// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.8.6;
import "./IAToken.sol";
interface ATokenInterface is IAToken {
/**
* @dev Returns the address of the underlying asset of this aToken (E.g. WETH for aWETH)
**/
/* solhint-disable-next-line func-name-mixedcase */
function UNDERLYING_ASSET_ADDRESS() external view returns (address);
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.6;
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@pooltogether/fixed-point/contracts/FixedPoint.sol";
import "@pooltogether/owner-manager-contracts/contracts/Manageable.sol";
import "../external/aave/ILendingPool.sol";
import "../external/aave/ILendingPoolAddressesProvider.sol";
import "../external/aave/ILendingPoolAddressesProviderRegistry.sol";
import "../external/aave/ATokenInterface.sol";
import "../external/aave/IAaveIncentivesController.sol";
import "../external/aave/IProtocolYieldSource.sol";
/// @title Aave Yield Source integration contract, implementing PoolTogether's generic yield source interface
/// @dev This contract inherits from the ERC20 implementation to keep track of users deposits
/// @dev This contract inherits AssetManager which extends OwnableUpgradable
/// @notice Yield source for a PoolTogether prize pool that generates yield by depositing into Aave V2
contract ATokenYieldSource is ERC20, IProtocolYieldSource, Manageable, ReentrancyGuard {
using SafeMath for uint256;
using SafeERC20 for IERC20;
/// @notice Emitted when the yield source is initialized
event ATokenYieldSourceInitialized(
IAToken indexed aToken,
ILendingPoolAddressesProviderRegistry lendingPoolAddressesProviderRegistry,
uint8 decimals,
string name,
string symbol,
address owner
);
/// @notice Emitted when asset tokens are redeemed from the yield source
event RedeemedToken(
address indexed from,
uint256 shares,
uint256 amount
);
/// @notice Emitted when Aave rewards have been claimed
event Claimed(
address indexed user,
address indexed to,
uint256 amount
);
/// @notice Emitted when asset tokens are supplied to the yield source
event SuppliedTokenTo(
address indexed from,
uint256 shares,
uint256 amount,
address indexed to
);
/// @notice Emitted when asset tokens are supplied to sponsor the yield source
event Sponsored(
address indexed from,
uint256 amount
);
/// @notice Emitted when ERC20 tokens other than yield source's aToken are withdrawn from the yield source
event TransferredERC20(
address indexed from,
address indexed to,
uint256 amount,
IERC20 indexed token
);
/// @notice Interface for the yield-bearing Aave aToken
ATokenInterface public aToken;
/// @notice Interface for Aave incentivesController
IAaveIncentivesController public incentivesController;
/// @notice Interface for Aave lendingPoolAddressesProviderRegistry
ILendingPoolAddressesProviderRegistry public lendingPoolAddressesProviderRegistry;
uint8 internal __decimals;
/// @dev Aave genesis market LendingPoolAddressesProvider's ID
/// @dev This variable could evolve in the future if we decide to support other markets
uint256 private constant ADDRESSES_PROVIDER_ID = uint256(0);
/// @dev PoolTogether's Aave Referral Code
uint16 private constant REFERRAL_CODE = uint16(188);
/// @notice Initializes the yield source with Aave aToken
/// @param _aToken Aave aToken address
/// @param _incentivesController Aave incentivesController address
/// @param _lendingPoolAddressesProviderRegistry Aave lendingPoolAddressesProviderRegistry address
/// @param _decimals Number of decimals the shares (inhereted ERC20) will have. Set as same as underlying asset to ensure sane ExchangeRates
/// @param _symbol Token symbol for the underlying shares ERC20
/// @param _name Token name for the underlying shares ERC20
constructor (
ATokenInterface _aToken,
IAaveIncentivesController _incentivesController,
ILendingPoolAddressesProviderRegistry _lendingPoolAddressesProviderRegistry,
uint8 _decimals,
string memory _symbol,
string memory _name,
address _owner
) Ownable(_owner) ERC20(_name, _symbol) ReentrancyGuard()
{
require(address(_aToken) != address(0), "ATokenYieldSource/aToken-not-zero-address");
aToken = _aToken;
require(address(_incentivesController) != address(0), "ATokenYieldSource/incentivesController-not-zero-address");
incentivesController = _incentivesController;
require(address(_lendingPoolAddressesProviderRegistry) != address(0), "ATokenYieldSource/lendingPoolRegistry-not-zero-address");
lendingPoolAddressesProviderRegistry = _lendingPoolAddressesProviderRegistry;
require(_owner != address(0), "ATokenYieldSource/owner-not-zero-address");
require(_decimals > 0, "ATokenYieldSource/decimals-gt-zero");
__decimals = _decimals;
// approve once for max amount
IERC20(_tokenAddress()).safeApprove(address(_lendingPool()), type(uint256).max);
emit ATokenYieldSourceInitialized (
_aToken,
_lendingPoolAddressesProviderRegistry,
_decimals,
_name,
_symbol,
_owner
);
}
function decimals() public override view returns (uint8) {
return __decimals;
}
/// @notice Approve lending pool contract to spend max uint256 amount
/// @dev Emergency function to re-approve max amount if approval amount dropped too low
/// @return true if operation is successful
function approveMaxAmount() external onlyOwner returns (bool) {
address _lendingPoolAddress = address(_lendingPool());
IERC20 _underlyingAsset = IERC20(_tokenAddress());
uint256 _allowance = _underlyingAsset.allowance(address(this), _lendingPoolAddress);
_underlyingAsset.safeIncreaseAllowance(_lendingPoolAddress, type(uint256).max.sub(_allowance));
return true;
}
/// @notice Returns the ERC20 asset token used for deposits
/// @return The ERC20 asset token address
function depositToken() public view override returns (address) {
return _tokenAddress();
}
/// @notice Returns the underlying asset token address
/// @return Underlying asset token address
function _tokenAddress() internal view returns (address) {
return aToken.UNDERLYING_ASSET_ADDRESS();
}
/// @notice Returns user total balance (in asset tokens). This includes the deposits and interest.
/// @param addr User address
/// @return The underlying balance of asset tokens
function balanceOfToken(address addr) external override view returns (uint256) {
return _sharesToToken(balanceOf(addr));
}
/// @notice Calculates the number of shares that should be mint or burned when a user deposit or withdraw
/// @param _tokens Amount of tokens
/// @return Number of shares
function _tokenToShares(uint256 _tokens) internal view returns (uint256) {
uint256 _shares;
uint256 _totalSupply = totalSupply();
if (_totalSupply == 0) {
_shares = _tokens;
} else {
// rate = tokens / shares
// shares = tokens * (totalShares / yieldSourceTotalSupply)
uint256 _exchangeMantissa = FixedPoint.calculateMantissa(_totalSupply, aToken.balanceOf(address(this)));
_shares = FixedPoint.multiplyUintByMantissa(_tokens, _exchangeMantissa);
}
return _shares;
}
/// @notice Calculates the number of tokens a user has in the yield source
/// @param _shares Amount of shares
/// @return Number of tokens
function _sharesToToken(uint256 _shares) internal view returns (uint256) {
uint256 _tokens;
uint256 _totalSupply = totalSupply();
if (_totalSupply == 0) {
_tokens = _shares;
} else {
// tokens = (shares * yieldSourceTotalSupply) / totalShares
_tokens = _shares.mul(aToken.balanceOf(address(this))).div(_totalSupply);
}
return _tokens;
}
/// @notice Deposit asset tokens to Aave
/// @param mintAmount The amount of asset tokens to be deposited
function _depositToAave(uint256 mintAmount) internal {
address _underlyingAssetAddress = _tokenAddress();
ILendingPool __lendingPool = _lendingPool();
IERC20 _depositToken = IERC20(_underlyingAssetAddress);
_depositToken.safeTransferFrom(msg.sender, address(this), mintAmount);
__lendingPool.deposit(_underlyingAssetAddress, mintAmount, address(this), REFERRAL_CODE);
}
/// @notice Supplies asset tokens to the yield source
/// @dev Shares corresponding to the number of tokens supplied are mint to the user's balance
/// @dev Asset tokens are supplied to the yield source, then deposited into Aave
/// @param mintAmount The amount of asset tokens to be supplied
/// @param to The user whose balance will receive the tokens
function supplyTokenTo(uint256 mintAmount, address to) external override nonReentrant {
uint256 shares = _tokenToShares(mintAmount);
require(shares > 0, "ATokenYieldSource/shares-gt-zero");
_depositToAave(mintAmount);
_mint(to, shares);
emit SuppliedTokenTo(msg.sender, shares, mintAmount, to);
}
/// @notice Redeems asset tokens from the yield source
/// @dev Shares corresponding to the number of tokens withdrawn are burnt from the user's balance
/// @dev Asset tokens are withdrawn from Aave, then transferred from the yield source to the user's wallet
/// @param redeemAmount The amount of asset tokens to be redeemed
/// @return The actual amount of asset tokens that were redeemed
function redeemToken(uint256 redeemAmount) external override nonReentrant returns (uint256) {
address _underlyingAssetAddress = _tokenAddress();
IERC20 _depositToken = IERC20(_underlyingAssetAddress);
uint256 shares = _tokenToShares(redeemAmount);
_burn(msg.sender, shares);
uint256 beforeBalance = _depositToken.balanceOf(address(this));
_lendingPool().withdraw(_underlyingAssetAddress, redeemAmount, address(this));
uint256 afterBalance = _depositToken.balanceOf(address(this));
uint256 balanceDiff = afterBalance.sub(beforeBalance);
_depositToken.safeTransfer(msg.sender, balanceDiff);
emit RedeemedToken(msg.sender, shares, redeemAmount);
return balanceDiff;
}
/// @notice Transfer ERC20 tokens other than the aTokens held by this contract to the recipient address
/// @dev This function is only callable by the owner or asset manager
/// @param erc20Token The ERC20 token to transfer
/// @param to The recipient of the tokens
/// @param amount The amount of tokens to transfer
function transferERC20(IERC20 erc20Token, address to, uint256 amount) external override onlyManagerOrOwner {
require(address(erc20Token) != address(aToken), "ATokenYieldSource/aToken-transfer-not-allowed");
erc20Token.safeTransfer(to, amount);
emit TransferredERC20(msg.sender, to, amount, erc20Token);
}
/// @notice Allows someone to deposit into the yield source without receiving any shares
/// @dev This allows anyone to distribute tokens among the share holders
/// @param amount The amount of tokens to deposit
function sponsor(uint256 amount) external override nonReentrant {
_depositToAave(amount);
emit Sponsored(msg.sender, amount);
}
/// @notice Claims the accrued rewards for the aToken, accumulating any pending rewards.
/// @param to Address where the claimed rewards will be sent.
/// @return True if operation was successful.
function claimRewards(address to) external onlyManagerOrOwner returns (bool) {
require(to != address(0), "ATokenYieldSource/recipient-not-zero-address");
IAaveIncentivesController _incentivesController = incentivesController;
address[] memory _assets = new address[](1);
_assets[0] = address(aToken);
uint256 _amount = _incentivesController.getRewardsBalance(_assets, address(this));
uint256 _amountClaimed = _incentivesController.claimRewards(_assets, _amount, to);
emit Claimed(msg.sender, to, _amountClaimed);
return true;
}
/// @notice Retrieves Aave LendingPoolAddressesProvider address
/// @return A reference to LendingPoolAddressesProvider interface
function _lendingPoolProvider() internal view returns (ILendingPoolAddressesProvider) {
return ILendingPoolAddressesProvider(lendingPoolAddressesProviderRegistry.getAddressesProvidersList()[ADDRESSES_PROVIDER_ID]);
}
/// @notice Retrieves Aave LendingPool address
/// @return A reference to LendingPool interface
function _lendingPool() internal view returns (ILendingPool) {
return ILendingPool(_lendingPoolProvider().getLendingPool());
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
assembly {
size := extcodesize(account)
}
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
uint256 currentAllowance = _allowances[sender][_msgSender()];
require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
unchecked {
_approve(sender, _msgSender(), currentAllowance - amount);
}
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
uint256 currentAllowance = _allowances[_msgSender()][spender];
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(_msgSender(), spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `sender` to `recipient`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(
address sender,
address recipient,
uint256 amount
) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
uint256 senderBalance = _balances[sender];
require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[sender] = senderBalance - amount;
}
_balances[recipient] += amount;
emit Transfer(sender, recipient, amount);
_afterTokenTransfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
_balances[account] += amount;
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
}
_totalSupply -= amount;
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
/**
Copyright 2020 PoolTogether Inc.
This file is part of PoolTogether.
PoolTogether is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation under version 3 of the License.
PoolTogether is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PoolTogether. If not, see <https://www.gnu.org/licenses/>.
*/
pragma solidity >=0.4.0;
import "./external/openzeppelin/OpenZeppelinSafeMath_V3_3_0.sol";
/**
* @author Brendan Asselstine
* @notice Provides basic fixed point math calculations.
*
* This library calculates integer fractions by scaling values by 1e18 then performing standard integer math.
*/
library FixedPoint {
using OpenZeppelinSafeMath_V3_3_0 for uint256;
// The scale to use for fixed point numbers. Same as Ether for simplicity.
uint256 internal constant SCALE = 1e18;
/**
* Calculates a Fixed18 mantissa given the numerator and denominator
*
* The mantissa = (numerator * 1e18) / denominator
*
* @param numerator The mantissa numerator
* @param denominator The mantissa denominator
* @return The mantissa of the fraction
*/
function calculateMantissa(uint256 numerator, uint256 denominator) internal pure returns (uint256) {
uint256 mantissa = numerator.mul(SCALE);
mantissa = mantissa.div(denominator);
return mantissa;
}
/**
* Multiplies a Fixed18 number by an integer.
*
* @param b The whole integer to multiply
* @param mantissa The Fixed18 number
* @return An integer that is the result of multiplying the params.
*/
function multiplyUintByMantissa(uint256 b, uint256 mantissa) internal pure returns (uint256) {
uint256 result = mantissa.mul(b);
result = result.div(SCALE);
return result;
}
/**
* Divides an integer by a fixed point 18 mantissa
*
* @param dividend The integer to divide
* @param mantissa The fixed point 18 number to serve as the divisor
* @return An integer that is the result of dividing an integer by a fixed point 18 mantissa
*/
function divideUintByMantissa(uint256 dividend, uint256 mantissa) internal pure returns (uint256) {
uint256 result = SCALE.mul(dividend);
result = result.div(mantissa);
return result;
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.8.6;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IAToken is IERC20 {
/**
* @dev Emitted after the mint action
* @param from The address performing the mint
* @param value The amount being
* @param index The new liquidity index of the reserve
**/
event Mint(address indexed from, uint256 value, uint256 index);
/**
* @dev Mints `amount` aTokens to `user`
* @param user The address receiving the minted tokens
* @param amount The amount of tokens getting minted
* @param index The new liquidity index of the reserve
* @return `true` if the the previous balance of the user was 0
*/
function mint(
address user,
uint256 amount,
uint256 index
) external returns (bool);
/**
* @dev Emitted after aTokens are burned
* @param from The owner of the aTokens, getting them burned
* @param target The address that will receive the underlying
* @param value The amount being burned
* @param index The new liquidity index of the reserve
**/
event Burn(address indexed from, address indexed target, uint256 value, uint256 index);
/**
* @dev Emitted during the transfer action
* @param from The user whose tokens are being transferred
* @param to The recipient
* @param value The amount being transferred
* @param index The new liquidity index of the reserve
**/
event BalanceTransfer(address indexed from, address indexed to, uint256 value, uint256 index);
/**
* @dev Burns aTokens from `user` and sends the equivalent amount of underlying to `receiverOfUnderlying`
* @param user The owner of the aTokens, getting them burned
* @param receiverOfUnderlying The address that will receive the underlying
* @param amount The amount being burned
* @param index The new liquidity index of the reserve
**/
function burn(
address user,
address receiverOfUnderlying,
uint256 amount,
uint256 index
) external;
/**
* @dev Mints aTokens to the reserve treasury
* @param amount The amount of tokens getting minted
* @param index The new liquidity index of the reserve
*/
function mintToTreasury(uint256 amount, uint256 index) external;
/**
* @dev Transfers aTokens in the event of a borrow being liquidated, in case the liquidators reclaims the aToken
* @param from The address getting liquidated, current owner of the aTokens
* @param to The recipient
* @param value The amount of tokens getting transferred
**/
function transferOnLiquidation(
address from,
address to,
uint256 value
) external;
/**
* @dev Transfers the underlying asset to `target`. Used by the LendingPool to transfer
* assets in borrow(), withdraw() and flashLoan()
* @param user The recipient of the aTokens
* @param amount The amount getting transferred
* @return The amount transferred
**/
function transferUnderlyingTo(address user, uint256 amount) external returns (uint256);
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.8.6;
pragma experimental ABIEncoderV2;
interface IAaveIncentivesController {
event RewardsAccrued(address indexed user, uint256 amount);
event RewardsClaimed(address indexed user, address indexed to, uint256 amount);
// Commented out to avoid displaying warnings about duplicate definition
// event RewardsClaimed(
// address indexed user,
// address indexed to,
// address indexed claimer,
// uint256 amount
// );
event ClaimerSet(address indexed user, address indexed claimer);
/*
* @dev Returns the configuration of the distribution for a certain asset
* @param asset The address of the reference asset of the distribution
* @return The asset index, the emission per second and the last updated timestamp
**/
function getAssetData(address asset)
external
view
returns (
uint256,
uint256,
uint256
);
/**
* @dev Whitelists an address to claim the rewards on behalf of another address
* @param user The address of the user
* @param claimer The address of the claimer
*/
function setClaimer(address user, address claimer) external;
/**
* @dev Returns the whitelisted claimer for a certain address (0x0 if not set)
* @param user The address of the user
* @return The claimer address
*/
function getClaimer(address user) external view returns (address);
/**
* @dev Configure assets for a certain rewards emission
* @param assets The assets to incentivize
* @param emissionsPerSecond The emission for each asset
*/
function configureAssets(address[] calldata assets, uint256[] calldata emissionsPerSecond)
external;
/**
* @dev Called by the corresponding asset on any update that affects the rewards distribution
* @param asset The address of the user
* @param userBalance The balance of the user of the asset in the lending pool
* @param totalSupply The total supply of the asset in the lending pool
**/
function handleAction(
address asset,
uint256 userBalance,
uint256 totalSupply
) external;
/**
* @dev Returns the total of rewards of an user, already accrued + not yet accrued
* @param user The address of the user
* @return The rewards
**/
function getRewardsBalance(address[] calldata assets, address user)
external
view
returns (uint256);
/**
* @dev Claims reward for an user, on all the assets of the lending pool, accumulating the pending rewards
* @param amount Amount of rewards to claim
* @param to Address that will be receiving the rewards
* @return Rewards claimed
**/
function claimRewards(
address[] calldata assets,
uint256 amount,
address to
) external returns (uint256);
/**
* @dev Claims reward for an user on behalf, on all the assets of the lending pool, accumulating the pending rewards. The caller must
* be whitelisted via "allowClaimOnBehalf" function by the RewardsAdmin role manager
* @param amount Amount of rewards to claim
* @param user Address to check and claim rewards
* @param to Address that will be receiving the rewards
* @return Rewards claimed
**/
function claimRewardsOnBehalf(
address[] calldata assets,
uint256 amount,
address user,
address to
) external returns (uint256);
/**
* @dev returns the unclaimed rewards of the user
* @param user the address of the user
* @return the unclaimed user rewards
*/
function getUserUnclaimedRewards(address user) external view returns (uint256);
/**
* @dev returns the unclaimed rewards of the user
* @param user the address of the user
* @param asset The asset to incentivize
* @return the user index for the asset
*/
function getUserAssetData(address user, address asset) external view returns (uint256);
/**
* @dev for backward compatibility with previous implementation of the Incentives controller
*/
function REWARD_TOKEN() external view returns (address);
/**
* @dev for backward compatibility with previous implementation of the Incentives controller
*/
function PRECISION() external view returns (uint8);
/**
* @dev Gets the distribution end timestamp of the emissions
*/
function DISTRIBUTION_END() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.8.6;
interface ILendingPool {
/**
* @dev Deposits an `amount` of underlying asset into the reserve, receiving in return overlying aTokens.
* - E.g. User deposits 100 USDC and gets in return 100 aUSDC
* @param asset The address of the underlying asset to deposit
* @param amount The amount to be deposited
* @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user
* wants to receive them on his own wallet, or a different address if the beneficiary of aTokens
* is a different wallet
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
**/
function deposit(
address asset,
uint256 amount,
address onBehalfOf,
uint16 referralCode
) external;
/**
* @dev Withdraws an `amount` of underlying asset from the reserve, burning the equivalent aTokens owned
* E.g. User has 100 aUSDC, calls withdraw() and receives 100 USDC, burning the 100 aUSDC
* @param asset The address of the underlying asset to withdraw
* @param amount The underlying amount to be withdrawn
* - Send the value type(uint256).max in order to withdraw the whole aToken balance
* @param to Address that will receive the underlying, same as msg.sender if the user
* wants to receive it on his own wallet, or a different address if the beneficiary is a
* different wallet
* @return The final amount withdrawn
**/
function withdraw(
address asset,
uint256 amount,
address to
) external returns (uint256);
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.8.6;
/**
* @title LendingPoolAddressesProvider contract
* @dev Main registry of addresses part of or connected to the protocol, including permissioned roles
* - Acting also as factory of proxies and admin of those, so with right to change its implementations
* - Owned by the Aave Governance
* @author Aave
**/
interface ILendingPoolAddressesProvider {
event MarketIdSet(string newMarketId);
event LendingPoolUpdated(address indexed newAddress);
event ConfigurationAdminUpdated(address indexed newAddress);
event EmergencyAdminUpdated(address indexed newAddress);
event LendingPoolConfiguratorUpdated(address indexed newAddress);
event LendingPoolCollateralManagerUpdated(address indexed newAddress);
event PriceOracleUpdated(address indexed newAddress);
event LendingRateOracleUpdated(address indexed newAddress);
event ProxyCreated(bytes32 id, address indexed newAddress);
event AddressSet(bytes32 id, address indexed newAddress, bool hasProxy);
function getMarketId() external view returns (string memory);
function setMarketId(string calldata marketId) external;
function setAddress(bytes32 id, address newAddress) external;
function setAddressAsProxy(bytes32 id, address impl) external;
function getAddress(bytes32 id) external view returns (address);
function getLendingPool() external view returns (address);
function setLendingPoolImpl(address pool) external;
function getLendingPoolConfigurator() external view returns (address);
function setLendingPoolConfiguratorImpl(address configurator) external;
function getLendingPoolCollateralManager() external view returns (address);
function setLendingPoolCollateralManager(address manager) external;
function getPoolAdmin() external view returns (address);
function setPoolAdmin(address admin) external;
function getEmergencyAdmin() external view returns (address);
function setEmergencyAdmin(address admin) external;
function getPriceOracle() external view returns (address);
function setPriceOracle(address priceOracle) external;
function getLendingRateOracle() external view returns (address);
function setLendingRateOracle(address lendingRateOracle) external;
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.8.6;
/**
* @title LendingPoolAddressesProviderRegistry contract
* @dev Main registry of LendingPoolAddressesProvider of multiple Aave protocol's markets
* - Used for indexing purposes of Aave protocol's markets
* - The id assigned to a LendingPoolAddressesProvider refers to the market it is connected with,
* for example with `0` for the Aave main market and `1` for the next created
* @author Aave
**/
interface ILendingPoolAddressesProviderRegistry {
event AddressesProviderRegistered(address indexed newAddress);
event AddressesProviderUnregistered(address indexed newAddress);
function getAddressesProvidersList() external view returns (address[] memory);
function getAddressesProviderIdByAddress(address addressesProvider)
external
view
returns (uint256);
function registerAddressesProvider(address provider, uint256 id) external;
function unregisterAddressesProvider(address provider) external;
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.6;
import "@pooltogether/yield-source-interface/contracts/IYieldSource.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/// @title The interface used for all Yield Sources for the PoolTogether protocol
/// @dev There are two privileged roles: the owner and the asset manager. The owner can configure the asset managers.
interface IProtocolYieldSource is IYieldSource {
/// @notice Allows the owner to transfer ERC20 tokens held by this contract to the target address.
/// @dev This function is callable by the owner or asset manager.
/// This function should not be able to transfer any tokens that represent user deposits.
/// @param token The ERC20 token to transfer
/// @param to The recipient of the tokens
/// @param amount The amount of tokens to transfer
function transferERC20(IERC20 token, address to, uint256 amount) external;
/// @notice Allows someone to deposit into the yield source without receiving any shares. The deposited token will be the same as token()
/// This allows anyone to distribute tokens among the share holders.
function sponsor(uint256 amount) external;
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0;
/// @title Defines the functions used to interact with a yield source. The Prize Pool inherits this contract.
/// @notice Prize Pools subclasses need to implement this interface so that yield can be generated.
interface IYieldSource {
/// @notice Returns the ERC20 asset token used for deposits.
/// @return The ERC20 asset token address.
function depositToken() external view returns (address);
/// @notice Returns the total balance (in asset tokens). This includes the deposits and interest.
/// @return The underlying balance of asset tokens.
function balanceOfToken(address addr) external returns (uint256);
/// @notice Supplies tokens to the yield source. Allows assets to be supplied on other user's behalf using the `to` param.
/// @param amount The amount of asset tokens to be supplied. Denominated in `depositToken()` as above.
/// @param to The user whose balance will receive the tokens
function supplyTokenTo(uint256 amount, address to) external;
/// @notice Redeems tokens from the yield source.
/// @param amount The amount of asset tokens to withdraw. Denominated in `depositToken()` as above.
/// @return The actual amount of interst bearing tokens that were redeemed.
function redeemToken(uint256 amount) external returns (uint256);
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.0;
import "./Ownable.sol";
/**
* @title Abstract manageable contract that can be inherited by other contracts
* @notice Contract module based on Ownable which provides a basic access control mechanism, where
* there is an owner and a manager that can be granted exclusive access to specific functions.
*
* By default, the owner is the deployer of the contract.
*
* The owner account is set through a two steps process.
* 1. The current `owner` calls {transferOwnership} to set a `pendingOwner`
* 2. The `pendingOwner` calls {acceptOwnership} to accept the ownership transfer
*
* The manager account needs to be set using {setManager}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyManager`, which can be applied to your functions to restrict their use to
* the manager.
*/
abstract contract Manageable is Ownable {
address private _manager;
/**
* @dev Emitted when `_manager` has been changed.
* @param previousManager previous `_manager` address.
* @param newManager new `_manager` address.
*/
event ManagerTransferred(address indexed previousManager, address indexed newManager);
/* ============ External Functions ============ */
/**
* @notice Gets current `_manager`.
* @return Current `_manager` address.
*/
function manager() public view virtual returns (address) {
return _manager;
}
/**
* @notice Set or change of manager.
* @dev Throws if called by any account other than the owner.
* @param _newManager New _manager address.
* @return Boolean to indicate if the operation was successful or not.
*/
function setManager(address _newManager) external onlyOwner returns (bool) {
return _setManager(_newManager);
}
/* ============ Internal Functions ============ */
/**
* @notice Set or change of manager.
* @param _newManager New _manager address.
* @return Boolean to indicate if the operation was successful or not.
*/
function _setManager(address _newManager) private returns (bool) {
address _previousManager = _manager;
require(_newManager != _previousManager, "Manageable/existing-manager-address");
_manager = _newManager;
emit ManagerTransferred(_previousManager, _newManager);
return true;
}
/* ============ Modifier Functions ============ */
/**
* @dev Throws if called by any account other than the manager.
*/
modifier onlyManager() {
require(manager() == msg.sender, "Manageable/caller-not-manager");
_;
}
/**
* @dev Throws if called by any account other than the manager or the owner.
*/
modifier onlyManagerOrOwner() {
require(manager() == msg.sender || owner() == msg.sender, "Manageable/caller-not-manager-or-owner");
_;
}
}
// SPDX-License-Identifier: MIT
// NOTE: Copied from OpenZeppelin Contracts version 3.3.0
pragma solidity >=0.4.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library OpenZeppelinSafeMath_V3_3_0 {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.0;
/**
* @title Abstract ownable contract that can be inherited by other contracts
* @notice Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner is the deployer of the contract.
*
* The owner account is set through a two steps process.
* 1. The current `owner` calls {transferOwnership} to set a `pendingOwner`
* 2. The `pendingOwner` calls {acceptOwnership} to accept the ownership transfer
*
* The manager account needs to be set using {setManager}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable {
address private _owner;
address private _pendingOwner;
/**
* @dev Emitted when `_pendingOwner` has been changed.
* @param pendingOwner new `_pendingOwner` address.
*/
event OwnershipOffered(address indexed pendingOwner);
/**
* @dev Emitted when `_owner` has been changed.
* @param previousOwner previous `_owner` address.
* @param newOwner new `_owner` address.
*/
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/* ============ Deploy ============ */
/**
* @notice Initializes the contract setting `_initialOwner` as the initial owner.
* @param _initialOwner Initial owner of the contract.
*/
constructor(address _initialOwner) {
_setOwner(_initialOwner);
}
/* ============ External Functions ============ */
/**
* @notice Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @notice Gets current `_pendingOwner`.
* @return Current `_pendingOwner` address.
*/
function pendingOwner() external view virtual returns (address) {
return _pendingOwner;
}
/**
* @notice Renounce ownership of the contract.
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() external virtual onlyOwner {
_setOwner(address(0));
}
/**
* @notice Allows current owner to set the `_pendingOwner` address.
* @param _newOwner Address to transfer ownership to.
*/
function transferOwnership(address _newOwner) external onlyOwner {
require(_newOwner != address(0), "Ownable/pendingOwner-not-zero-address");
_pendingOwner = _newOwner;
emit OwnershipOffered(_newOwner);
}
/**
* @notice Allows the `_pendingOwner` address to finalize the transfer.
* @dev This function is only callable by the `_pendingOwner`.
*/
function claimOwnership() external onlyPendingOwner {
_setOwner(_pendingOwner);
_pendingOwner = address(0);
}
/* ============ Internal Functions ============ */
/**
* @notice Internal function to set the `_owner` of the contract.
* @param _newOwner New `_owner` address.
*/
function _setOwner(address _newOwner) private {
address _oldOwner = _owner;
_owner = _newOwner;
emit OwnershipTransferred(_oldOwner, _newOwner);
}
/* ============ Modifier Functions ============ */
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == msg.sender, "Ownable/caller-not-owner");
_;
}
/**
* @dev Throws if called by any account other than the `pendingOwner`.
*/
modifier onlyPendingOwner() {
require(msg.sender == _pendingOwner, "Ownable/caller-not-pendingOwner");
_;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is no longer needed starting with Solidity 0.8. The compiler
* now has built in overflow checking.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
{
"compilationTarget": {
"@pooltogether/aave-yield-source/contracts/yield-source/ATokenYieldSource.sol": "ATokenYieldSource"
},
"evmVersion": "berlin",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 2000
},
"remappings": []
}
[{"inputs":[{"internalType":"contract ATokenInterface","name":"_aToken","type":"address"},{"internalType":"contract IAaveIncentivesController","name":"_incentivesController","type":"address"},{"internalType":"contract ILendingPoolAddressesProviderRegistry","name":"_lendingPoolAddressesProviderRegistry","type":"address"},{"internalType":"uint8","name":"_decimals","type":"uint8"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"string","name":"_name","type":"string"},{"internalType":"address","name":"_owner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IAToken","name":"aToken","type":"address"},{"indexed":false,"internalType":"contract ILendingPoolAddressesProviderRegistry","name":"lendingPoolAddressesProviderRegistry","type":"address"},{"indexed":false,"internalType":"uint8","name":"decimals","type":"uint8"},{"indexed":false,"internalType":"string","name":"name","type":"string"},{"indexed":false,"internalType":"string","name":"symbol","type":"string"},{"indexed":false,"internalType":"address","name":"owner","type":"address"}],"name":"ATokenYieldSourceInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousManager","type":"address"},{"indexed":true,"internalType":"address","name":"newManager","type":"address"}],"name":"ManagerTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipOffered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"RedeemedToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Sponsored","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"SuppliedTokenTo","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"}],"name":"TransferredERC20","type":"event"},{"inputs":[],"name":"aToken","outputs":[{"internalType":"contract ATokenInterface","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"approveMaxAmount","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"balanceOfToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"claimRewards","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"depositToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"incentivesController","outputs":[{"internalType":"contract IAaveIncentivesController","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lendingPoolAddressesProviderRegistry","outputs":[{"internalType":"contract ILendingPoolAddressesProviderRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"manager","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"redeemAmount","type":"uint256"}],"name":"redeemToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newManager","type":"address"}],"name":"setManager","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"sponsor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"mintAmount","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"supplyTokenTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"erc20Token","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]