// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.8.25;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
import { MerkleProof } from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
/**
* @title Dropper
* @author PartyDAO
* @notice Dropper contract for creating merkle tree based airdrops. Note: this contract is compatible only with ERC20
* compliant tokens (no fee on transfer or rebasing tokens).
*/
contract Dropper {
using SafeERC20 for IERC20;
event DropCreated(
uint256 indexed dropId,
bytes32 merkleRoot,
uint256 totalTokens,
address indexed tokenAddress,
uint40 startTimestamp,
uint40 expirationTimestamp,
address expirationRecipient,
string merkleTreeURI,
string dropDescription
);
event DropClaimed(uint256 indexed dropId, address indexed recipient, address indexed tokenAddress, uint256 amount);
event DropRefunded(uint256 indexed dropId, address indexed recipient, address indexed tokenAddress, uint256 amount);
struct DropData {
// Merkle root for the token drop
bytes32 merkleRoot;
// Total number of tokens to be dropped
uint256 totalTokens;
// Number of tokens claimed so far
uint256 claimedTokens;
// Address of the token to be dropped
address tokenAddress;
// Timestamp at which the drop will become live
uint40 startTimestamp;
// Timestamp at which the drop will expire
uint40 expirationTimestamp;
// Address to which the remaining tokens will be refunded after expiration
address expirationRecipient;
}
struct PermitArgs {
uint256 amount;
uint256 deadline;
uint8 v;
bytes32 r;
bytes32 s;
}
error InsufficientPermitAmount();
error MerkleRootNotSet();
error TotalTokenIsZero();
error TokenAddressIsZero();
error ExpirationTimestampInPast();
error EndBeforeStart();
error DropStillLive();
error AllTokensClaimed();
error DropNotLive();
error DropAlreadyClaimed();
error InsufficientTokensRemaining();
error InvalidMerkleProof();
error ArityMismatch();
error InvalidDropId();
error ExpirationRecipientIsZero();
mapping(uint256 => DropData) public drops;
mapping(uint256 => mapping(address => bool)) public hasClaimed;
/// @notice The number of drops created on this contract
uint256 public numDrops;
/**
* @notice Permits the token and creates a new drop with the given parameters
* @param permitArgs The permit arguments to be passed to the token's permit function
* @param merkleRoot The merkle root of the merkle tree for the drop
* @param totalTokens The total number of tokens to be dropped
* @param tokenAddress The address of the ERC20 token to be dropped. Note: token may not have fee on transfer or
* rebasing
* @param startTimestamp The timestamp at which the drop will become live
* @param expirationTimestamp The timestamp at which the drop will expire
* @param expirationRecipient The address to which the remaining tokens will be refunded after expiration
* @param merkleTreeURI The URI of the full merkle tree for the drop
* @param dropDescription A description of the drop emitted at creation
* @return dropId The ID of the newly created drop
*/
function permitAndCreateDrop(
PermitArgs calldata permitArgs,
bytes32 merkleRoot,
uint256 totalTokens,
address tokenAddress,
uint40 startTimestamp,
uint40 expirationTimestamp,
address expirationRecipient,
string calldata merkleTreeURI,
string calldata dropDescription
)
external
returns (uint256)
{
// Revert if insufficient approval will be given by permit
if (permitArgs.amount < totalTokens) revert InsufficientPermitAmount();
_callPermit(tokenAddress, permitArgs);
return createDrop(
merkleRoot,
totalTokens,
tokenAddress,
startTimestamp,
expirationTimestamp,
expirationRecipient,
merkleTreeURI,
dropDescription
);
}
/**
* @notice Create a new drop with the given parameters
* @param merkleRoot The merkle root of the merkle tree for the drop
* @param totalTokens The total number of tokens to be dropped
* @param tokenAddress The address of the ERC20 token to be dropped. Note: token may not have fee on transfer or
* rebasing
* @param startTimestamp The timestamp at which the drop will become live
* @param expirationTimestamp The timestamp at which the drop will expire
* @param expirationRecipient The address to which the remaining tokens will be refunded after expiration
* @param merkleTreeURI The URI of the full merkle tree for the drop
* @param dropDescription A description of the drop emitted at creation
* @return dropId The ID of the newly created drop
*/
function createDrop(
bytes32 merkleRoot,
uint256 totalTokens,
address tokenAddress,
uint40 startTimestamp,
uint40 expirationTimestamp,
address expirationRecipient,
string calldata merkleTreeURI,
string calldata dropDescription
)
public
returns (uint256 dropId)
{
if (merkleRoot == bytes32(0)) revert MerkleRootNotSet();
if (totalTokens == 0) revert TotalTokenIsZero();
if (tokenAddress == address(0)) revert TokenAddressIsZero();
if (expirationTimestamp <= block.timestamp) revert ExpirationTimestampInPast();
if (expirationTimestamp <= startTimestamp) revert EndBeforeStart();
if (expirationRecipient == address(0)) revert ExpirationRecipientIsZero();
IERC20(tokenAddress).safeTransferFrom(msg.sender, address(this), totalTokens);
dropId = ++numDrops;
drops[dropId] = DropData({
merkleRoot: merkleRoot,
totalTokens: totalTokens,
claimedTokens: 0,
tokenAddress: tokenAddress,
startTimestamp: startTimestamp,
expirationTimestamp: expirationTimestamp,
expirationRecipient: expirationRecipient
});
emit DropCreated(
dropId,
merkleRoot,
totalTokens,
tokenAddress,
startTimestamp,
expirationTimestamp,
expirationRecipient,
merkleTreeURI,
dropDescription
);
}
/**
* @notice Refund the remaining tokens to the expiration recipient after the expiration timestamp
* @param dropId The drop ID of the drop to refund
*/
function refundToRecipient(uint256 dropId) external {
if (dropId > numDrops || dropId == 0) revert InvalidDropId();
DropData storage drop = drops[dropId];
if (drop.expirationTimestamp > block.timestamp) revert DropStillLive();
if (drop.totalTokens == drop.claimedTokens) revert AllTokensClaimed();
address expirationRecipient = drop.expirationRecipient;
uint256 tokensToRefund = drop.totalTokens - drop.claimedTokens;
drop.claimedTokens = drop.totalTokens;
address tokenAddress = drop.tokenAddress;
IERC20(tokenAddress).safeTransfer(expirationRecipient, tokensToRefund);
emit DropRefunded(dropId, expirationRecipient, tokenAddress, tokensToRefund);
}
/**
* @notice Claim tokens from a drop for `msg.sender`
* @param dropId The drop ID to claim
* @param amount The amount of tokens to claim
* @param merkleProof The merkle inclusion proof
*/
function claim(uint256 dropId, uint256 amount, bytes32[] calldata merkleProof) public {
if (dropId > numDrops || dropId == 0) revert InvalidDropId();
DropData storage drop = drops[dropId];
if (drop.expirationTimestamp <= block.timestamp || block.timestamp < drop.startTimestamp) revert DropNotLive();
if (hasClaimed[dropId][msg.sender]) revert DropAlreadyClaimed();
if (drop.claimedTokens + amount > drop.totalTokens) revert InsufficientTokensRemaining();
bytes32 leaf = keccak256(abi.encodePacked(msg.sender, amount));
if (!MerkleProof.verifyCalldata(merkleProof, drop.merkleRoot, leaf)) revert InvalidMerkleProof();
hasClaimed[dropId][msg.sender] = true;
drop.claimedTokens += amount;
address tokenAddress = drop.tokenAddress;
IERC20(tokenAddress).safeTransfer(msg.sender, amount);
emit DropClaimed(dropId, msg.sender, tokenAddress, amount);
}
/**
* @notice Claim multiple drops for `msg.sender`
* @param dropIds The drop IDs to claim
* @param amounts The amounts of tokens to claim
* @param merkleProofs The merkle inclusion proofs
*/
function batchClaim(
uint256[] calldata dropIds,
uint256[] calldata amounts,
bytes32[][] calldata merkleProofs
)
external
{
if (dropIds.length != amounts.length || dropIds.length != merkleProofs.length) revert ArityMismatch();
for (uint256 i = 0; i < dropIds.length; i++) {
claim(dropIds[i], amounts[i], merkleProofs[i]);
}
}
/**
* @dev Calls permit function on the token contract
*/
function _callPermit(address tokenAddress, PermitArgs calldata permitArgs) internal {
// We do not revert if the permit fails as the permit operation is callable by anyone
try IERC20Permit(tokenAddress).permit(
msg.sender, address(this), permitArgs.amount, permitArgs.deadline, permitArgs.v, permitArgs.r, permitArgs.s
) { } catch { }
}
/**
* @dev Returns the version of the contract. Decimal versions indicate change in logic. Number change indicates
* change in ABI.
*/
function VERSION() external pure returns (string memory) {
return "1.0.0";
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.20;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Sorts the pair (a, b) and hashes the result.
*/
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
{
"compilationTarget": {
"src/Dropper.sol": "Dropper"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "none"
},
"optimizer": {
"enabled": true,
"runs": 10000
},
"remappings": [
":@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
":@prb/test/=lib/prb-test/",
":ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
":forge-std/=lib/forge-std/",
":murky/=lib/murky/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
":prb-test/=lib/prb-test/src/"
]
}
[{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"AllTokensClaimed","type":"error"},{"inputs":[],"name":"ArityMismatch","type":"error"},{"inputs":[],"name":"DropAlreadyClaimed","type":"error"},{"inputs":[],"name":"DropNotLive","type":"error"},{"inputs":[],"name":"DropStillLive","type":"error"},{"inputs":[],"name":"EndBeforeStart","type":"error"},{"inputs":[],"name":"ExpirationRecipientIsZero","type":"error"},{"inputs":[],"name":"ExpirationTimestampInPast","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"InsufficientPermitAmount","type":"error"},{"inputs":[],"name":"InsufficientTokensRemaining","type":"error"},{"inputs":[],"name":"InvalidDropId","type":"error"},{"inputs":[],"name":"InvalidMerkleProof","type":"error"},{"inputs":[],"name":"MerkleRootNotSet","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"TokenAddressIsZero","type":"error"},{"inputs":[],"name":"TotalTokenIsZero","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"dropId","type":"uint256"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"address","name":"tokenAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"DropClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"dropId","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"totalTokens","type":"uint256"},{"indexed":true,"internalType":"address","name":"tokenAddress","type":"address"},{"indexed":false,"internalType":"uint40","name":"startTimestamp","type":"uint40"},{"indexed":false,"internalType":"uint40","name":"expirationTimestamp","type":"uint40"},{"indexed":false,"internalType":"address","name":"expirationRecipient","type":"address"},{"indexed":false,"internalType":"string","name":"merkleTreeURI","type":"string"},{"indexed":false,"internalType":"string","name":"dropDescription","type":"string"}],"name":"DropCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"dropId","type":"uint256"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"address","name":"tokenAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"DropRefunded","type":"event"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"dropIds","type":"uint256[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"bytes32[][]","name":"merkleProofs","type":"bytes32[][]"}],"name":"batchClaim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"dropId","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"totalTokens","type":"uint256"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint40","name":"startTimestamp","type":"uint40"},{"internalType":"uint40","name":"expirationTimestamp","type":"uint40"},{"internalType":"address","name":"expirationRecipient","type":"address"},{"internalType":"string","name":"merkleTreeURI","type":"string"},{"internalType":"string","name":"dropDescription","type":"string"}],"name":"createDrop","outputs":[{"internalType":"uint256","name":"dropId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"drops","outputs":[{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"totalTokens","type":"uint256"},{"internalType":"uint256","name":"claimedTokens","type":"uint256"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint40","name":"startTimestamp","type":"uint40"},{"internalType":"uint40","name":"expirationTimestamp","type":"uint40"},{"internalType":"address","name":"expirationRecipient","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"hasClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"numDrops","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct Dropper.PermitArgs","name":"permitArgs","type":"tuple"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"totalTokens","type":"uint256"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint40","name":"startTimestamp","type":"uint40"},{"internalType":"uint40","name":"expirationTimestamp","type":"uint40"},{"internalType":"address","name":"expirationRecipient","type":"address"},{"internalType":"string","name":"merkleTreeURI","type":"string"},{"internalType":"string","name":"dropDescription","type":"string"}],"name":"permitAndCreateDrop","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"dropId","type":"uint256"}],"name":"refundToRecipient","outputs":[],"stateMutability":"nonpayable","type":"function"}]