// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
import "@uma/core/contracts/merkle-distributor/implementation/MerkleDistributor.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/**
* @title Extended MerkleDistributor contract.
* @notice Adds additional constraints governing who can claim leaves from merkle windows.
*/
contract AcrossMerkleDistributor is MerkleDistributor {
using SafeERC20 for IERC20;
// Addresses that can claim on user's behalf.
mapping(address => bool) public whitelistedClaimers;
/****************************************
* EVENTS
****************************************/
event WhitelistedClaimer(address indexed claimer, bool indexed whitelist);
event ClaimFor(
address indexed caller,
uint256 windowIndex,
address indexed account,
uint256 accountIndex,
uint256 amount,
address indexed rewardToken
);
/****************************
* ADMIN FUNCTIONS
****************************/
/**
* @notice Updates whitelisted claimer status.
* @dev Callable only by owner.
* @param newContract Reset claimer contract to this address.
* @param whitelist True to whitelist claimer, False otherwise.
*/
function whitelistClaimer(address newContract, bool whitelist) external onlyOwner {
whitelistedClaimers[newContract] = whitelist;
emit WhitelistedClaimer(newContract, whitelist);
}
/****************************
* NON-ADMIN FUNCTIONS
****************************/
/**
* @notice Batch claims to reduce gas versus individual submitting all claims. Method will fail
* if any individual claims within the batch would fail.
* @dev All claim recipients must be equal to msg.sender.
* @param claims array of claims to claim.
*/
function claimMulti(Claim[] memory claims) public override {
uint256 claimCount = claims.length;
for (uint256 i = 0; i < claimCount; i++) {
require(claims[i].account == msg.sender, "invalid claimer");
}
super.claimMulti(claims);
}
/**
* @notice Claim amount of reward tokens for account, as described by Claim input object.
* @dev Claim recipient must be equal to msg.sender.
* @param _claim claim object describing amount, accountIndex, account, window index, and merkle proof.
*/
function claim(Claim memory _claim) public override {
require(_claim.account == msg.sender, "invalid claimer");
super.claim(_claim);
}
/**
* @notice Executes merkle leaf claim on behaf of user. This can only be called by a trusted
* claimer address. This function is designed to be called atomically with other transactions
* that ultimately return the claimed amount to the rightful recipient. For example,
* AcceleratingDistributor could call this function and then stake atomically on behalf of the user.
* @dev Caller must be in whitelistedClaimers struct set to "true".
* @param _claim leaf to claim.
*/
function claimFor(Claim memory _claim) public {
require(whitelistedClaimers[msg.sender], "unwhitelisted claimer");
_verifyAndMarkClaimed(_claim);
merkleWindows[_claim.windowIndex].rewardToken.safeTransfer(msg.sender, _claim.amount);
emit ClaimFor(
msg.sender,
_claim.windowIndex,
_claim.account,
_claim.accountIndex,
_claim.amount,
address(merkleWindows[_claim.windowIndex].rewardToken)
);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./MerkleDistributorInterface.sol";
/**
* Inspired by:
* - https://github.com/pie-dao/vested-token-migration-app
* - https://github.com/Uniswap/merkle-distributor
* - https://github.com/balancer-labs/erc20-redeemable
*
* @title MerkleDistributor contract.
* @notice Allows an owner to distribute any reward ERC20 to claimants according to Merkle roots. The owner can specify
* multiple Merkle roots distributions with customized reward currencies.
* @dev The Merkle trees are not validated in any way, so the system assumes the contract owner behaves honestly.
*/
contract MerkleDistributor is MerkleDistributorInterface, Ownable {
using SafeERC20 for IERC20;
// Windows are mapped to arbitrary indices.
mapping(uint256 => Window) public merkleWindows;
// Index of next created Merkle root.
uint256 public nextCreatedIndex;
// Track which accounts have claimed for each window index.
// Note: uses a packed array of bools for gas optimization on tracking certain claims. Copied from Uniswap's contract.
mapping(uint256 => mapping(uint256 => uint256)) private claimedBitMap;
/****************************************
* EVENTS
****************************************/
event Claimed(
address indexed caller,
uint256 windowIndex,
address indexed account,
uint256 accountIndex,
uint256 amount,
address indexed rewardToken
);
event CreatedWindow(
uint256 indexed windowIndex,
uint256 rewardsDeposited,
address indexed rewardToken,
address owner
);
event WithdrawRewards(address indexed owner, uint256 amount, address indexed currency);
event DeleteWindow(uint256 indexed windowIndex, address owner);
/****************************
* ADMIN FUNCTIONS
****************************/
/**
* @notice Set merkle root for the next available window index and seed allocations.
* @notice Callable only by owner of this contract. Caller must have approved this contract to transfer
* `rewardsToDeposit` amount of `rewardToken` or this call will fail. Importantly, we assume that the
* owner of this contract correctly chooses an amount `rewardsToDeposit` that is sufficient to cover all
* claims within the `merkleRoot`.
* @param rewardsToDeposit amount of rewards to deposit to seed this allocation.
* @param rewardToken ERC20 reward token.
* @param merkleRoot merkle root describing allocation.
* @param ipfsHash hash of IPFS object, conveniently stored for clients
*/
function setWindow(
uint256 rewardsToDeposit,
address rewardToken,
bytes32 merkleRoot,
string calldata ipfsHash
) external onlyOwner {
uint256 indexToSet = nextCreatedIndex;
nextCreatedIndex = indexToSet + 1;
_setWindow(indexToSet, rewardsToDeposit, rewardToken, merkleRoot, ipfsHash);
}
/**
* @notice Delete merkle root at window index.
* @dev Callable only by owner. Likely to be followed by a withdrawRewards call to clear contract state.
* @param windowIndex merkle root index to delete.
*/
function deleteWindow(uint256 windowIndex) external onlyOwner {
delete merkleWindows[windowIndex];
emit DeleteWindow(windowIndex, msg.sender);
}
/**
* @notice Emergency method that transfers rewards out of the contract if the contract was configured improperly.
* @dev Callable only by owner.
* @param rewardCurrency rewards to withdraw from contract.
* @param amount amount of rewards to withdraw.
*/
function withdrawRewards(IERC20 rewardCurrency, uint256 amount) external onlyOwner {
rewardCurrency.safeTransfer(msg.sender, amount);
emit WithdrawRewards(msg.sender, amount, address(rewardCurrency));
}
/****************************
* NON-ADMIN FUNCTIONS
****************************/
/**
* @notice Batch claims to reduce gas versus individual submitting all claims. Method will fail
* if any individual claims within the batch would fail.
* @dev Optimistically tries to batch together consecutive claims for the same account and same
* reward token to reduce gas. Therefore, the most gas-cost-optimal way to use this method
* is to pass in an array of claims sorted by account and reward currency. It also reverts
* when any of individual `_claim`'s `amount` exceeds `remainingAmount` for its window.
* @param claims array of claims to claim.
*/
function claimMulti(Claim[] memory claims) public virtual override {
uint256 batchedAmount;
uint256 claimCount = claims.length;
for (uint256 i = 0; i < claimCount; i++) {
Claim memory _claim = claims[i];
_verifyAndMarkClaimed(_claim);
batchedAmount += _claim.amount;
// If the next claim is NOT the same account or the same token (or this claim is the last one),
// then disburse the `batchedAmount` to the current claim's account for the current claim's reward token.
uint256 nextI = i + 1;
IERC20 currentRewardToken = merkleWindows[_claim.windowIndex].rewardToken;
if (
nextI == claimCount ||
// This claim is last claim.
claims[nextI].account != _claim.account ||
// Next claim account is different than current one.
merkleWindows[claims[nextI].windowIndex].rewardToken != currentRewardToken
// Next claim reward token is different than current one.
) {
currentRewardToken.safeTransfer(_claim.account, batchedAmount);
batchedAmount = 0;
}
}
}
/**
* @notice Claim amount of reward tokens for account, as described by Claim input object.
* @dev If the `_claim`'s `amount`, `accountIndex`, and `account` do not exactly match the
* values stored in the merkle root for the `_claim`'s `windowIndex` this method
* will revert. It also reverts when `_claim`'s `amount` exceeds `remainingAmount` for the window.
* @param _claim claim object describing amount, accountIndex, account, window index, and merkle proof.
*/
function claim(Claim memory _claim) public virtual override {
_verifyAndMarkClaimed(_claim);
merkleWindows[_claim.windowIndex].rewardToken.safeTransfer(_claim.account, _claim.amount);
}
/**
* @notice Returns True if the claim for `accountIndex` has already been completed for the Merkle root at
* `windowIndex`.
* @dev This method will only work as intended if all `accountIndex`'s are unique for a given `windowIndex`.
* The onus is on the Owner of this contract to submit only valid Merkle roots.
* @param windowIndex merkle root to check.
* @param accountIndex account index to check within window index.
* @return True if claim has been executed already, False otherwise.
*/
function isClaimed(uint256 windowIndex, uint256 accountIndex) public view returns (bool) {
uint256 claimedWordIndex = accountIndex / 256;
uint256 claimedBitIndex = accountIndex % 256;
uint256 claimedWord = claimedBitMap[windowIndex][claimedWordIndex];
uint256 mask = (1 << claimedBitIndex);
return claimedWord & mask == mask;
}
/**
* @notice Returns rewardToken set by admin for windowIndex.
* @param windowIndex merkle root to check.
* @return address Reward token address
*/
function getRewardTokenForWindow(uint256 windowIndex) public view override returns (address) {
return address(merkleWindows[windowIndex].rewardToken);
}
/**
* @notice Returns True if leaf described by {account, amount, accountIndex} is stored in Merkle root at given
* window index.
* @param _claim claim object describing amount, accountIndex, account, window index, and merkle proof.
* @return valid True if leaf exists.
*/
function verifyClaim(Claim memory _claim) public view returns (bool valid) {
bytes32 leaf = keccak256(abi.encodePacked(_claim.account, _claim.amount, _claim.accountIndex));
return MerkleProof.verify(_claim.merkleProof, merkleWindows[_claim.windowIndex].merkleRoot, leaf);
}
/****************************
* PRIVATE FUNCTIONS
****************************/
// Mark claim as completed for `accountIndex` for Merkle root at `windowIndex`.
function _setClaimed(uint256 windowIndex, uint256 accountIndex) private {
uint256 claimedWordIndex = accountIndex / 256;
uint256 claimedBitIndex = accountIndex % 256;
claimedBitMap[windowIndex][claimedWordIndex] =
claimedBitMap[windowIndex][claimedWordIndex] |
(1 << claimedBitIndex);
}
// Store new Merkle root at `windowindex`. Pull `rewardsDeposited` from caller to seed distribution for this root.
function _setWindow(
uint256 windowIndex,
uint256 rewardsDeposited,
address rewardToken,
bytes32 merkleRoot,
string memory ipfsHash
) private {
Window storage window = merkleWindows[windowIndex];
window.merkleRoot = merkleRoot;
window.remainingAmount = rewardsDeposited;
window.rewardToken = IERC20(rewardToken);
window.ipfsHash = ipfsHash;
emit CreatedWindow(windowIndex, rewardsDeposited, rewardToken, msg.sender);
window.rewardToken.safeTransferFrom(msg.sender, address(this), rewardsDeposited);
}
// Verify claim is valid and mark it as completed in this contract.
function _verifyAndMarkClaimed(Claim memory _claim) internal {
// Check claimed proof against merkle window at given index.
require(verifyClaim(_claim), "Incorrect merkle proof");
// Check the account has not yet claimed for this window.
require(!isClaimed(_claim.windowIndex, _claim.accountIndex), "Account has already claimed for this window");
// Proof is correct and claim has not occurred yet, mark claimed complete.
_setClaimed(_claim.windowIndex, _claim.accountIndex);
merkleWindows[_claim.windowIndex].remainingAmount -= _claim.amount;
emit Claimed(
msg.sender,
_claim.windowIndex,
_claim.account,
_claim.accountIndex,
_claim.amount,
address(merkleWindows[_claim.windowIndex].rewardToken)
);
}
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/**
* @notice Concise list of functions in MerkleDistributor implementation that would be called by
* a consuming external contract (such as the Across Protocol's AcceleratingDistributor).
*/
interface MerkleDistributorInterface {
// A Window maps a Merkle root to a reward token address.
struct Window {
// Merkle root describing the distribution.
bytes32 merkleRoot;
// Remaining amount of deposited rewards that have not yet been claimed.
uint256 remainingAmount;
// Currency in which reward is processed.
IERC20 rewardToken;
// IPFS hash of the merkle tree. Can be used to independently fetch recipient proofs and tree. Note that the canonical
// data type for storing an IPFS hash is a multihash which is the concatenation of <varint hash function code>
// <varint digest size in bytes><hash function output>. We opted to store this in a string type to make it easier
// for users to query the ipfs data without needing to reconstruct the multihash. to view the IPFS data simply
// go to https://cloudflare-ipfs.com/ipfs/<IPFS-HASH>.
string ipfsHash;
}
// Represents an account's claim for `amount` within the Merkle root located at the `windowIndex`.
struct Claim {
uint256 windowIndex;
uint256 amount;
uint256 accountIndex; // Used only for bitmap. Assumed to be unique for each claim.
address account;
bytes32[] merkleProof;
}
function claim(Claim memory _claim) external;
function claimMulti(Claim[] memory claims) external;
function getRewardTokenForWindow(uint256 windowIndex) external view returns (address);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
require(proofPos == proofLen, "MerkleProof: invalid multiproof");
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
require(proofPos == proofLen, "MerkleProof: invalid multiproof");
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
{
"compilationTarget": {
"contracts/merkle-distributor/AcrossMerkleDistributor.sol": "AcrossMerkleDistributor"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 1000000
},
"remappings": [],
"viaIR": true
}
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":false,"internalType":"uint256","name":"windowIndex","type":"uint256"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"accountIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"address","name":"rewardToken","type":"address"}],"name":"ClaimFor","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":false,"internalType":"uint256","name":"windowIndex","type":"uint256"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"accountIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"address","name":"rewardToken","type":"address"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"windowIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"rewardsDeposited","type":"uint256"},{"indexed":true,"internalType":"address","name":"rewardToken","type":"address"},{"indexed":false,"internalType":"address","name":"owner","type":"address"}],"name":"CreatedWindow","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"windowIndex","type":"uint256"},{"indexed":false,"internalType":"address","name":"owner","type":"address"}],"name":"DeleteWindow","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"claimer","type":"address"},{"indexed":true,"internalType":"bool","name":"whitelist","type":"bool"}],"name":"WhitelistedClaimer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"address","name":"currency","type":"address"}],"name":"WithdrawRewards","type":"event"},{"inputs":[{"components":[{"internalType":"uint256","name":"windowIndex","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"accountIndex","type":"uint256"},{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"internalType":"struct MerkleDistributorInterface.Claim","name":"_claim","type":"tuple"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"windowIndex","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"accountIndex","type":"uint256"},{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"internalType":"struct MerkleDistributorInterface.Claim","name":"_claim","type":"tuple"}],"name":"claimFor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"windowIndex","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"accountIndex","type":"uint256"},{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"internalType":"struct MerkleDistributorInterface.Claim[]","name":"claims","type":"tuple[]"}],"name":"claimMulti","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"windowIndex","type":"uint256"}],"name":"deleteWindow","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"windowIndex","type":"uint256"}],"name":"getRewardTokenForWindow","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"windowIndex","type":"uint256"},{"internalType":"uint256","name":"accountIndex","type":"uint256"}],"name":"isClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"merkleWindows","outputs":[{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"remainingAmount","type":"uint256"},{"internalType":"contract IERC20","name":"rewardToken","type":"address"},{"internalType":"string","name":"ipfsHash","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextCreatedIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"rewardsToDeposit","type":"uint256"},{"internalType":"address","name":"rewardToken","type":"address"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"string","name":"ipfsHash","type":"string"}],"name":"setWindow","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"windowIndex","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"accountIndex","type":"uint256"},{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"internalType":"struct MerkleDistributorInterface.Claim","name":"_claim","type":"tuple"}],"name":"verifyClaim","outputs":[{"internalType":"bool","name":"valid","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newContract","type":"address"},{"internalType":"bool","name":"whitelist","type":"bool"}],"name":"whitelistClaimer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"whitelistedClaimers","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"rewardCurrency","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawRewards","outputs":[],"stateMutability":"nonpayable","type":"function"}]