// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.18;
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { EMPTY_UID, EIP712Signature } from "./Types.sol";
// prettier-ignore
import {
Attestation,
AttestationRequest,
AttestationRequestData,
DelegatedAttestationRequest,
DelegatedRevocationRequest,
IEAS,
MultiAttestationRequest,
MultiDelegatedAttestationRequest,
MultiDelegatedRevocationRequest,
MultiRevocationRequest,
RevocationRequest,
RevocationRequestData
} from "./IEAS.sol";
import { ISchemaRegistry, SchemaRecord } from "./ISchemaRegistry.sol";
import { EIP712Verifier } from "./EIP712Verifier.sol";
import { ISchemaResolver } from "./resolver/ISchemaResolver.sol";
struct AttestationsResult {
uint256 usedValue; // Total ETH amount that was sent to resolvers.
bytes32[] uids; // UIDs of the new attestations.
}
/**
* @title EAS - Ethereum Attestation Service
*/
contract EAS is IEAS, EIP712Verifier {
using Address for address payable;
error AccessDenied();
error AlreadyRevoked();
error AlreadyRevokedOffchain();
error AlreadyTimestamped();
error InsufficientValue();
error InvalidAttestation();
error InvalidAttestations();
error InvalidExpirationTime();
error InvalidLength();
error InvalidOffset();
error InvalidRegistry();
error InvalidRevocation();
error InvalidRevocations();
error InvalidSchema();
error InvalidVerifier();
error Irrevocable();
error NotFound();
error NotPayable();
error WrongSchema();
// The version of the contract.
string public constant VERSION = "0.26";
// A zero expiration represents an non-expiring attestation.
uint64 private constant NO_EXPIRATION_TIME = 0;
// The global schema registry.
ISchemaRegistry private immutable _schemaRegistry;
// The global mapping between attestations and their UIDs.
mapping(bytes32 uid => Attestation attestation) private _db;
// The global mapping between data and their timestamps.
mapping(bytes32 data => uint64 timestamp) private _timestamps;
// The global mapping between data and their revocation timestamps.
mapping(address revoker => mapping(bytes32 data => uint64 timestamp)) private _revocationsOffchain;
/**
* @dev Creates a new EAS instance.
*
* @param registry The address of the global schema registry.
*/
constructor(ISchemaRegistry registry) EIP712Verifier(VERSION) {
if (address(registry) == address(0)) {
revert InvalidRegistry();
}
_schemaRegistry = registry;
}
/**
* @inheritdoc IEAS
*/
function getSchemaRegistry() external view returns (ISchemaRegistry) {
return _schemaRegistry;
}
/**
* @inheritdoc IEAS
*/
function attest(AttestationRequest calldata request) public payable virtual returns (bytes32) {
AttestationRequestData[] memory requests = new AttestationRequestData[](1);
requests[0] = request.data;
return _attest(request.schema, requests, msg.sender, msg.value, true).uids[0];
}
/**
* @inheritdoc IEAS
*/
function attestByDelegation(
DelegatedAttestationRequest calldata delegatedRequest
) public payable virtual returns (bytes32) {
_verifyAttest(delegatedRequest);
AttestationRequestData[] memory data = new AttestationRequestData[](1);
data[0] = delegatedRequest.data;
return _attest(delegatedRequest.schema, data, delegatedRequest.attester, msg.value, true).uids[0];
}
/**
* @inheritdoc IEAS
*/
function multiAttest(MultiAttestationRequest[] calldata multiRequests) external payable returns (bytes32[] memory) {
// Since a multi-attest call is going to make multiple attestations for multiple schemas, we'd need to collect
// all the returned UIDs into a single list.
bytes32[][] memory totalUids = new bytes32[][](multiRequests.length);
uint256 totalUidsCount = 0;
// We are keeping track of the total available ETH amount that can be sent to resolvers and will keep deducting
// from it to verify that there isn't any attempt to send too much ETH to resolvers. Please note that unless
// some ETH was stuck in the contract by accident (which shouldn't happen in normal conditions), it won't be
// possible to send too much ETH anyway.
uint availableValue = msg.value;
for (uint256 i = 0; i < multiRequests.length; ) {
// The last batch is handled slightly differently: if the total available ETH wasn't spent in full and there
// is a remainder - it will be refunded back to the attester (something that we can only verify during the
// last and final batch).
bool last;
unchecked {
last = i == multiRequests.length - 1;
}
// Process the current batch of attestations.
MultiAttestationRequest calldata multiRequest = multiRequests[i];
AttestationsResult memory res = _attest(
multiRequest.schema,
multiRequest.data,
msg.sender,
availableValue,
last
);
// Ensure to deduct the ETH that was forwarded to the resolver during the processing of this batch.
availableValue -= res.usedValue;
// Collect UIDs (and merge them later).
totalUids[i] = res.uids;
unchecked {
totalUidsCount += res.uids.length;
}
unchecked {
++i;
}
}
// Merge all the collected UIDs and return them as a flatten array.
return _mergeUIDs(totalUids, totalUidsCount);
}
/**
* @inheritdoc IEAS
*/
function multiAttestByDelegation(
MultiDelegatedAttestationRequest[] calldata multiDelegatedRequests
) external payable returns (bytes32[] memory) {
// Since a multi-attest call is going to make multiple attestations for multiple schemas, we'd need to collect
// all the returned UIDs into a single list.
bytes32[][] memory totalUids = new bytes32[][](multiDelegatedRequests.length);
uint256 totalUidsCount = 0;
// We are keeping track of the total available ETH amount that can be sent to resolvers and will keep deducting
// from it to verify that there isn't any attempt to send too much ETH to resolvers. Please note that unless
// some ETH was stuck in the contract by accident (which shouldn't happen in normal conditions), it won't be
// possible to send too much ETH anyway.
uint availableValue = msg.value;
for (uint256 i = 0; i < multiDelegatedRequests.length; ) {
// The last batch is handled slightly differently: if the total available ETH wasn't spent in full and there
// is a remainder - it will be refunded back to the attester (something that we can only verify during the
// last and final batch).
bool last;
unchecked {
last = i == multiDelegatedRequests.length - 1;
}
MultiDelegatedAttestationRequest calldata multiDelegatedRequest = multiDelegatedRequests[i];
AttestationRequestData[] calldata data = multiDelegatedRequest.data;
// Ensure that no inputs are missing.
if (data.length == 0 || data.length != multiDelegatedRequest.signatures.length) {
revert InvalidLength();
}
// Verify EIP712 signatures. Please note that the signatures are assumed to be signed with increasing nonces.
for (uint256 j = 0; j < data.length; ) {
_verifyAttest(
DelegatedAttestationRequest({
schema: multiDelegatedRequest.schema,
data: data[j],
signature: multiDelegatedRequest.signatures[j],
attester: multiDelegatedRequest.attester
})
);
unchecked {
++j;
}
}
// Process the current batch of attestations.
AttestationsResult memory res = _attest(
multiDelegatedRequest.schema,
data,
multiDelegatedRequest.attester,
availableValue,
last
);
// Ensure to deduct the ETH that was forwarded to the resolver during the processing of this batch.
availableValue -= res.usedValue;
// Collect UIDs (and merge them later).
totalUids[i] = res.uids;
unchecked {
totalUidsCount += res.uids.length;
}
unchecked {
++i;
}
}
// Merge all the collected UIDs and return them as a flatten array.
return _mergeUIDs(totalUids, totalUidsCount);
}
/**
* @inheritdoc IEAS
*/
function revoke(RevocationRequest calldata request) public payable virtual {
RevocationRequestData[] memory requests = new RevocationRequestData[](1);
requests[0] = request.data;
_revoke(request.schema, requests, msg.sender, msg.value, true);
}
/**
* @inheritdoc IEAS
*/
function revokeByDelegation(DelegatedRevocationRequest calldata delegatedRequest) public payable virtual {
_verifyRevoke(delegatedRequest);
RevocationRequestData[] memory data = new RevocationRequestData[](1);
data[0] = delegatedRequest.data;
_revoke(delegatedRequest.schema, data, delegatedRequest.revoker, msg.value, true);
}
/**
* @inheritdoc IEAS
*/
function multiRevoke(MultiRevocationRequest[] calldata multiRequests) external payable {
// We are keeping track of the total available ETH amount that can be sent to resolvers and will keep deducting
// from it to verify that there isn't any attempt to send too much ETH to resolvers. Please note that unless
// some ETH was stuck in the contract by accident (which shouldn't happen in normal conditions), it won't be
// possible to send too much ETH anyway.
uint availableValue = msg.value;
for (uint256 i = 0; i < multiRequests.length; ) {
// The last batch is handled slightly differently: if the total available ETH wasn't spent in full and there
// is a remainder - it will be refunded back to the attester (something that we can only verify during the
// last and final batch).
bool last;
unchecked {
last = i == multiRequests.length - 1;
}
MultiRevocationRequest calldata multiRequest = multiRequests[i];
// Ensure to deduct the ETH that was forwarded to the resolver during the processing of this batch.
availableValue -= _revoke(multiRequest.schema, multiRequest.data, msg.sender, availableValue, last);
unchecked {
++i;
}
}
}
/**
* @inheritdoc IEAS
*/
function multiRevokeByDelegation(
MultiDelegatedRevocationRequest[] calldata multiDelegatedRequests
) external payable {
// We are keeping track of the total available ETH amount that can be sent to resolvers and will keep deducting
// from it to verify that there isn't any attempt to send too much ETH to resolvers. Please note that unless
// some ETH was stuck in the contract by accident (which shouldn't happen in normal conditions), it won't be
// possible to send too much ETH anyway.
uint availableValue = msg.value;
for (uint256 i = 0; i < multiDelegatedRequests.length; ) {
// The last batch is handled slightly differently: if the total available ETH wasn't spent in full and there
// is a remainder - it will be refunded back to the attester (something that we can only verify during the
// last and final batch).
bool last;
unchecked {
last = i == multiDelegatedRequests.length - 1;
}
MultiDelegatedRevocationRequest memory multiDelegatedRequest = multiDelegatedRequests[i];
RevocationRequestData[] memory data = multiDelegatedRequest.data;
// Ensure that no inputs are missing.
if (data.length == 0 || data.length != multiDelegatedRequest.signatures.length) {
revert InvalidLength();
}
// Verify EIP712 signatures. Please note that the signatures are assumed to be signed with increasing nonces.
for (uint256 j = 0; j < data.length; ) {
_verifyRevoke(
DelegatedRevocationRequest({
schema: multiDelegatedRequest.schema,
data: data[j],
signature: multiDelegatedRequest.signatures[j],
revoker: multiDelegatedRequest.revoker
})
);
unchecked {
++j;
}
}
// Ensure to deduct the ETH that was forwarded to the resolver during the processing of this batch.
availableValue -= _revoke(
multiDelegatedRequest.schema,
data,
multiDelegatedRequest.revoker,
availableValue,
last
);
unchecked {
++i;
}
}
}
/**
* @inheritdoc IEAS
*/
function timestamp(bytes32 data) external returns (uint64) {
uint64 time = _time();
_timestamp(data, time);
return time;
}
/**
* @inheritdoc IEAS
*/
function revokeOffchain(bytes32 data) external returns (uint64) {
uint64 time = _time();
_revokeOffchain(msg.sender, data, time);
return time;
}
/**
* @inheritdoc IEAS
*/
function multiRevokeOffchain(bytes32[] calldata data) external returns (uint64) {
uint64 time = _time();
uint256 length = data.length;
for (uint256 i = 0; i < length; ) {
_revokeOffchain(msg.sender, data[i], time);
unchecked {
++i;
}
}
return time;
}
/**
* @inheritdoc IEAS
*/
function multiTimestamp(bytes32[] calldata data) external returns (uint64) {
uint64 time = _time();
uint256 length = data.length;
for (uint256 i = 0; i < length; ) {
_timestamp(data[i], time);
unchecked {
++i;
}
}
return time;
}
/**
* @inheritdoc IEAS
*/
function getAttestation(bytes32 uid) external view returns (Attestation memory) {
return _db[uid];
}
/**
* @inheritdoc IEAS
*/
function isAttestationValid(bytes32 uid) public view returns (bool) {
return _db[uid].uid != 0;
}
/**
* @inheritdoc IEAS
*/
function getTimestamp(bytes32 data) external view returns (uint64) {
return _timestamps[data];
}
/**
* @inheritdoc IEAS
*/
function getRevokeOffchain(address revoker, bytes32 data) external view returns (uint64) {
return _revocationsOffchain[revoker][data];
}
/**
* @dev Attests to a specific schema.
*
* @param schema // the unique identifier of the schema to attest to.
* @param data The arguments of the attestation requests.
* @param attester The attesting account.
* @param availableValue The total available ETH amount that can be sent to the resolver.
* @param last Whether this is the last attestations/revocations set.
*
* @return The UID of the new attestations and the total sent ETH amount.
*/
function _attest(
bytes32 schema,
AttestationRequestData[] memory data,
address attester,
uint256 availableValue,
bool last
) private returns (AttestationsResult memory) {
uint256 length = data.length;
AttestationsResult memory res;
res.uids = new bytes32[](length);
// Ensure that we aren't attempting to attest to a non-existing schema.
SchemaRecord memory schemaRecord = _schemaRegistry.getSchema(schema);
if (schemaRecord.uid == EMPTY_UID) {
revert InvalidSchema();
}
Attestation[] memory attestations = new Attestation[](length);
uint256[] memory values = new uint256[](length);
for (uint256 i = 0; i < length; ) {
AttestationRequestData memory request = data[i];
// Ensure that either no expiration time was set or that it was set in the future.
if (request.expirationTime != NO_EXPIRATION_TIME && request.expirationTime <= _time()) {
revert InvalidExpirationTime();
}
// Ensure that we aren't trying to make a revocable attestation for a non-revocable schema.
if (!schemaRecord.revocable && request.revocable) {
revert Irrevocable();
}
Attestation memory attestation = Attestation({
uid: EMPTY_UID,
schema: schema,
refUID: request.refUID,
time: _time(),
expirationTime: request.expirationTime,
revocationTime: 0,
recipient: request.recipient,
attester: attester,
revocable: request.revocable,
data: request.data
});
// Look for the first non-existing UID (and use a bump seed/nonce in the rare case of a conflict).
bytes32 uid;
uint32 bump = 0;
while (true) {
uid = _getUID(attestation, bump);
if (_db[uid].uid == EMPTY_UID) {
break;
}
unchecked {
++bump;
}
}
attestation.uid = uid;
_db[uid] = attestation;
if (request.refUID != 0) {
// Ensure that we aren't trying to attest to a non-existing referenced UID.
if (!isAttestationValid(request.refUID)) {
revert NotFound();
}
}
attestations[i] = attestation;
values[i] = request.value;
res.uids[i] = uid;
emit Attested(request.recipient, attester, uid, schema);
unchecked {
++i;
}
}
res.usedValue = _resolveAttestations(schemaRecord, attestations, values, false, availableValue, last);
return res;
}
/**
* @dev Revokes an existing attestation to a specific schema.
*
* @param schema The unique identifier of the schema to attest to.
* @param data The arguments of the revocation requests.
* @param revoker The revoking account.
* @param availableValue The total available ETH amount that can be sent to the resolver.
* @param last Whether this is the last attestations/revocations set.
*
* @return Returns the total sent ETH amount.
*/
function _revoke(
bytes32 schema,
RevocationRequestData[] memory data,
address revoker,
uint256 availableValue,
bool last
) private returns (uint256) {
// Ensure that a non-existing schema ID wasn't passed by accident.
SchemaRecord memory schemaRecord = _schemaRegistry.getSchema(schema);
if (schemaRecord.uid == EMPTY_UID) {
revert InvalidSchema();
}
uint256 length = data.length;
Attestation[] memory attestations = new Attestation[](length);
uint256[] memory values = new uint256[](length);
for (uint256 i = 0; i < length; ) {
RevocationRequestData memory request = data[i];
Attestation storage attestation = _db[request.uid];
// Ensure that we aren't attempting to revoke a non-existing attestation.
if (attestation.uid == EMPTY_UID) {
revert NotFound();
}
// Ensure that a wrong schema ID wasn't passed by accident.
if (attestation.schema != schema) {
revert InvalidSchema();
}
// Allow only original attesters to revoke their attestations.
if (attestation.attester != revoker) {
revert AccessDenied();
}
// Please note that also checking of the schema itself is revocable is unnecessary, since it's not possible to
// make revocable attestations to an irrevocable schema.
if (!attestation.revocable) {
revert Irrevocable();
}
// Ensure that we aren't trying to revoke the same attestation twice.
if (attestation.revocationTime != 0) {
revert AlreadyRevoked();
}
attestation.revocationTime = _time();
attestations[i] = attestation;
values[i] = request.value;
emit Revoked(attestation.recipient, revoker, request.uid, attestation.schema);
unchecked {
++i;
}
}
return _resolveAttestations(schemaRecord, attestations, values, true, availableValue, last);
}
/**
* @dev Resolves a new attestation or a revocation of an existing attestation.
*
* @param schemaRecord The schema of the attestation.
* @param attestation The data of the attestation to make/revoke.
* @param value An explicit ETH amount to send to the resolver.
* @param isRevocation Whether to resolve an attestation or its revocation.
* @param availableValue The total available ETH amount that can be sent to the resolver.
* @param last Whether this is the last attestations/revocations set.
*
* @return Returns the total sent ETH amount.
*/
function _resolveAttestation(
SchemaRecord memory schemaRecord,
Attestation memory attestation,
uint256 value,
bool isRevocation,
uint256 availableValue,
bool last
) private returns (uint256) {
ISchemaResolver resolver = schemaRecord.resolver;
if (address(resolver) == address(0)) {
// Ensure that we don't accept payments if there is no resolver.
if (value != 0) {
revert NotPayable();
}
return 0;
}
// Ensure that we don't accept payments which can't be forwarded to the resolver.
if (value != 0 && !resolver.isPayable()) {
revert NotPayable();
}
// Ensure that the attester/revoker doesn't try to spend more than available.
if (value > availableValue) {
revert InsufficientValue();
}
// Ensure to deduct the sent value explicitly.
unchecked {
availableValue -= value;
}
if (isRevocation) {
if (!resolver.revoke{ value: value }(attestation)) {
revert InvalidRevocation();
}
} else if (!resolver.attest{ value: value }(attestation)) {
revert InvalidAttestation();
}
if (last) {
_refund(availableValue);
}
return value;
}
/**
* @dev Resolves multiple attestations or revocations of existing attestations.
*
* @param schemaRecord The schema of the attestation.
* @param attestations The data of the attestations to make/revoke.
* @param values Explicit ETH amounts to send to the resolver.
* @param isRevocation Whether to resolve an attestation or its revocation.
* @param availableValue The total available ETH amount that can be sent to the resolver.
* @param last Whether this is the last attestations/revocations set.
*
* @return Returns the total sent ETH amount.
*/
function _resolveAttestations(
SchemaRecord memory schemaRecord,
Attestation[] memory attestations,
uint256[] memory values,
bool isRevocation,
uint256 availableValue,
bool last
) private returns (uint256) {
uint256 length = attestations.length;
if (length == 1) {
return _resolveAttestation(schemaRecord, attestations[0], values[0], isRevocation, availableValue, last);
}
ISchemaResolver resolver = schemaRecord.resolver;
if (address(resolver) == address(0)) {
// Ensure that we don't accept payments if there is no resolver.
for (uint256 i = 0; i < length; ) {
if (values[i] != 0) {
revert NotPayable();
}
unchecked {
++i;
}
}
return 0;
}
uint256 totalUsedValue = 0;
for (uint256 i = 0; i < length; ) {
uint256 value = values[i];
// Ensure that we don't accept payments which can't be forwarded to the resolver.
if (value != 0 && !resolver.isPayable()) {
revert NotPayable();
}
// Ensure that the attester/revoker doesn't try to spend more than available.
if (value > availableValue) {
revert InsufficientValue();
}
// Ensure to deduct the sent value explicitly and add it to the total used value by the batch.
unchecked {
availableValue -= value;
totalUsedValue += value;
++i;
}
}
if (isRevocation) {
if (!resolver.multiRevoke{ value: totalUsedValue }(attestations, values)) {
revert InvalidRevocations();
}
} else if (!resolver.multiAttest{ value: totalUsedValue }(attestations, values)) {
revert InvalidAttestations();
}
if (last) {
_refund(availableValue);
}
return totalUsedValue;
}
/**
* @dev Calculates a UID for a given attestation.
*
* @param attestation The input attestation.
* @param bump A bump value to use in case of a UID conflict.
*
* @return Attestation UID.
*/
function _getUID(Attestation memory attestation, uint32 bump) private pure returns (bytes32) {
return
keccak256(
abi.encodePacked(
attestation.schema,
attestation.recipient,
attestation.attester,
attestation.time,
attestation.expirationTime,
attestation.revocable,
attestation.refUID,
attestation.data,
bump
)
);
}
/**
* @dev Refunds remaining ETH amount to the attester.
*
* @param remainingValue The remaining ETH amount that was not sent to the resolver.
*/
function _refund(uint256 remainingValue) private {
if (remainingValue > 0) {
// Using a regular transfer here might revert, for some non-EOA attesters, due to exceeding of the 2300
// gas limit which is why we're using call instead (via sendValue), which the 2300 gas limit does not
// apply for.
payable(msg.sender).sendValue(remainingValue);
}
}
/**
* @dev Merges lists of UIDs.
*
* @param uidLists The provided lists of UIDs.
* @param uidsCount Total UIDs count.
*
* @return A merged and flatten list of all the UIDs.
*/
function _mergeUIDs(bytes32[][] memory uidLists, uint256 uidsCount) private pure returns (bytes32[] memory) {
bytes32[] memory uids = new bytes32[](uidsCount);
uint256 currentIndex = 0;
for (uint256 i = 0; i < uidLists.length; ) {
bytes32[] memory currentUids = uidLists[i];
for (uint256 j = 0; j < currentUids.length; ) {
uids[currentIndex] = currentUids[j];
unchecked {
++j;
++currentIndex;
}
}
unchecked {
++i;
}
}
return uids;
}
/**
* @dev Timestamps the specified bytes32 data.
*
* @param data The data to timestamp.
* @param time The timestamp.
*/
function _timestamp(bytes32 data, uint64 time) private {
if (_timestamps[data] != 0) {
revert AlreadyTimestamped();
}
_timestamps[data] = time;
emit Timestamped(data, time);
}
/**
* @dev Timestamps the specified bytes32 data.
*
* @param data The data to timestamp.
* @param time The timestamp.
*/
function _revokeOffchain(address revoker, bytes32 data, uint64 time) private {
mapping(bytes32 data => uint64 timestamp) storage revocations = _revocationsOffchain[revoker];
if (revocations[data] != 0) {
revert AlreadyRevokedOffchain();
}
revocations[data] = time;
emit RevokedOffchain(revoker, data, time);
}
/**
* @dev Returns the current's block timestamp. This method is overridden during tests and used to simulate the
* current block time.
*/
function _time() internal view virtual returns (uint64) {
return uint64(block.timestamp);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.0;
import "./ECDSA.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* _Available since v3.4._
*/
abstract contract EIP712 {
/* solhint-disable var-name-mixedcase */
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
uint256 private immutable _CACHED_CHAIN_ID;
address private immutable _CACHED_THIS;
bytes32 private immutable _HASHED_NAME;
bytes32 private immutable _HASHED_VERSION;
bytes32 private immutable _TYPE_HASH;
/* solhint-enable var-name-mixedcase */
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
bytes32 hashedName = keccak256(bytes(name));
bytes32 hashedVersion = keccak256(bytes(version));
bytes32 typeHash = keccak256(
"EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
);
_HASHED_NAME = hashedName;
_HASHED_VERSION = hashedVersion;
_CACHED_CHAIN_ID = block.chainid;
_CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);
_CACHED_THIS = address(this);
_TYPE_HASH = typeHash;
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) {
return _CACHED_DOMAIN_SEPARATOR;
} else {
return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION);
}
}
function _buildDomainSeparator(
bytes32 typeHash,
bytes32 nameHash,
bytes32 versionHash
) private view returns (bytes32) {
return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.18;
import { EIP712 } from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
// prettier-ignore
import {
AttestationRequest,
AttestationRequestData,
DelegatedAttestationRequest,
DelegatedRevocationRequest,
RevocationRequest,
RevocationRequestData
} from "./IEAS.sol";
import { EIP712Signature } from "./Types.sol";
/**
* @title EIP712 typed signatures verifier for EAS delegated attestations.
*/
abstract contract EIP712Verifier is EIP712 {
error InvalidSignature();
// The hash of the data type used to relay calls to the attest function. It's the value of
// keccak256("Attest(bytes32 schema,address recipient,uint64 expirationTime,bool revocable,bytes32 refUID,bytes data,uint256 nonce)").
bytes32 private constant ATTEST_TYPEHASH = 0xdbfdf8dc2b135c26253e00d5b6cbe6f20457e003fd526d97cea183883570de61;
// The hash of the data type used to relay calls to the revoke function. It's the value of
// keccak256("Revoke(bytes32 schema,bytes32 uid,uint256 nonce)").
bytes32 private constant REVOKE_TYPEHASH = 0xa98d02348410c9c76735e0d0bb1396f4015ac2bb9615f9c2611d19d7a8a99650;
// Replay protection nonces.
mapping(address => uint256) private _nonces;
/**
* @dev Creates a new EIP712Verifier instance.
*
* @param version The current major version of the signing domain
*/
constructor(string memory version) EIP712("EAS", version) {}
/**
* @dev Returns the domain separator used in the encoding of the signatures for attest, and revoke.
*/
function getDomainSeparator() external view returns (bytes32) {
return _domainSeparatorV4();
}
/**
* @dev Returns the current nonce per-account.
*
* @param account The requested account.
*
* @return The current nonce.
*/
function getNonce(address account) external view returns (uint256) {
return _nonces[account];
}
/**
* Returns the EIP712 type hash for the attest function.
*/
function getAttestTypeHash() external pure returns (bytes32) {
return ATTEST_TYPEHASH;
}
/**
* Returns the EIP712 type hash for the revoke function.
*/
function getRevokeTypeHash() external pure returns (bytes32) {
return REVOKE_TYPEHASH;
}
/**
* @dev Verifies delegated attestation request.
*
* @param request The arguments of the delegated attestation request.
*/
function _verifyAttest(DelegatedAttestationRequest memory request) internal {
AttestationRequestData memory data = request.data;
EIP712Signature memory signature = request.signature;
uint256 nonce;
unchecked {
nonce = _nonces[request.attester]++;
}
bytes32 digest = _hashTypedDataV4(
keccak256(
abi.encode(
ATTEST_TYPEHASH,
request.schema,
data.recipient,
data.expirationTime,
data.revocable,
data.refUID,
keccak256(data.data),
nonce
)
)
);
if (ECDSA.recover(digest, signature.v, signature.r, signature.s) != request.attester) {
revert InvalidSignature();
}
}
/**
* @dev Verifies delegated revocation request.
*
* @param request The arguments of the delegated revocation request.
*/
function _verifyRevoke(DelegatedRevocationRequest memory request) internal {
RevocationRequestData memory data = request.data;
EIP712Signature memory signature = request.signature;
uint256 nonce;
unchecked {
nonce = _nonces[request.revoker]++;
}
bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(REVOKE_TYPEHASH, request.schema, data.uid, nonce)));
if (ECDSA.recover(digest, signature.v, signature.r, signature.s) != request.revoker) {
revert InvalidSignature();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { ISchemaRegistry } from "./ISchemaRegistry.sol";
import { Attestation, EIP712Signature } from "./Types.sol";
/**
* @dev A struct representing the arguments of the attestation request.
*/
struct AttestationRequestData {
address recipient; // The recipient of the attestation.
uint64 expirationTime; // The time when the attestation expires (Unix timestamp).
bool revocable; // Whether the attestation is revocable.
bytes32 refUID; // The UID of the related attestation.
bytes data; // Custom attestation data.
uint256 value; // An explicit ETH amount to send to the resolver. This is important to prevent accidental user errors.
}
/**
* @dev A struct representing the full arguments of the attestation request.
*/
struct AttestationRequest {
bytes32 schema; // The unique identifier of the schema.
AttestationRequestData data; // The arguments of the attestation request.
}
/**
* @dev A struct representing the full arguments of the full delegated attestation request.
*/
struct DelegatedAttestationRequest {
bytes32 schema; // The unique identifier of the schema.
AttestationRequestData data; // The arguments of the attestation request.
EIP712Signature signature; // The EIP712 signature data.
address attester; // The attesting account.
}
/**
* @dev A struct representing the full arguments of the multi attestation request.
*/
struct MultiAttestationRequest {
bytes32 schema; // The unique identifier of the schema.
AttestationRequestData[] data; // The arguments of the attestation request.
}
/**
* @dev A struct representing the full arguments of the delegated multi attestation request.
*/
struct MultiDelegatedAttestationRequest {
bytes32 schema; // The unique identifier of the schema.
AttestationRequestData[] data; // The arguments of the attestation requests.
EIP712Signature[] signatures; // The EIP712 signatures data. Please note that the signatures are assumed to be signed with increasing nonces.
address attester; // The attesting account.
}
/**
* @dev A struct representing the arguments of the revocation request.
*/
struct RevocationRequestData {
bytes32 uid; // The UID of the attestation to revoke.
uint256 value; // An explicit ETH amount to send to the resolver. This is important to prevent accidental user errors.
}
/**
* @dev A struct representing the full arguments of the revocation request.
*/
struct RevocationRequest {
bytes32 schema; // The unique identifier of the schema.
RevocationRequestData data; // The arguments of the revocation request.
}
/**
* @dev A struct representing the arguments of the full delegated revocation request.
*/
struct DelegatedRevocationRequest {
bytes32 schema; // The unique identifier of the schema.
RevocationRequestData data; // The arguments of the revocation request.
EIP712Signature signature; // The EIP712 signature data.
address revoker; // The revoking account.
}
/**
* @dev A struct representing the full arguments of the multi revocation request.
*/
struct MultiRevocationRequest {
bytes32 schema; // The unique identifier of the schema.
RevocationRequestData[] data; // The arguments of the revocation request.
}
/**
* @dev A struct representing the full arguments of the delegated multi revocation request.
*/
struct MultiDelegatedRevocationRequest {
bytes32 schema; // The unique identifier of the schema.
RevocationRequestData[] data; // The arguments of the revocation requests.
EIP712Signature[] signatures; // The EIP712 signatures data. Please note that the signatures are assumed to be signed with increasing nonces.
address revoker; // The revoking account.
}
/**
* @title EAS - Ethereum Attestation Service interface.
*/
interface IEAS {
/**
* @dev Emitted when an attestation has been made.
*
* @param recipient The recipient of the attestation.
* @param attester The attesting account.
* @param uid The UID the revoked attestation.
* @param schema The UID of the schema.
*/
event Attested(address indexed recipient, address indexed attester, bytes32 uid, bytes32 indexed schema);
/**
* @dev Emitted when an attestation has been revoked.
*
* @param recipient The recipient of the attestation.
* @param attester The attesting account.
* @param schema The UID of the schema.
* @param uid The UID the revoked attestation.
*/
event Revoked(address indexed recipient, address indexed attester, bytes32 uid, bytes32 indexed schema);
/**
* @dev Emitted when a data has been timestamped.
*
* @param data The data.
* @param timestamp The timestamp.
*/
event Timestamped(bytes32 indexed data, uint64 indexed timestamp);
/**
* @dev Emitted when a data has been revoked.
*
* @param revoker The address of the revoker.
* @param data The data.
* @param timestamp The timestamp.
*/
event RevokedOffchain(address indexed revoker, bytes32 indexed data, uint64 indexed timestamp);
/**
* @dev Returns the address of the global schema registry.
*
* @return The address of the global schema registry.
*/
function getSchemaRegistry() external view returns (ISchemaRegistry);
/**
* @dev Attests to a specific schema.
*
* @param request The arguments of the attestation request.
*
* Example:
*
* attest({
* schema: "0facc36681cbe2456019c1b0d1e7bedd6d1d40f6f324bf3dd3a4cef2999200a0",
* data: {
* recipient: "0xdEADBeAFdeAdbEafdeadbeafDeAdbEAFdeadbeaf",
* expirationTime: 0,
* revocable: true,
* refUID: "0x0000000000000000000000000000000000000000000000000000000000000000",
* data: "0xF00D",
* value: 0
* }
* })
*
* @return The UID of the new attestation.
*/
function attest(AttestationRequest calldata request) external payable returns (bytes32);
/**
* @dev Attests to a specific schema via the provided EIP712 signature.
*
* @param delegatedRequest The arguments of the delegated attestation request.
*
* Example:
*
* attestByDelegation({
* schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
* data: {
* recipient: '0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266',
* expirationTime: 1673891048,
* revocable: true,
* refUID: '0x0000000000000000000000000000000000000000000000000000000000000000',
* data: '0x1234',
* value: 0
* },
* signature: {
* v: 28,
* r: '0x148c...b25b',
* s: '0x5a72...be22'
* },
* attester: '0xc5E8740aD971409492b1A63Db8d83025e0Fc427e'
* })
*
* @return The UID of the new attestation.
*/
function attestByDelegation(
DelegatedAttestationRequest calldata delegatedRequest
) external payable returns (bytes32);
/**
* @dev Attests to multiple schemas.
*
* @param multiRequests The arguments of the multi attestation requests. The requests should be grouped by distinct
* schema ids to benefit from the best batching optimization.
*
* Example:
*
* multiAttest([{
* schema: '0x33e9094830a5cba5554d1954310e4fbed2ef5f859ec1404619adea4207f391fd',
* data: [{
* recipient: '0xdEADBeAFdeAdbEafdeadbeafDeAdbEAFdeadbeaf',
* expirationTime: 1673891048,
* revocable: true,
* refUID: '0x0000000000000000000000000000000000000000000000000000000000000000',
* data: '0x1234',
* value: 1000
* },
* {
* recipient: '0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266',
* expirationTime: 0,
* revocable: false,
* refUID: '0x480df4a039efc31b11bfdf491b383ca138b6bde160988222a2a3509c02cee174',
* data: '0x00',
* value: 0
* }],
* },
* {
* schema: '0x5ac273ce41e3c8bfa383efe7c03e54c5f0bff29c9f11ef6ffa930fc84ca32425',
* data: [{
* recipient: '0xdEADBeAFdeAdbEafdeadbeafDeAdbEAFdeadbeaf',
* expirationTime: 0,
* revocable: true,
* refUID: '0x75bf2ed8dca25a8190c50c52db136664de25b2449535839008ccfdab469b214f',
* data: '0x12345678',
* value: 0
* },
* }])
*
* @return The UIDs of the new attestations.
*/
function multiAttest(MultiAttestationRequest[] calldata multiRequests) external payable returns (bytes32[] memory);
/**
* @dev Attests to multiple schemas using via provided EIP712 signatures.
*
* @param multiDelegatedRequests The arguments of the delegated multi attestation requests. The requests should be
* grouped by distinct schema ids to benefit from the best batching optimization.
*
* Example:
*
* multiAttestByDelegation([{
* schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
* data: [{
* recipient: '0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266',
* expirationTime: 1673891048,
* revocable: true,
* refUID: '0x0000000000000000000000000000000000000000000000000000000000000000',
* data: '0x1234',
* value: 0
* },
* {
* recipient: '0xdEADBeAFdeAdbEafdeadbeafDeAdbEAFdeadbeaf',
* expirationTime: 0,
* revocable: false,
* refUID: '0x0000000000000000000000000000000000000000000000000000000000000000',
* data: '0x00',
* value: 0
* }],
* signatures: [{
* v: 28,
* r: '0x148c...b25b',
* s: '0x5a72...be22'
* },
* {
* v: 28,
* r: '0x487s...67bb',
* s: '0x12ad...2366'
* }],
* attester: '0x1D86495b2A7B524D747d2839b3C645Bed32e8CF4'
* }])
*
* @return The UIDs of the new attestations.
*/
function multiAttestByDelegation(
MultiDelegatedAttestationRequest[] calldata multiDelegatedRequests
) external payable returns (bytes32[] memory);
/**
* @dev Revokes an existing attestation to a specific schema.
*
* Example:
*
* revoke({
* schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
* data: {
* uid: '0x101032e487642ee04ee17049f99a70590c735b8614079fc9275f9dd57c00966d',
* value: 0
* }
* })
*
* @param request The arguments of the revocation request.
*/
function revoke(RevocationRequest calldata request) external payable;
/**
* @dev Revokes an existing attestation to a specific schema via the provided EIP712 signature.
*
* Example:
*
* revokeByDelegation({
* schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
* data: {
* uid: '0xcbbc12102578c642a0f7b34fe7111e41afa25683b6cd7b5a14caf90fa14d24ba',
* value: 0
* },
* signature: {
* v: 27,
* r: '0xb593...7142',
* s: '0x0f5b...2cce'
* },
* revoker: '0x244934dd3e31bE2c81f84ECf0b3E6329F5381992'
* })
*
* @param delegatedRequest The arguments of the delegated revocation request.
*/
function revokeByDelegation(DelegatedRevocationRequest calldata delegatedRequest) external payable;
/**
* @dev Revokes existing attestations to multiple schemas.
*
* @param multiRequests The arguments of the multi revocation requests. The requests should be grouped by distinct
* schema ids to benefit from the best batching optimization.
*
* Example:
*
* multiRevoke([{
* schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
* data: [{
* uid: '0x211296a1ca0d7f9f2cfebf0daaa575bea9b20e968d81aef4e743d699c6ac4b25',
* value: 1000
* },
* {
* uid: '0xe160ac1bd3606a287b4d53d5d1d6da5895f65b4b4bab6d93aaf5046e48167ade',
* value: 0
* }],
* },
* {
* schema: '0x5ac273ce41e3c8bfa383efe7c03e54c5f0bff29c9f11ef6ffa930fc84ca32425',
* data: [{
* uid: '0x053d42abce1fd7c8fcddfae21845ad34dae287b2c326220b03ba241bc5a8f019',
* value: 0
* },
* }])
*/
function multiRevoke(MultiRevocationRequest[] calldata multiRequests) external payable;
/**
* @dev Revokes existing attestations to multiple schemas via provided EIP712 signatures.
*
* @param multiDelegatedRequests The arguments of the delegated multi revocation attestation requests. The requests should be
* grouped by distinct schema ids to benefit from the best batching optimization.
*
* Example:
*
* multiRevokeByDelegation([{
* schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
* data: [{
* uid: '0x211296a1ca0d7f9f2cfebf0daaa575bea9b20e968d81aef4e743d699c6ac4b25',
* value: 1000
* },
* {
* uid: '0xe160ac1bd3606a287b4d53d5d1d6da5895f65b4b4bab6d93aaf5046e48167ade',
* value: 0
* }],
* signatures: [{
* v: 28,
* r: '0x148c...b25b',
* s: '0x5a72...be22'
* },
* {
* v: 28,
* r: '0x487s...67bb',
* s: '0x12ad...2366'
* }],
* revoker: '0x244934dd3e31bE2c81f84ECf0b3E6329F5381992'
* }])
*
*/
function multiRevokeByDelegation(
MultiDelegatedRevocationRequest[] calldata multiDelegatedRequests
) external payable;
/**
* @dev Timestamps the specified bytes32 data.
*
* @param data The data to timestamp.
*
* @return The timestamp the data was timestamped with.
*/
function timestamp(bytes32 data) external returns (uint64);
/**
* @dev Timestamps the specified multiple bytes32 data.
*
* @param data The data to timestamp.
*
* @return The timestamp the data was timestamped with.
*/
function multiTimestamp(bytes32[] calldata data) external returns (uint64);
/**
* @dev Revokes the specified bytes32 data.
*
* @param data The data to timestamp.
*
* @return The timestamp the data was revoked with.
*/
function revokeOffchain(bytes32 data) external returns (uint64);
/**
* @dev Revokes the specified multiple bytes32 data.
*
* @param data The data to timestamp.
*
* @return The timestamp the data was revoked with.
*/
function multiRevokeOffchain(bytes32[] calldata data) external returns (uint64);
/**
* @dev Returns an existing attestation by UID.
*
* @param uid The UID of the attestation to retrieve.
*
* @return The attestation data members.
*/
function getAttestation(bytes32 uid) external view returns (Attestation memory);
/**
* @dev Checks whether an attestation exists.
*
* @param uid The UID of the attestation to retrieve.
*
* @return Whether an attestation exists.
*/
function isAttestationValid(bytes32 uid) external view returns (bool);
/**
* @dev Returns the timestamp that the specified data was timestamped with.
*
* @param data The data to query.
*
* @return The timestamp the data was timestamped with.
*/
function getTimestamp(bytes32 data) external view returns (uint64);
/**
* @dev Returns the timestamp that the specified data was timestamped with.
*
* @param data The data to query.
*
* @return The timestamp the data was timestamped with.
*/
function getRevokeOffchain(address revoker, bytes32 data) external view returns (uint64);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { ISchemaResolver } from "./resolver/ISchemaResolver.sol";
/**
* @title A struct representing a record for a submitted schema.
*/
struct SchemaRecord {
bytes32 uid; // The unique identifier of the schema.
ISchemaResolver resolver; // Optional schema resolver.
bool revocable; // Whether the schema allows revocations explicitly.
string schema; // Custom specification of the schema (e.g., an ABI).
}
/**
* @title The global schema registry interface.
*/
interface ISchemaRegistry {
/**
* @dev Emitted when a new schema has been registered
*
* @param uid The schema UID.
* @param registerer The address of the account used to register the schema.
*/
event Registered(bytes32 indexed uid, address registerer);
/**
* @dev Submits and reserves a new schema
*
* @param schema The schema data schema.
* @param resolver An optional schema resolver.
* @param revocable Whether the schema allows revocations explicitly.
*
* @return The UID of the new schema.
*/
function register(string calldata schema, ISchemaResolver resolver, bool revocable) external returns (bytes32);
/**
* @dev Returns an existing schema by UID
*
* @param uid The UID of the schema to retrieve.
*
* @return The schema data members.
*/
function getSchema(bytes32 uid) external view returns (SchemaRecord memory);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Attestation } from "../Types.sol";
/**
* @title The interface of an optional schema resolver.
*/
interface ISchemaResolver {
/**
* @dev Returns whether the resolver supports ETH transfers.
*/
function isPayable() external pure returns (bool);
/**
* @dev Processes an attestation and verifies whether it's valid.
*
* @param attestation The new attestation.
*
* @return Whether the attestation is valid.
*/
function attest(Attestation calldata attestation) external payable returns (bool);
/**
* @dev Processes multiple attestations and verifies whether they are valid.
*
* @param attestations The new attestations.
* @param values Explicit ETH amounts which were sent with each attestation.
*
* @return Whether all the attestations are valid.
*/
function multiAttest(
Attestation[] calldata attestations,
uint256[] calldata values
) external payable returns (bool);
/**
* @dev Processes an attestation revocation and verifies if it can be revoked.
*
* @param attestation The existing attestation to be revoked.
*
* @return Whether the attestation can be revoked.
*/
function revoke(Attestation calldata attestation) external payable returns (bool);
/**
* @dev Processes revocation of multiple attestation and verifies they can be revoked.
*
* @param attestations The existing attestations to be revoked.
* @param values Explicit ETH amounts which were sent with each revocation.
*
* @return Whether the attestations can be revoked.
*/
function multiRevoke(
Attestation[] calldata attestations,
uint256[] calldata values
) external payable returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.18;
// A representation of an empty/uninitialized UID.
bytes32 constant EMPTY_UID = 0;
/**
* @dev A struct representing EIP712 signature data.
*/
struct EIP712Signature {
uint8 v; // The recovery ID.
bytes32 r; // The x-coordinate of the nonce R.
bytes32 s; // The signature data.
}
/**
* @dev A struct representing a single attestation.
*/
struct Attestation {
bytes32 uid; // A unique identifier of the attestation.
bytes32 schema; // The unique identifier of the schema.
uint64 time; // The time when the attestation was created (Unix timestamp).
uint64 expirationTime; // The time when the attestation expires (Unix timestamp).
uint64 revocationTime; // The time when the attestation was revoked (Unix timestamp).
bytes32 refUID; // The UID of the related attestation.
address recipient; // The recipient of the attestation.
address attester; // The attester/sender of the attestation.
bool revocable; // Whether the attestation is revocable.
bytes data; // Custom attestation data.
}
{
"compilationTarget": {
"contracts/EAS.sol": "EAS"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "none",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 1000000
},
"remappings": [],
"viaIR": true
}
[{"inputs":[{"internalType":"contract ISchemaRegistry","name":"registry","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessDenied","type":"error"},{"inputs":[],"name":"AlreadyRevoked","type":"error"},{"inputs":[],"name":"AlreadyRevokedOffchain","type":"error"},{"inputs":[],"name":"AlreadyTimestamped","type":"error"},{"inputs":[],"name":"InsufficientValue","type":"error"},{"inputs":[],"name":"InvalidAttestation","type":"error"},{"inputs":[],"name":"InvalidAttestations","type":"error"},{"inputs":[],"name":"InvalidExpirationTime","type":"error"},{"inputs":[],"name":"InvalidLength","type":"error"},{"inputs":[],"name":"InvalidOffset","type":"error"},{"inputs":[],"name":"InvalidRegistry","type":"error"},{"inputs":[],"name":"InvalidRevocation","type":"error"},{"inputs":[],"name":"InvalidRevocations","type":"error"},{"inputs":[],"name":"InvalidSchema","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"InvalidVerifier","type":"error"},{"inputs":[],"name":"Irrevocable","type":"error"},{"inputs":[],"name":"NotFound","type":"error"},{"inputs":[],"name":"NotPayable","type":"error"},{"inputs":[],"name":"WrongSchema","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"address","name":"attester","type":"address"},{"indexed":false,"internalType":"bytes32","name":"uid","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"schema","type":"bytes32"}],"name":"Attested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"address","name":"attester","type":"address"},{"indexed":false,"internalType":"bytes32","name":"uid","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"schema","type":"bytes32"}],"name":"Revoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"revoker","type":"address"},{"indexed":true,"internalType":"bytes32","name":"data","type":"bytes32"},{"indexed":true,"internalType":"uint64","name":"timestamp","type":"uint64"}],"name":"RevokedOffchain","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"data","type":"bytes32"},{"indexed":true,"internalType":"uint64","name":"timestamp","type":"uint64"}],"name":"Timestamped","type":"event"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"schema","type":"bytes32"},{"components":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint64","name":"expirationTime","type":"uint64"},{"internalType":"bool","name":"revocable","type":"bool"},{"internalType":"bytes32","name":"refUID","type":"bytes32"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"value","type":"uint256"}],"internalType":"struct AttestationRequestData","name":"data","type":"tuple"}],"internalType":"struct AttestationRequest","name":"request","type":"tuple"}],"name":"attest","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"schema","type":"bytes32"},{"components":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint64","name":"expirationTime","type":"uint64"},{"internalType":"bool","name":"revocable","type":"bool"},{"internalType":"bytes32","name":"refUID","type":"bytes32"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"value","type":"uint256"}],"internalType":"struct AttestationRequestData","name":"data","type":"tuple"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct EIP712Signature","name":"signature","type":"tuple"},{"internalType":"address","name":"attester","type":"address"}],"internalType":"struct DelegatedAttestationRequest","name":"delegatedRequest","type":"tuple"}],"name":"attestByDelegation","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"getAttestTypeHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"uid","type":"bytes32"}],"name":"getAttestation","outputs":[{"components":[{"internalType":"bytes32","name":"uid","type":"bytes32"},{"internalType":"bytes32","name":"schema","type":"bytes32"},{"internalType":"uint64","name":"time","type":"uint64"},{"internalType":"uint64","name":"expirationTime","type":"uint64"},{"internalType":"uint64","name":"revocationTime","type":"uint64"},{"internalType":"bytes32","name":"refUID","type":"bytes32"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"attester","type":"address"},{"internalType":"bool","name":"revocable","type":"bool"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Attestation","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDomainSeparator","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"revoker","type":"address"},{"internalType":"bytes32","name":"data","type":"bytes32"}],"name":"getRevokeOffchain","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRevokeTypeHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getSchemaRegistry","outputs":[{"internalType":"contract ISchemaRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"data","type":"bytes32"}],"name":"getTimestamp","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"uid","type":"bytes32"}],"name":"isAttestationValid","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"schema","type":"bytes32"},{"components":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint64","name":"expirationTime","type":"uint64"},{"internalType":"bool","name":"revocable","type":"bool"},{"internalType":"bytes32","name":"refUID","type":"bytes32"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"value","type":"uint256"}],"internalType":"struct AttestationRequestData[]","name":"data","type":"tuple[]"}],"internalType":"struct MultiAttestationRequest[]","name":"multiRequests","type":"tuple[]"}],"name":"multiAttest","outputs":[{"internalType":"bytes32[]","name":"","type":"bytes32[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"schema","type":"bytes32"},{"components":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint64","name":"expirationTime","type":"uint64"},{"internalType":"bool","name":"revocable","type":"bool"},{"internalType":"bytes32","name":"refUID","type":"bytes32"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"value","type":"uint256"}],"internalType":"struct AttestationRequestData[]","name":"data","type":"tuple[]"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct EIP712Signature[]","name":"signatures","type":"tuple[]"},{"internalType":"address","name":"attester","type":"address"}],"internalType":"struct MultiDelegatedAttestationRequest[]","name":"multiDelegatedRequests","type":"tuple[]"}],"name":"multiAttestByDelegation","outputs":[{"internalType":"bytes32[]","name":"","type":"bytes32[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"schema","type":"bytes32"},{"components":[{"internalType":"bytes32","name":"uid","type":"bytes32"},{"internalType":"uint256","name":"value","type":"uint256"}],"internalType":"struct RevocationRequestData[]","name":"data","type":"tuple[]"}],"internalType":"struct MultiRevocationRequest[]","name":"multiRequests","type":"tuple[]"}],"name":"multiRevoke","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"schema","type":"bytes32"},{"components":[{"internalType":"bytes32","name":"uid","type":"bytes32"},{"internalType":"uint256","name":"value","type":"uint256"}],"internalType":"struct RevocationRequestData[]","name":"data","type":"tuple[]"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct EIP712Signature[]","name":"signatures","type":"tuple[]"},{"internalType":"address","name":"revoker","type":"address"}],"internalType":"struct MultiDelegatedRevocationRequest[]","name":"multiDelegatedRequests","type":"tuple[]"}],"name":"multiRevokeByDelegation","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"data","type":"bytes32[]"}],"name":"multiRevokeOffchain","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"data","type":"bytes32[]"}],"name":"multiTimestamp","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"schema","type":"bytes32"},{"components":[{"internalType":"bytes32","name":"uid","type":"bytes32"},{"internalType":"uint256","name":"value","type":"uint256"}],"internalType":"struct RevocationRequestData","name":"data","type":"tuple"}],"internalType":"struct RevocationRequest","name":"request","type":"tuple"}],"name":"revoke","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"schema","type":"bytes32"},{"components":[{"internalType":"bytes32","name":"uid","type":"bytes32"},{"internalType":"uint256","name":"value","type":"uint256"}],"internalType":"struct RevocationRequestData","name":"data","type":"tuple"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct EIP712Signature","name":"signature","type":"tuple"},{"internalType":"address","name":"revoker","type":"address"}],"internalType":"struct DelegatedRevocationRequest","name":"delegatedRequest","type":"tuple"}],"name":"revokeByDelegation","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"data","type":"bytes32"}],"name":"revokeOffchain","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"data","type":"bytes32"}],"name":"timestamp","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"nonpayable","type":"function"}]