistributor {
    event TokenCheckpointed(IERC20 token, uint256 amount, uint256 lastCheckpointTimestamp);
    event TokensClaimed(address user, IERC20 token, uint256 amount, uint256 userTokenTimeCursor);
    event TokenWithdrawn(IERC20 token, uint256 amount, address recipient);
    event TokenClaimingEnabled(IERC20 token, bool enabled);
    event OnlyVeHolderClaimingEnabled(address user, bool enabled);

    /**
     * @notice Returns the VotingEscrow (veSTG) token contract
     */
    function getVotingEscrow() external view returns (IVotingEscrow);

    /**
     * @notice Returns the time when fee distribution starts.
     */
    function getStartTime() external view returns (uint256);

    /**
     * @notice Returns the global time cursor representing the most earliest uncheckpointed week.
     */
    function getTimeCursor() external view returns (uint256);

    /**
     * @notice Returns the user-level time cursor representing the most earliest uncheckpointed week.
     * @param user - The address of the user to query.
     */
    function getUserTimeCursor(address user) external view returns (uint256);

    /**
     * @notice Returns the user-level start time representing the first week they're eligible to claim tokens.
     * @param user - The address of the user to query.
     */
    function getUserStartTime(address user) external view returns (uint256);

    /**
     * @notice True if the given token can be claimed, false otherwise.
     * @param token - The ERC20 token address to query.
     */
    function canTokenBeClaimed(IERC20 token) external view returns (bool);

    /**
     * @notice Returns the token-level start time representing the timestamp users could start claiming this token
     * @param token - The ERC20 token address to query.
     */
    function getTokenStartTime(IERC20 token) external view returns (uint256);

    /**
     * @notice Returns the token-level time cursor storing the timestamp at up to which tokens have been distributed.
     * @param token - The ERC20 token address to query.
     */
    function getTokenTimeCursor(IERC20 token) external view returns (uint256);

    /**
     * @notice Returns the token-level cached balance.
     * @param token - The ERC20 token address to query.
     */
    function getTokenCachedBalance(IERC20 token) external view returns (uint256);

    /**
     * @notice Returns the user-level last checkpointed epoch.
     * @param user - The address of the user to query.
     */
    function getUserLastEpochCheckpointed(address user) external view returns (uint256);

    /**
     * @notice Returns the user-level time cursor storing the timestamp of the latest token distribution claimed.
     * @param user - The address of the user to query.
     * @param token - The ERC20 token address to query.
     */
    function getUserTokenTimeCursor(address user, IERC20 token) external view returns (uint256);

    /**
     * @notice Returns the user's cached balance of veSTG as of the provided timestamp.
     * @dev Only timestamps which fall on Thursdays 00:00:00 UTC will return correct values.
     * This function requires `user` to have been checkpointed past `timestamp` so that their balance is cached.
     * @param user - The address of the user of which to read the cached balance of.
     * @param timestamp - The timestamp at which to read the `user`'s cached balance at.
     */
    function getUserBalanceAtTimestamp(address user, uint256 timestamp) external view returns (uint256);

    /**
     * @notice Returns the cached total supply of veSTG as of the provided timestamp.
     * @dev Only timestamps which fall on Thursdays 00:00:00 UTC will return correct values.
     * This function requires the contract to have been checkpointed past `timestamp` so that the supply is cached.
     * @param timestamp - The timestamp at which to read the cached total supply at.
     */
    function getTotalSupplyAtTimestamp(uint256 timestamp) external view returns (uint256);

    /**
     * @notice Returns the FeeDistributor's cached balance of `token`.
     */
    function getTokenLastBalance(IERC20 token) external view returns (uint256);

    /**
     * @notice Returns the amount of `token` which the FeeDistributor received in the week beginning at `timestamp`.
     * @param token - The ERC20 token address to query.
     * @param timestamp - The timestamp corresponding to the beginning of the week of interest.
     */
    function getTokensDistributedInWeek(IERC20 token, uint256 timestamp) external view returns (uint256);

    // Preventing third-party claiming

    /**
     * @notice Enables / disables rewards claiming only by the VotingEscrow holder for the message sender.
     * @param enabled - True if only the VotingEscrow holder can claim their rewards, false otherwise.
     */
    function enableOnlyVeHolderClaiming(bool enabled) external;

    /**
     * @notice Returns true if only the VotingEscrow holder can claim their rewards, false otherwise.
     */
    function onlyVeHolderClaimingEnabled(address user) external view returns (bool);

    // Depositing

    /**
     * @notice Deposits tokens to be distributed in the current week.
     * @dev Sending tokens directly to the FeeDistributor instead of using `depositTokens` may result in tokens being
     * retroactively distributed to past weeks, or for the distribution to carry over to future weeks.
     *
     * If for some reason `depositTokens` cannot be called, in order to ensure that all tokens are correctly distributed
     * manually call `checkpointToken` before and after the token transfer.
     * @param token - The ERC20 token address to distribute.
     * @param amount - The amount of tokens to deposit.
     */
    function depositToken(IERC20 token, uint256 amount) external;

    /**
     * @notice Deposits tokens to be distributed in the current week.
     * @dev A version of `depositToken` which supports depositing multiple `tokens` at once.
     * See `depositToken` for more details.
     * @param tokens - An array of ERC20 token addresses to distribute.
     * @param amounts - An array of token amounts to deposit.
     */
    function depositTokens(IERC20[] calldata tokens, uint256[] calldata amounts) external;

    // Checkpointing

    /**
     * @notice Caches the total supply of veSTG at the beginning of each week.
     * This function will be called automatically before claiming tokens to ensure the contract is properly updated.
     */
    function checkpoint() external;

    /**
     * @notice Caches the user's balance of veSTG at the beginning of each week.
     * This function will be called automatically before claiming tokens to ensure the contract is properly updated.
     * @param user - The address of the user to be checkpointed.
     */
    function checkpointUser(address user) external;

    /**
     * @notice Assigns any newly-received tokens held by the FeeDistributor to weekly distributions.
     * @dev Any `token` balance held by the FeeDistributor above that which is returned by `getTokenLastBalance`
     * will be distributed evenly across the time period since `token` was last checkpointed.
     *
     * This function will be called automatically before claiming tokens to ensure the contract is properly updated.
     * @param token - The ERC20 token address to be checkpointed.
     */
    function checkpointToken(IERC20 token) external;

    /**
     * @notice Assigns any newly-received tokens held by the FeeDistributor to weekly distributions.
     * @dev A version of `checkpointToken` which supports checkpointing multiple tokens.
     * See `checkpointToken` for more details.
     * @param tokens - An array of ERC20 token addresses to be checkpointed.
     */
    function checkpointTokens(IERC20[] calldata tokens) external;

    // Claiming

    /**
     * @notice Claims all pending distributions of the provided token for a user.
     * @dev It's not necessary to explicitly checkpoint before calling this function, it will ensure the FeeDistributor
     * is up to date before calculating the amount of tokens to be claimed.
     * @param user - The user on behalf of which to claim.
     * @param token - The ERC20 token address to be claimed.
     * @return The amount of `token` sent to `user` as a result of claiming.
     */
    function claimToken(address user, IERC20 token) external returns (uint256);

    /**
     * @notice Claims a number of tokens on behalf of a user.
     * @dev A version of `claimToken` which supports claiming multiple `tokens` on behalf of `user`.
     * See `claimToken` for more details.
     * @param user - The user on behalf of which to claim.
     * @param tokens - An array of ERC20 token addresses to be claimed.
     * @return An array of the amounts of each token in `tokens` sent to `user` as a result of claiming.
     */
    function claimTokens(address user, IERC20[] calldata tokens) external returns (uint256[] memory);

    // Governance

    /**
     * @notice Withdraws the specified `amount` of the `token` from the contract to the `recipient`. Can be called only by Stargate DAO.
     * @param token - The token to withdraw.
     * @param amount - The amount to withdraw.
     * @param recipient - The address to transfer the tokens to.
     */
    function withdrawToken(IERC20 token, uint256 amount, address recipient) external;

    /**
     * @notice Enables or disables claiming of the given token. Can be called only by Stargate DAO.
     * @param token - The token to enable or disable claiming.
     * @param enable - True if the token can be claimed, false otherwise.
     */
    function enableTokenClaiming(IERC20 token, bool enable) external;
}
Contract Source Code
File 6 of 11: IVotingEscrow.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity >=0.7.0 <0.9.0;
pragma experimental ABIEncoderV2;

// For compatibility, we're keeping the same function names as in the original Curve code, including the mixed-case
// naming convention.
// solhint-disable func-name-mixedcase

interface IVotingEscrow {
    struct Point {
        int128 bias;
        int128 slope; // - dweight / dt
        uint256 ts;
        uint256 blk; // block
    }

    function epoch() external view returns (uint256);

    function balanceOfAtT(address user, uint256 timestamp) external view returns (uint256);

    function totalSupplyAtT(uint256 timestamp) external view returns (uint256);

    function user_point_epoch(address user) external view returns (uint256);

    function point_history(uint256 timestamp) external view returns (Point memory);

    function user_point_history(address user, uint256 timestamp) external view returns (Point memory);

    function checkpoint() external;

    function locked__end(address user) external view returns (uint256);
}
Contract Source Code
File 7 of 11: Math.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow, so we distribute
        return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
    }
}
Contract Source Code
File 8 of 11: Ownable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../utils/Context.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor () internal {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
}
Contract Source Code
File 9 of 11: ReentrancyGuard.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor () internal {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}
Contract Source Code
File 10 of 11: SafeERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using SafeMath for uint256;
    using Address for address;

    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        // solhint-disable-next-line max-line-length
        require((value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).add(value);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) { // Return data is optional
            // solhint-disable-next-line max-line-length
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}
Contract Source Code
File 11 of 11: SafeMath.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        uint256 c = a + b;
        if (c < a) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b > a) return (false, 0);
        return (true, a - b);
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) return (true, 0);
        uint256 c = a * b;
        if (c / a != b) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a / b);
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a % b);
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b <= a, "SafeMath: subtraction overflow");
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        if (a == 0) return 0;
        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");
        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: division by zero");
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: modulo by zero");
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        return a - b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryDiv}.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a % b;
    }
}
Settings
{
  "compilationTarget": {
    "contracts/FeeDistributor.sol": "FeeDistributor"
  },
  "evmVersion": "istanbul",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": true,
    "runs": 9999
  },
  "remappings": []
}
ABI
[{"inputs":[{"internalType":"contract IVotingEscrow","name":"votingEscrow","type":"address"},{"internalType":"uint256","name":"startTime","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"}],"name":"OnlyVeHolderClaimingEnabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"lastCheckpointTimestamp","type":"uint256"}],"name":"TokenCheckpointed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"}],"name":"TokenClaimingEnabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"}],"name":"TokenWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"userTokenTimeCursor","type":"uint256"}],"name":"TokensClaimed","type":"event"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"canTokenBeClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"checkpoint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"checkpointToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"}],"name":"checkpointTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"checkpointUser","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"claimToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"}],"name":"claimTokens","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"depositToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"depositTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"enabled","type":"bool"}],"name":"enableOnlyVeHolderClaiming","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"bool","name":"enable","type":"bool"}],"name":"enableTokenClaiming","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getStartTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTimeCursor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getTokenCachedBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getTokenLastBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getTokenStartTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getTokenTimeCursor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"getTokensDistributedInWeek","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"getTotalSupplyAtTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"getUserBalanceAtTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getUserLastEpochCheckpointed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getUserStartTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getUserTimeCursor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getUserTokenTimeCursor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVotingEscrow","outputs":[{"internalType":"contract IVotingEscrow","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"onlyVeHolderClaimingEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"withdrawToken","outputs":[],"stateMutability":"nonpayable","type":"function"}]